Darstellung und Kristallstruktur von CsTe₄

P. Böttcher* und U. Kretschmann

Aachen, Institut für Anorganische Chemie der Technischen Hochschule

Inhaltsübersicht. CsTe₄ entsteht aus Gemengen von Caesium und Tellur im Molverhältnis 1:4, wenn man diese in abgeschlossenen Ampullen einer Schmelzreaktion bei 570°C unterwirft. Die Elementgemenge stellt man dar, indem man CsN₃ und Te (1:4) zusammengibt und anschließend durch kontrollierte Zersetzung des Azids den Stickstoff vertreibt.

CsTe₄ kristallisiert monoklin in der Raumgruppe P2₁/c (Z = 4) mit den Gitterkonstanten a = 7,857(1) Å, b = 7,286(1) Å, c = 14,155(2) Å, $\beta = 93,83(1)^{\circ}$. In der Struktur liegt ein zweidimensionalunendliches Polyanion $\frac{2}{\infty}$ [Te₄-] vor. Die Verwandtschaft mit anderen tellurreichen Telluriden MTe_n wird diskutiert.

Preparation and Crystal Structure of CsTe₄

Abstract. $CsTe_4$ results from a melting reaction at 570 °C in sealed quartztubes. The starting materials Cs and Te in the molar ratio 1:4 are produced in a first step by controlled decomposition of the CsN₃ from mixtures of CsN₃ and Te (1:4) at 350 °C.

CsTe₄ is monoclinic, space group P2₁/c, with a = 7.857(1) Å, b = 7.286(1) Å, c = 14.155(2) Å, $\beta = 93.83(1)^{\circ}$, and Z = 4. The tellurium atoms form a two-dimensional puckered layer built of from pseudo-trigonal-bipyramidal, T-shaped units Te₄⁻. The central tellurium atom of this unit may be considered as a pseudo iodine. The compound is compared with other tellurides MTe_n having some like that unexpected principles of connection.

1. Einleitung

Die chalkogenreichen Sulfide und Selenide sowohl elektropositiver Metalle M^{n_+} als auch des Ammoniums und des alkylsubstituierten Ammoniums NR_4^+ bilden die wohlbekannten Strukturen mit kettenförmigen Anionen S_n^{2-} bzw. Se_n^{2-} . Bei den Telluriden sind die Verhältnisse weniger monoton: Während sich im Falle des sterisch anspruchsvollen Kations Tetrabutylammonium ein Pentatellurid $(n-Bu_4N)_2Te_5$ mit isoliertem kettenförmigen Anion Te_5^{2-} bildet [1], werden mit Metallkationen andere Verknüpfungsmöglichkeiten des Tellurteilgitters verwirklicht, die prinzipiell für das schwere Homologe Tellur aufgrund seiner Stellung im Periodensystem nicht unerwartet kommen. So findet man sowohl im Rb_2Te_5 als auch im Cs_2Te_5 eindimensional-unendliche Ketten, die aus einer charakteristischen planar-quadratischen Einheit $(TeTe_4)^{2-}$ aufgebaut gedacht werden können [2, 3]. Diese Baugruppe kann auch in anderen Metalltelluriden MTe_n als konstitutiv angesehen werden, wobei manches darauf hindeutet, daß man sich auf dem Wege zum kationenstabilisierten metallischen Tellur befindet [2, 4]. Im Rahmen

dieser Überlegungen stellt sich die Frage, inwieweit diese oder analoge Möglichkeiten bestimmend bleiben, wenn man zu immer tellurreicheren Verbindungen wie z. B. $CsTe_4$ fortschreitet.

2. Experimentelles

Caesiumtetratellurid, $CsTe_4$, wird dargestellt, indem man ein Ausgangsgemenge aus Caesium und Tellur im Molverhältnis 1:4, welches sich in einem Korundtiegel in einer abgeschmolzenen Quarzampulle befindet, für etwa fünf bis sieben Tage bei 570°C einer Schmelzreaktion unterwirft. Die notwendigen Ausgangsgemenge kann man auf dreierlei Weise erzeugen:

a) Gemenge aus Caesiumazid, CsN_3 , und Tellur (1:4) werden bei 350°C durch kontrollierte Zersetzung des Azids zu einem feinverteilten, äußerst reaktionsfähigen Caesium-Tellur-Gemenge umgesetzt, welches im allgemeinen schon während der Zersetzung miteinander zu reagieren beginnt. Nach dem Ende der Zersetzung wird die Quarzampulle abgeschmolzen.

b) Man vermengt Cs2Te3 und Tellur im Molverhältnis 1:5 miteinander.

c) Man setzt Caesium und Tellur im Molverhältnis 1:4 in flüssigem Ammoniak um, wobei man ein heterogenes Produkt erhält, welches in der Hauptsache aus Cs_2Te_3 und Tellur besteht.

Nach den Schmelzreaktionen erhält man die Substanzen als metallisch grau glänzende, mikrokristalline Schmelzkuchen, die manchmal geringe Spuren von Tellur enthalten, welche sich z. B. entsprechend folgender Gleichung bilden können: $2 \text{ CsTe}_4 \rightleftharpoons \text{Cs}_2\text{Te}_3 + 5 \text{ Te}.$

h k l	$2\Theta_{\rm obs}$	20calc	$\mathbf{I}_{obs}{}^{b}$)	Icalc	h k l	$2\Theta_{\rm obs}$	$2\Theta_{calc}$	$\mathbf{I_{obs}}^{b})$	I_{calc}
$11\bar{3}$	24,61	24,62	m	55	313		42,48		3
0 0 4		25,20		4	$2\ 1\ 5$	42,50	42,50	ssch	2
$2 \ 0 \ \overline{2}$	25,21	25,22	m	× 32	320		42,54		10
021		25,22		4	$2\ 2\ 4$	49.95	43,38		4
$2 \ 0 \ 2$	26,70	26,72	\mathbf{st}	100	321	40,00	43,40	scn/m	21
022	97 61	27,52	a. t	16	133	49.50	43,80		14
12Ï	27,01	27,54	86	79	230	43,76	43,81	sch	6
014	90.09	28,06	- lat	37	314	40.04	46,25	1	7
$2 \ 1 \ \overline{2}$	28,02	28,08	m/st	39	400	46,24	46,28	scn	14
$1 \ 2 \ \overline{2}$	29,46	29,50	sch	23	117		47,40		17
$2\ 1\ \bar{3}$	31,15	31,19	sch	29	$23\bar{3}$	47,40	47,42	m	4
123	99 FF	33,54	sch	26	$31\bar{5}$		47,42		27
220	33,35	33,56		7	410		48,04		4
$1 1 \overline{5}$	25.00	35,24	a . h	5	411	48,04	48,05	ssen	9
$2\ 1\ \ddot{4}$	55,26	35,24	scu	18	$13\overline{5}$		50,36		5
115	36,61	36,64	m	44	$2\ 3\ \overline{4}$	50,40	50,37	ssch	4
302	37,43	37,45	sch	12	$3 \ 0 \ \overline{6}$		50,37		2
106		39,18		6	234	52,03	52,05	ssch	12
032	39,18	39,20	sch/m	13	420	59.07	53,01	1.	7
131		39,20		13	42Ī	52,97	53,02	ssen	5
016	40,27	40,27	ssch, d	12					

Tabelle 1 Simon-Guinier-Diagramm von CsTe₄^a)

a) Nonius FR 552; CuKa₁-Strahlung; Quarz-Standard

b) st = stark, m = mittel, s = schwach, ssch = sehr schwach, d = diffus

a = 7,862(1) Å, b = 7,290(2) Å, c = 14,148(4) Å, β = 93,81(2)°

Die röntgenographischen Pulverdiagramme zeigen dann als einzigen sehr schwachen Fremdreflex die intensitätsstärkste Linie des Tellurs, ansonsten lassen sie sich mit den aus der Einkristalluntersuchung gewonnenen Strukturparametern eindeutig und widerspruchsfrei indizieren (Tab. 1). Die bei 25°C mit Petroleum als Sperrflüssigkeit (ϱ (Petroleum) = 0,782) pyknometrisch bestimmte Dichtezahl beträgt 5,27; sie stimmt gut mit der röntgenographischen Dichte von 5,285 g cm⁻³ überein.

3. Strukturermittlung

Ein Kristall mit trigonal-prismatischem Habitus $(0,1 \times 0,1 \times 0,04 \text{ mm}; \text{Markröhrchen})$ wird auf dem automatischen Vierkreisdiffraktometer CAD4 (Enraf Nonius, Delft) vermessen (AgK α -Strahlung, Meßbereich 1° $\leq \Theta \leq 24^{\circ}$, maximale Meßzeit: 120 see/Reflex). Auf Absorptionskorrektur wurde verzichtet ($\mu^{-1}(\text{CsTe}_4, \text{AgK}\alpha) = 0,10 \text{ mm}$). Von 2183 $|\mathbf{F}_{\text{obs}}|^2 \geq 0,01 \sigma (|\mathbf{F}_{\text{obs}}|^2)$ (= asymmetrischer Einheit) wurden bei der Verfeinerung nur 1131 mit $|\mathbf{F}_{\text{obs}}|^2 \geq 3\sigma (|\mathbf{F}_{\text{obs}}|^2)$ berücksichtigt.

Die mit 25 willkürlich gewählten Reflexen ermittelten Gitterkonstanten lauten: a = 7,857(1) Å, b = 7,286(1) Å, c = 14,155(2) Å, β = 93,83(1)°. Diese Werte stimmen innerhalb der dreifachen Standardabweichung mit den aus dem röntgenographischen Pulverdiagramm erhaltenen überein (Tab. 1). Die Auslöschungsgesetze führen zu der Raumgruppe P2₁/c. Mit Hilfe der BILTzschen Rauminkremente [5] erhält man ein Molvolumen von 118 cm³ pro CsTe₄ (Inkremente: Cs⁺ 26 cm³ mol⁻¹; Te₄⁻ 92 cm³ mol⁻¹. Das Inkrement für Te₄⁻ ist aus bekannten Anionen Te_{n²⁻} [2, 6] errechnet, indem man diese formal in Te[°] und Te⁻ zerlegt). Sowohl mit Hilfe dieses Ergebnisses als auch der Dichte erhält man die Zahl der Formeleinheiten zu 4.

Die Struktur ist mit Hilfe direkter Methoden gelöst worden (pdp 11/45-Rechner, SDP-Programmsystem [7]). Alle Atome besetzen (4e). Bei anisotroper Beschreibung der Temperaturparameter ist R(ungewichtet) = 0,048 und R(gewichtet) = 0,041 (nach Zählstatistik der I_{obs}-Messung, w = $1/\sigma(F_{obs}^{2})$). Maximale Restelektronendichte der Differenz-Fourier-Synthese: 2,45 e Å⁻³.

Die Lage- und Temperaturparameter der Atome sind in Tab. 2, die interatomaren Abstände und die Bindungswinkel in Tab. 3 aufgeführt.

	x	У	Z	U11	U22	U33	U12	U_{18}	U_{23}
Cs	0,1430(3)	0,8828(3)	0,3492(1)	460(10)	340(10)	370(10)	-10(10)	84(9)	20(10)
Te(1)	0,3762(3)	0 0555(2)	0,1240(1)	360(10)	167(8)	236(8)	-2(9)	114(8)	9(8)
Te(2)	0,8758(3)	0,8896(3)	0,0350(1)	380(10)	260(9)	268(9)	20(10)	36(9)	20(9)
Te(3)	0,6596(3)	0,9821(2)	0,2861(1)	440(10)	203(9)	270(9)	40(10)	46(9)	-29(9)
Te(4)	0,4532(3)	0,6918(2)	0,0687(1)	390(10)	178(8)	226(8)	30(10)	57(18)	-13(9)

Tabelle 2 CsTe₄, Lageparameter und Temperaturfaktoren $U_{ij} \cdot 10^4$ [Å²]

4. Strukturbeschreibung von CsTe₄

Das charakteristische Strukturelement sind die senkrecht zur a-c-Ebene verlaufenden, gewellten Schichten aus Tellur, deren Spuren in Abb. 1 ersichtlich sind. Abb. 1 zeigt auch, daß die Kationen in tunnelartigen Hohlräumen angeordnet sind, die wegen der Wellung der Te-Schichten auftreten. Senkrecht zur a-c-Ebene liegt eine zick-zack-förmige Anordnung von Cs⁺ vor, das durch acht

Te—Te innerhalb einer S	Schicht	zwischen den	Schichten	Cs-Cs	Cs-Cs		
$\begin{array}{c} (3)^{I}-(4)^{III} \\ (3)^{III}-(4)^{I} \\ (2)^{I}-(2)^{II} \\ (1)^{I}-(4)^{I} \\ (1)^{I}-(2)^{II} \\ (1)^{II}-(2)^{I} \\ (1)^{II}-(3)^{I} \\ (1)^{III}-(3)^{I} \\ (1)^{I}-(3)^{III} \end{array}$	2,754(1) 2,754(1) 2,764(2) 2,839(1) 2× 2,923(2) 2,923(2) 3,135(2) 2× 3,378(2) 3,378(2) alle anderen >	$(4)^{I} - (4)^{II}$ $(1)^{I} - (4)^{II}$ $(2)^{I} - (4)^{I}$ $ 3,99$	3,512(2) 3,621(1) 3,679(2)	(1) ^I (1) ^{III} alle anderen >	5,036(2) 2× > 5,24		
Cs—Te			Winl	cel			
$\overline{\mathrm{Cs^{I}}\mathrm{-Te}(4)^{\mathrm{IV}}}$	3,858(2)		Te(2)—Te(1)—Te(3)	176,48(5)°		
$-\mathrm{Te}(3)^{\mathrm{III}}$	3,872(2)		Te(2))-Te(1)-Te(3)	95,43(4)°		
$-\mathrm{Te}(3)^{\mathrm{I}}$	3,911(2)		Te(2)	-Te(1) - Te(4)	93,56(5)°		
$-\mathrm{Te}(2)^{\mathrm{III}}_{-}$	3,958(2)		Te(3)	-Te(1)-Te(3)	87,36(3)°		
$-\mathrm{Te}(1)^{\mathrm{I}}$	3,985(2)		Te (3)	-Te(1)-Te(4)	83,59(5)°		
$-Te(4)^{III}$	3,999(2)		Te(1))-Te(2)-Te(2)	95,91(6)°		
$-\text{Te}(2)^{IV}$	4,000(2)		Te(1))-Te(3)-Te(4)	101,73(5)°		
$-Te(2)^{III}$	4,046(2)		Te(1))-Te(4)-Te(3)	103,21(4)°		
alle anderen > 4	1,28 Superstripts						

Tabelle 3 CsTe₄, interatomare Abstände [Å] und Bindungswinkel

	oucutang	aoo	Suborouri	P**				
I	(x, y, z);	п	$(\overline{x}, \overline{y}, \overline{z});$	ш	$(\bar{x}, 1/2+y, 1/2-z);$	IV	(x, 1/2-y, 1	1/2+z)

Telluratome im Abstandsbereich von 3,86 bis 4,05 Å relativ niedersymmetrisch umgeben wird (Tab. 3 sowie Abb. 2). Die Abstände Cs—Cs liegen mit 5,04 Å bei der erwarteten Größe.

Ferner zeigt Abb. 1, daß der kürzeste Abstand Te—Te zwischen den Schichten 3,5 Å ist (deutlich kleiner als der van-der-Waals-Abstand von 4,4 Å [8], praktisch identisch mit dem Abstand, den zwei Tellurketten bei Rb_2Te_5 und Cs_2Te_5 haben [2, 3]). Daraus folgt, daß die Te-Schichten bei $CsTe_4$ wie die Te-Ketten bei M_2Te_5 (M = Rb, Cs) nicht als voneinander isoliert angesehen werden können.

Die Abstände Te-Te innerhalb einer Schicht streuen relativ weit (2,75 Å bis 3,38 Å) mit Bindungswinkeln von 90°, 103° und 180° (Tab. 3). Es gibt drei Möglichkeiten, den Aufbau des Anionenteilgitters zu beschreiben (Abb. 3):

a) Zieht man nur die Abstände 2,75–2,92 Å in Betracht, so liegen gewinkelte, untereinander isolierte Ketten Te_8^{2-} vor (Abb. 3a). Diese Beschreibung läßt die Verwandtschaft der Verbindung mit den kettenförmigen Polychalkogeniden M_2X_m (M = Alkali, Erdalkali, NH₄⁺; X = Chalkogen; m = 2-6) deutlich werden. Die große Varianz der Abstände und Winkel innerhalb einer Kette des $CsTe_4$ und das Auftreten weiterer Te-Te-Abstände zeigt, daß diese Beschreibung nicht voll ausreichend sein kann.

Abb. 1 Projektion der Struktur des $CsTe_4$ auf die a-c-Ebene. Die Größe der Elementarzelle ist durch gestrichelte Linien angegeben. Die Höhenangaben erfolgen in Bruchteilen der b-Achse. Offene Kreise: Tellur, schwarze Kreise: Caesium.

Abb. 2 Umgebung der Caesiumkationen (schwarze Kreise) im Gitter des $CsTe_4$. Gestrichelte Kreise stellen Telluratome dar, die relativ höher, offene Kreise solche, die relativ tiefer als das betreffende Alkalimetallkation liegen.

Abb. 3 Aufbau des Anionenteilgitters ${}^{2}_{\infty}(\text{Te}_{4}^{-})$; Blickrichtung längs [302]. Offene Kreise: Tellur; schwarze Kreise: Telluratome, die bevorzugte Einheiten darstellen, aus denen man das Anionenteilgitter konstruieren kann: a) isolierte Te₈²⁻-Einheiten; b) über kovalente Brücken verknüpfte Te₄⁻-Einheiten; c) verzerrte Kreuze (TeTe₂Te_{2/2})⁻. Nähere Erläuterungen siehe Text.

b) Schon die Einbeziehung des nächstweiteren Abstandes (3,14 Å) führt zu einer völlig anderen Beschreibung (Abb. 3b): Die konstitutiven Elemente sind jetzt verzerrt T-förmige Baugruppen Te₄⁻, die untereinander über Brücken von 2,75 Å und 2,76 Å zu Ringen Te₁₈ verknüpft werden, welche ihrerseits so miteinander verknüpft sind, daß sie die **Tellurschicht** bilden.

c) Berücksichtigt man zusätzlich noch den Abstand von 3,38 Å (Abb. 3c), so entstehen Baugruppen aus jeweils fünf Te, die sich zu verzerrten Te₅-Kreuzen mit zwei-, drei- und vierbindigen Telluratomen zusammenschließen ($[Te^{z}Te_{2/z}^{t}]^{-}$ mit z = zentral, t = terminal). Es resultieren Stränge, die über zweibindige Atome zu einer Schicht verbunden werden.

5. Diskussion

Das Anionenteilgitter von CsTe₄ steht zu Molekülverbindungen AB_3E_2 (BrF₃, IF₃; E = nichtbindendes Elektronenpaar) in analoger strukturchemischer Beziehung wie die Anionenteilgitter der Verbindungen M₂Te₅ (M = Rb, Cs) zu AB_4E_2 -Verbindungen (BrF₄⁻, XeF₄) [2, 3]: Die pseudo-trigonal-bipyramidale, T-förmige Baugruppe Te₄⁻ ist wie BrF₃ gebaut, die pseudo-oktaedrische, planarquadratische Baugruppe Te₅²⁻ entspricht XeF₄. Allerdings sind sowohl Te₄⁻ als auch Te₅²⁻ jeweils elektronenärmer als BrF₃ bzw. XeF₄. Beide für die jeweiligen Feststoffe charakteristischen Bauelemente gleichen diesen Elektronenmangel auf analoge Weise aus, indem sie über Brücken, deren Längen dem kovalenten Einfachbindungsabstand Te-Te entsprechen, zu ein- bzw. zweidimensional unendlichen Verbänden kondensieren.

Im Falle von Telluriden M_2Te_5 existiert mit Ga_2Te_5 [2, 9] eine Substanz, deren Struktur eine mit XeF₄ isoelektronische 36e-Gruppe Te₅⁶⁻⁻ enthält, die als isoliertes Anion im Gitter vorliegt. Dagegen ist CsTe₄ bislang der einzige Vertreter mit einem pseudo-trigonal-bipyramidalen Bauelement, welches nur aus Tellur gebildet wird. Insbesondere fehlt ein Beispiel mit einer zum BrF₃ isoelektronischen 28e-Einheit Te₄⁴⁻, wobei auch diese als isolierte Gruppe vorliegen sollte. Formal besitzen Alkalimetallditelluride $M_2Te_2 = M_4Te_4$ die gewünschte Zusammensetzung. Leider ist außer der Struktur von MgTe₂ (Pyrit-Typ [10]) keine einzige Struktur eines vergleichbaren Ditellurids bekannt. Unsere Versuche, Cs₂Te₂ darzustellen [11], haben bisher nur mikrokristalline Produkte mit relativ komplizierten Pulverdiagrammen ergeben.

Wie erwähnt, können auch andere Möglichkeiten als das hier bevorzugte Verknüpfungsmuster aus T-förmigen Te4--Einheiten zum Aufbau des Anionenteilgitters herangezogen werden. Die Struktur von CsTe4 wird damit zu einem Beispiel für den Übergang von kettenförmigen, isolierten X_n^{2-} -Abschnitten zu höherkondensierten Verbänden nichtkettenförmiger Ausschnitte eines kationenstabilisierten metallischen Tellurs [2, 4, 12]. In diesem Sinne ist LiTe₃ [13] weitgehend analog zu $CsTe_4$ anzusehen: Betrachtet man bei LiTe₃ wiederum zunächst nur die kürzesten Abstände Te-Te (2,86 bis 3,02 Å) als bindend, so wird das Tellurteilgitter aus Ketten aufgebaut. Diese bestehen im Gegensatz zu CsTe₄ allerdings nicht mehr aus isolierten, kürzeren Abschnitten, sondern sind eindimensional-unendliche Schrauben, die abwechselnd aus linearen (pseudotrigonal-bipyramiden) Te₃- und gewinkelten (pseudo-tetraedrischen) Te₃-Stücken bestehen. Nimmt man den nächst weiteren Te-Te-Abstand von 3,14 Å hinzu, so werden die beschriebenen, parallel zueinander verlaufenden Ketten über dann entstehende T-förmige Einheiten verbrückt. Berücksichtigt man schließlich auch die Te-Te-Abstände von 3,25 und 3,32 Å, entsteht ein dreidimensionaler Verband aus verzerrten Te₅-Einheiten. Allerdings ist der Grad der Verknüpfung bei LiTe₃ höher als im Falle von CsTe₄. Das bei höchstsymmetrischer Anordnung der Telluratome schließlich erreichbare Ziel ist im AgTe₃ verwirklicht [4]; die Verwandtschaft von $AgTe_3 zu LiTe_3 ist daher eng [2, 4, 13].$

Wir danken dem Fonds der Chemie für die Unterstützung der Arbeit.

Literatur

- [1] TELLER, R. G.; KRAUSE, L. J.; HAUSHALTER, R. C.: Inorg. Chem. 22 (1983) 1809.
- [2] BÖTTCHER, P.; KRETSCHMANN, U.: J. Less-Common Met. 95 (1983) 81.
- [3] BÖTTCHER, P.; KRETSCHMANN, U.: Z. anorg. allg. Chem. 491 (1982) 39.
- [4] RANGE, K.-J.; ZABEL, M.; RAU, F.; v. KRZIWANEK, F.; MARX, R.; PANZER, B.: Angew. Chem. 94 (1982) 717.
- [5] BILTZ, W.: Raumchemie der festen Stoffe, Leipzig: L. Voss 1934.

- [6] BÖTTCHER, P.: J. Less-Common Met. 70 (1980) 263.
- [7] FRENZ, B. A. in SCHENK, H.; OLTHOF-HAZEKAMP, R.; V. KONIGSVELD, H.; BASSI, G. C. (Hrsg.): Computing in Crystallography, Delft University Press, Delft 1978.
- [8] PAULING, L.: Die Natur der chemischen Bindung, Weinheim: Verlag Chemie, 1962, S. 117.
- [9] JULIEN-POUZOL, M.; JAULMES, S.; ALAPINI, F.: Acta Crystallogr. B33 (1977) 2270.
- [10] YANAGISAWA, S.; TASHIRO, M.; ANZAI, S.: J. Inorg. Nucl. Chem. 31 (1969) 943.
- [11] KRETSCHMANN, U.: Diplomarbeit, RWTH Aachen, 1981.
- [12] LIN, W.; STEINFINK, H.; WEISS, E. J.; Inorg. Chem. 4 (1965) 877; NORLING, B. K.; STEINFINK, H.: Inorg. Chem. 5 (1966) 1488.
- [13] VALENTINE, D. Y.; CAVIN, O. B.; YAKEL, H. L.: Acta Crystallogr. B33 (1977) 1389.

Bei der Redaktion eingegangen am 29. Juli 1984.

Anschr. d. Verf.: Dr. P. Böttcher und Dr. U. KRETSCHMANN,

Inst. f. Anorg. Chemie d. TH, Prof.-Pirlet-Straße 1, D-5100 Aachen