
Maurizio Petrelli

Introduction to Python in Earth
Science Data Analysis

From Descriptive Statistics to Machine
Learning

March 3, 2021

Springer Nature

To Agata, Anna, Caterina,
Atomo, and Arianna

Contents

Part I Python for Geologists, a Kick-off

1 Setting Up Your Python Environment, Easily . 3
1.1 The Python Programming Language . 3
1.2 Programming Paradigms . 4
1.3 A Local Python Environment for Scientific Computing 5
1.4 Remote Python Environments . 7
1.5 Python Packages for Scientific Applications . 8
1.6 Python Packages Specifically Developed for Geologists 9

2 Python Essentials for a Geologist . 11
2.1 Start Working with the IPython Console . 11
2.2 Naming and Style Conventions . 14
2.3 Working with Python Scripts . 15
2.4 Conditional Statements, Indentation, Loops, and Functions 17
2.5 Importing External Libraries . 21
2.6 Basic Operations and Mathematical Functions 22

3 Starting Solving Geological Problems Using Python 25
3.1 My First Binary Diagram Using Python . 25
3.2 Start Making Models in Earth Science . 32
3.3 Quick Intro to Spatial Data Representation . 37

Part II Describing Geological Data

4 Graphical Visualization of a Geological Data Set 43
4.1 The Statistical Description of a Data Set, Key Concepts 43
4.2 Visualizing Univariate Sample Distributions . 44
4.3 Preparing Publication Ready Binary Diagrams 47
4.4 Visualization of Multivariate Data: a First Attempt 68

vii

viii Contents

5 Descriptive Statistics 1: Univariate Analysis . 71
5.1 Basics of Descriptive Statistics . 71
5.2 Location . 71
5.3 Dispersion or Scale . 76
5.4 Skewness . 81
5.5 Descriptive Statistics in Pandas . 83
5.6 Box Plots . 85

6 Descriptive Statistics 2: Bivariate Analysis . 87
6.1 Covariance and Correlation . 87
6.2 Simple Linear Regression . 91
6.3 Polynomial Regression . 92
6.4 Non-Linear Regression . 94

Part III Integrals and Differential Equations in Geology

7 Numerical Integration . 103
7.1 Definite Integrals . 103
7.2 Basic Properties of Integrals . 104
7.3 Analytical and Numerical Solutions of Definite Integrals 105
7.4 Fundamental Theorem of Calculus and Analytical Solutions 105
7.5 Numerical Solutions of Definite Integrals . 107
7.6 Computing the Volume of Geological Structures 113
7.7 Computing the Lithostatic Pressure . 114

8 Differential Equations . 121
8.1 Introduction . 121
8.2 Ordinary Differential Equation . 122
8.3 Numerical Solutions of First Order ODEs . 127
8.4 The Fick’s law of diffusion, a Widely Used PDE 131

Part IV Probability Density Functions and Error Analysis

9 Probability Density Functions and Their Use in Geology 143
9.1 Probability Distribution and Density Functions (PDF) 143
9.2 The Normal Distribution . 144
9.3 The Log-Normal Distribution . 149
9.4 Other Useful PDFs for Geological Applications 151
9.5 Density Estimation . 151
9.6 The Central Limit Theorem and Normal Distributed Means 158

10 Error Analysis . 161
10.1 Dealing with Errors in Geological Measurements 161
10.2 Reporting Uncertainties in Binary Diagrams . 169
10.3 The Linearized Approach in Error Propagation 173
10.4 The Mote Carlo Approach in Error Propagation 180

Contents ix

Part V Robust Statistics and Machine Learning

11 Introduction to Robust Statistics . 189
11.1 Classical and Robust Approaches to Statistics 189
11.2 Normality Tests . 190
11.3 Robust Estimators for Location and Scale . 196
11.4 Robust Statistics in Geochemistry . 202

12 Machine Learning . 205
12.1 Introduction to Machine Learning in Geology 205
12.2 Machine Learning in Python . 207
12.3 A Study Case of Machine Learning in Geology 208

Part VI Appendices

A Python Packages Specifically Developed for Geologists 221

B Introduction to Object Oriented Programming . 225
B.1 Object-oriented programming . 225
B.2 Defining classes, attributes and methods in Python 225

C The Matplotlib Object Oriented API . 229
C.1 Matplotlib Application Programming Interfaces 229
C.2 Matplotlib Object Oriented API . 229
C.3 Fine Tuning of Geological Diagrams using the OO-style 231

D Working with pandas . 235
D.1 How to perform common operations in pandas 235

References and Further Readings . 239

Part I
Python for Geologists, a Kick-off

Chapter 1
Setting Up Your Python Environment, Easily

1.1 The Python Programming Language

Python is a high-level, modular, and interpreted programming language1. What does
it mean? A high-level programming language is characterized by a strong abstrac-
tion from the details of the computer. It means that the code is easy to understand
for humans. Python is modular, i.e., it supports modules and packages, which al-
lows program flexibility and code reuse. In detail, Python is composed of a "core"
that allows for all basic operations plus a wide ecosystem of specialized packages
to perform specific tasks. To better understand, a Python package or library is a
reusable portion of code, a collection of functions and modules (i.e., a group of
functions) allowing us to complete specialized tasks (e.g., reading an excel file or
drawing a publication-ready diagram). Python is an interpreted language (like MAT-
LAB, Mathematica, Maple, and R). On the contrary, C or FORTRAN are compiled
languages. What is the difference between compiled and interpreted languages?
Roughly speaking, in compiled languages, a translator compiles each code listing
in executable files. Once compiled, the target machine can run the resulting exe-
cutable files directly. Interpreted-languages compile codes in real-time, during each
execution. The main difference for a novice programmer is that interpreted codes
typically run slower than compiled executable ones. However, performances are not
an issue in most of everyday operations. Performances start becoming significant in
computing-intensive tasks like complex fluid dynamic simulations or 3D graphical
applications. If needed, Python performances can be significantly improved with the
support of specific packages, like Numba, which are able to compile Python codes,
approaching the speed of C and FORTRAN.

Being an interpreted language, Python allows easy code exchanges over different
platforms (i.e., cross-platform), fast prototyping, and great flexibility.

Possible convincing arguments for Earth scientists to start learning Python are:
1) an easy to learn syntax; 2) great flexibility; 3) the support of a large community

1 https://www.python.org

3

4 1 Setting Up Your Python Environment, Easily

of users and developers; 4) it is free and open-source; 5) it will improve your skills
and proficiency.

1.2 Programming Paradigms

A programming paradigm is a style, or general approach to writing codes (Gabbrielli
& Martini, 2010; Turbak & Gifford, 2008; Van Roy & Haridi, 2004). As a zero-
order approximation, we can identify two archetype paradigms for programming:
imperative and declarative. The first one mainly focuses on "how" to solve a problem,
the latter on "what" to solve. Starting from these two archetypes, programmers
developed many derived paradigms. Examples of derived programming paradigms
are the procedural, object-oriented, functional, logic, aspect-oriented, just to to cite
a few. The selection of a specific programming paradigm to develop your code
depends on the overall nature of your project and final scope of your work. For
parallel computing, the functional approach provide a well established framework.
An exhaustive documentation about programming paradigms is outside the scope of
the present book. Here, I will limit to the illustration of those that are supported in
Python.

The Python programming language is primary minded for the object-oriented
programming style, but it also supports, sometime spuriously, a purely imperative,
procedural, and functional paradigms (Gabbrielli &Martini, 2010; Turbak&Gifford,
2008; Van Roy & Haridi, 2004):

Imperative: The imperative approach is the oldest and simplest programming
paradigm. It is simply based on providing a defined sequence of instructions to
a computer.

Procedural: the procedural approach is a sub-set of the imperative programming.
Instead of simply providing a sequence of instructions, it stores portions of code in
one or more procedures (i.e., subroutines or functions). Any given procedure can
be called at any point during a program execution, allowing code organization and
reuse.

Object-oriented: like the procedural style, the object-oriented approach is a sub-
set (i.e., an evolution) of the imperative programming. Here, objects are the key
elements. One of themain benefits of the object-oriented approach is that it maintains
a strong relationwith real-world entities (e.g., shopping carts inwebsites,WYSIWYG
environments, etc...).

Functional: the functional approach is a declarative type of programming. The
purely functional paradigm bases the computation in evaluating mathematical func-
tions and it is well suited for high-load and parallel computing applications.

In this introductory book where we will take advantage of Python flexibility with-
out focusing too much on specific code styling or a particular paradigm. Specifically,

1.3 A Local Python Environment for Scientific Computing 5

our codes will be mainly imperative for the easiest tasks and procedural for more
advanced modelling. Also, we will take benefit from many libraries (e.g., pandas
and matplotlib) developed in an object-oriented fashion.

1.3 A Local Python Environment for Scientific Computing

There are two main strategies to create a Python environment suitable for scientific
computing on your personal computer: 1) installing the Python core and adding
all the required scientific packages separately; 2) installing a "ready-to-use" Python
environment, specifically developed for scientific purposes. You can try both options
but I suggest you to start with the second one as it requires almost zero programming
skills and you will be ready to start immediately your journey in the Python world
nearly painlessly.

An Example of "ready-to-use" scientific Python environment is the Anaconda
Python Distribution2. Anaconda Inc (previously ContinuumAnalytics) develops and
maintain the Anaconda Python distribution providing different solutions that include
a free release and two charged versions. The Individual Edition is the free option (and
our choice), it is easy to install and it offers a community driven support. To install
the Individual Edition of the Anaconda Python distribution, I suggest following
the directives reported in the official documentation3. They simply consist in
downloading and running the last stable installer for your Operating System (i.e.,
Windows OS, Mac OS or Linux). In the case of Windows and Mac OS, a graphical
installer is available. The installation procedure is the same as for any other software
application. The Anaconda installer will automatically install the Python core, the
Anaconda Navigator, plus about 250 packages defining a complete environment for
scientific visualization, analysis, and modelling. Over 7,500 additional packages can
be individually installed, if needed, from the Anaconda repository with the "conda"4
package management system.

The Anaconda Navigator is a desktop Graphical User Interface (GUI), i.e., a
program, that allows you to launch applications, install packages and manage envi-
ronments without using command-line instructions (Fig. 1.1).

From the Anaconda Navigator, we can launch two of the main applications that
we will use to write codes, run the modelling, and visualize the results. They are the
Spyder application and the JupyterLab.

Spyder5 is an Integrated Development Environment (IDE), i.e., a software ap-
plication, providing a set of comprehensive facilities for software development and
scientific programming. It combines a text editor to write codes, inspection tools

2 https://www.anaconda.com
3 https://www.anaconda.com/products/individual/
4 https://docs.conda.io/
5 https://www.spyder-ide.org

6 1 Setting Up Your Python Environment, Easily

Fig. 1.1 Screenshot of the Anaconda Navigator.

for debugging, and an interactive Python console for code execution. We will spend
most of our time using Spyder. Fig. 1.2 reports a screenshot of the Spider IDE.

Text editor Interactive console

Variable Explorer

Fig. 1.2 Screenshot of the Spider IDE. On the left, we see the text editor to write our code. The
bottom-right panel is the IPython interactive console. Finally, the top-right panel shows the Variable
Explorer.

1.4 Remote Python Environments 7

JupyterLab is a web-based development environment to manage Jupyter Note-
books. A Jupyter Notebook is a web application that allows creating and sharing
documents containing live code, equations, visualizations and narrative text. Fig. 1.3
reports a screenshot of a Jupyter Notebook.

Fig. 1.3 Screenshot of a Jupyter Notebook. It combines narrative text, code, and visualizations.

Both Sypder and JupyterLab allow writing code, perform the computing, and
report the results. There is not a preferred choice. My personal choice was to use
Spyder and Jupyter Lab for research purposes and teaching, respectively.

1.4 Remote Python Environments

Remote Python environments are those running in a computer system or virtual
machines that can be accessed online. As an example, Python environments can
be installed on remote machines hosted by your academic institution (most of the
universities manage centers of calculus offering this opportunity) or by commercial
providers (often offering a basic free plan). The concepts and procedures I described
for the installation of a local Python environment are still valid for remote machines.

8 1 Setting Up Your Python Environment, Easily

However, working with remote machines will require additional skills to access and
operate online (e.g, the knowledge of Secure Shell or Remote Desktop protocols
for Linux and Windows-based machines respectively). Therefore, I suggest again
starting with a local installation of the Anaconda Python distribution.

An alternative possibility to start working with Python online, without installing
a local environment, could be the use of a remote IDE. As an example, commercial
providers like Repl.it6 and PythonAnywhere7 offer a free and complete Python IDEs
to start coding first, and develop advanced applications then. As a drawback, both
the IDEs provided by Repl.it and PythonAnywhere are not specifically minded for
scientific purposes. As a consequence, running the codes of this book will require
the installation of additional libraries that are not included by default in the core
distribution. Therefore, to easily replicate the codes and the examples reported in
the present book, I suggest, one more time, the local installation of the most recent
Anaconda Python distribution.

1.5 Python Packages for Scientific Applications

A key feature of Python is its modular nature. In this section, I list a few general
purpose scientific packages that we will use widely in this book. For each library, I
provide with a quick description taken form the official documentation, a link to the
official website and, when possible, a reference for further readings.

NumPy is a Python library that provides a multidimensional array object and an
assortment of routines for fast operations on arrays, including mathematical, logical,
shape manipulation, sorting, selecting, I/O, discrete Fourier transforms, basic linear
algebra, basic statistical operations, random simulation and other functionalities
(Bressert, 2012)8.

Pandas is an open source library providing high-performance, easy-to-use data
structures and data analysis tools for the Python programming language (Chen,
2017)9.

SciPy is a collection of mathematical algorithms and functions built on the NumPy
extension of Python. It adds significant power to the interactive Python session by
providing the user with high-level commands and classes for manipulating and vi-
sualizing data. With SciPy, an interactive Python session becomes a data-processing
and system-prototyping environment rivaling systems such as MATLAB, IDL, Oc-
tave, R, and SciLab (Bressert, 2012)10.

6 https://repl.it
7 https://www.pythonanywhere.com
8 https://numpy.org
9 https://pandas.pydata.org
10 https://scipy.org

1.6 Python Packages Specifically Developed for Geologists 9

Matplotlib is a Python library for creating static, animated, and interactive data
visualizations (Bisong, 2019)11.

SymPy is a Python library for symbolic mathematics. Symbolic computation deals
with the computation of mathematical objects symbolically. This means that the
mathematical objects are represented exactly, not approximately, and mathematical
expressions with unevaluated variables are left in symbolic form (Meurer et al.,
2017)12.

Scikit-learn is an open source machine learning library that supports supervised
and unsupervised learning. It also provides various tools for model fitting, data pre-
processing, model selection and evaluation, and many other utilities (Paper, 2020)13.

1.6 Python Packages Specifically Developed for Geologists

Many Python packages have been developed to solve geological problems. They
form a wide, heterogeneous, and useful ecosystem allowing us to achieve specific
geological tasks. Examples are Devito, ObsPy, and Pyrolyte to cite a few. Most
of them can be installed easily by using the Conda package management system.
Others requires a few additional steps and skills. The use of these specific packages
is not covered in the present book, since they are typically developed to solve very
specific geological problems. However, a novice to Python will benefit and probably
require the notions reported in this book to approach these packages successfully. A
comprehensive list of Python packages developed to solve geological tasks is given
in the Appendix A.

11 https://matplotlib.org
12 https://www.sympy.org
13 https://scikit-learn.org

Chapter 2
Python Essentials for a Geologist

2.1 Start Working with the IPython Console

The IPython Console allows us to execute single instructions, multiple lines of code,
and scripts receiving an output from Python (Rossant, 2018).

Fig. 2.1 The IPython console.

To start working with the IPython Console, see Fig. 2.2 where the first two
instructions are A = 1 and B = 2.5. The meaning of these two commands is straight-
forward: they simply assign a value equal to 1 and 2.5 to the variables A and B,
respectively. The third instruction is A + B that sums the two variables A and B,
obtaining the result 3.5.

Also, Fig. 2.2 provides information about the type of variables in Python (Fig.
2.3). Regarding numbers, Python supports integers, floating-point, and complex
numbers. Integers and floating-point numbers differ by the presence or absence of
decimals. In our case, A is an integer and B is a floating-point number. Complex
numbers include a real part and an imaginary part and they are not discussed in
this book. Operations like additions or subtractions automatically force integers to
float-point numbers if one of the operands (in our case B) is of float type. The type()
function returns the type of a variable. Additional data types that are relevant for the
present book are: a) Bolean, i.e., True or False, b) Sequences, and c) Dictionaries.

11

12 2 Python Essentials for a Geologist

Fig. 2.2 Start working with the IPython console.

In Python, a Sequence Type is an ordered collection of elements. Examples of
sequences are: Strings, Lists, and Tuples. Strings are sequences of characters, Lists
are ordered collections of data, and Tuples are similar to Lists, but they cannot be
modified after their creation. Fig. 2.4 shows how to define and access Strings, Lists,
and Tuples.

Python Variable Types

Bololean Dictionaries Others

Numbers Sequences

Floating-point complex Strings Lists TouplesIntegers

Fig. 2.3 Variable data types in Python.

2.1 Start Working with the IPython Console 13

Fig. 2.4 Defining and working with sequences.

The elements of a sequence can be accessed using indexes. In Python the first
index of a sequence is always 0. As an example, the instruction my_string[0] returns
the first element (i.e., "M") of the object my_string defined in Fig. 2.4. Similarly,
my_touple[2] returns the third element of my_touple (i.e., "Maurizio"). Additional
examples on how to access a sequence are reported in Fig. 2.5. Using negative
numbers (e.g., my_string[-1]), the indexing of the sequences starts from the last
element and proceeds in reverse mode. Two numbers separated by a colon (e.g. [3:7])
define an index range, sampling the sequence from the lower to the upper bounds,
respectively, excluding the upper bound. In the case of the statementmy_string[3:7],
the interpreter samples my_string form the third to the seventh indexes (i.e., ’name’).
Finally, commands like my_string[:2] and my_string[11:] sample my_string from
the beginning to the index 2 (excluded) and from the index 11 to the last element,
respectively.

Dictionaries are data types consisting of a collection of key-value pairs. A dictio-
nary can be defined by enclosing a comma-separated list of key-value pairs in curly
braces, a colon separates each key from the associated value (Fig. 2.6). In a dic-
tionary, a value is retrieved by specifying the corresponding key in square brackets
(Fig. 2.6).

14 2 Python Essentials for a Geologist

Fig. 2.5 Accessing Sequences.

Fig. 2.6 Defining and accessing Dictionaries.

2.2 Naming and Style Conventions

The main aim of using conventions in programming is to improve the readability
of codes to facilitate the collaboration among different programmers. In Python the
"PEP 8 – Style Guide for Python Code" gives coding conventions for the Python
code, comprising the standard library in the main Python distribution1.

Writing readable code here is meaningful for several reasons. The main one is
to allow others to understand your code easily. This is crucial when you will start
working on collaborative projects. Having common guidelines, it will allow the
group to write consistent and elegant codes.

1 https://www.python.org/dev/peps/pep-0008/

2.3 Working with Python Scripts 15

Within the book, I will try to follow the main rules defined by the "PEP 8 – Style
Guide for Python Code". Please apologize me when I will take some poetic, i.e.,
coding, licenses. Table 4 reports few main coding conventions reported in the "PEP
8 – Style Guide for Python Code".

Table 2.1 Styling and Naming conventions in Python.

Type Style or Naming Convention Action

Function Function names should be lowercase, with words
separated by underscores as necessary to improve
readability (cf. section 2.4).

function, my_function

Variable Variable names follow the same convention as func-
tion names.

x, my_dataset

Constant Constants are usually written in all capital letters
with underscores separating words.

A, GREEK_P

Class Start each word with a capital letter (CapWords con-
vention). Do not use underscores to separate subse-
quent words (cf. appendix B).

Circle, MyClass

Method Use the function naming rules: lowercase with words
separated by underscores as necessary to improve
readability (cf. appendix B).

method, my_method

Names to avoid Never use the characters ’l’ (lowercase letter el), ’O’
(uppercase letter oh), or ’I’ (uppercase letter eye) as
single character variable names.

Indentation the PEP 8 recommends the use of 4 spaces per in-
dentation level (cf. section 2.4).

2.3 Working with Python Scripts

A script is a sequence of code instructions used to automate processes (e.g., making
a diagram, or a geological model) that would otherwise need to be executed step-
by-step (e.g., in the IPython console). In detail, Python scripts are text files typically
characterized by a .py extension and containing a sequence of Python instructions. To
write and modify Python scripts, we only require a text editor. Spyder incorporates
a text editor with advanced features (e.g., code completion and syntax inspection).
In Spyder, the text editor is usually positioned in a panel on the left portion of the
screen. During the execution of a Python script, the interpreter reads each instruction
sequentially, starting from the first line . To execute a Python script in the active
IPython console of Spyder, we can click the play button as reported in Fig. 2.7 or
use the F5 keyboard shortcut. Keyboard shortcuts helps us in being more proficient.
Few additional Keyboard shortcuts are shown in Table 2.2.

The script listing 2.1 reports the Python script of Fig. 2.7 with the output obtained
in the IPython console incorporated at the end (lines 5 to 10).

16 2 Python Essentials for a Geologist

Click here to run the entire script

Python instructions in the script listing ‘script.py’

Output of script listing ‘script.py’

Fig. 2.7 Running a Python script.

The three single quotation marks (i.e., ′′′) positioned at lines 5 and 10 of the
script listing 2.1 open and close a multi-line comment (i.e., lines of code which will
not be considered by the interpreter). The symbol # define a single line comment.
Comments are a fundamental part of Python codes since they help you and future
users to clarify the code workflow. Take in mind that youmight spend an entire day in
developing a very proficient script; you wake up the day after without remembering
how does the script work. Comments help a lot in these situations.

Table 2.2 Selected Spyder Keyboard Shortcuts.

Windows OS Mac OS Action

F5 F5 Run file (complete script)
F9 F9 Run selection (or current line)
Ctrl + T Cmd + T Open an IPython console
Ctrl + space Ctrl + space Code completion
Tab Tab Indent selected line(s)
Shift + Tab Shift + Tab Unindent selected line(s)
Ctrl + Q Cmd + Q Quit Spyder

As amatter of facts you don’t necessary need Spyder to write a .py script. As stated
above, Python scripts can be written using any text editor. The python instruction
will run your scripts in the command line or terminal applications.

2.4 Conditional Statements, Indentation, Loops, and Functions 17

1 print("Python instruction n.1")
2 print("Python instruction n.2")
3 print("Python instruction n.3")
4
5 ’’’
6 Output:
7 Python instruction n.1
8 Python instruction n.2
9 Python instruction n.3
10 ’’’

Listing 2.1 Iterate a series of numbers.

2.4 Conditional Statements, Indentation, Loops, and Functions

Conditional Statements

In Python, the if statement allows for the conditional execution of a single or multiple
instructions based on the value of an expression. To understand, consider the script
listing 2.2. At line 1, we define the MyVar variable assigning to it a value equal to
2. At line 3, the if statement starts evaluating MyVar. In the specific case it executes
the instruction at line 4 only in the case when MyVar is larger than 2. As it is not our
case, the interpreter jumps to line 5 evaluating if MyVar is equal to 2. Please note
that when we assign a value to a variable, we use =, whereas == is used to make
comparisons. Being MyVar equal to 2, the interpreter executes the instructions from
line 6 to 8. Finally, the instruction at line 10 is executed in all the remaining cases,
i.e., MyVar less than 2.

1 MyVar = 2
2
3 if MyVar > 2:
4 print(’MyVar is greater than 2’)
5 elif MyVar == 2:
6 print(’MyVar is equal to 1’)
7 # more instructions could be added
8 # using the same indentation
9 else:
10 print(’MyVar is less than 2’)
11
12 ’’’
13 Output:
14 MyVar is equal to 2
15 ’’’

Listing 2.2 If, elif, else statements.

18 2 Python Essentials for a Geologist

Indentation and Blocks

The term indentation refers to adding one or more white spaces before an instruction.
In a Python script, contiguous instructions (e.g., lines from 6 to 8 of the script listing
2.2) that are indented to the same level are considered to be part of the same block.
A block is considered by the interpreter as a single entity and it allows to structure
our Python scripts. As an example, the blocks after the if, elif, and else statements
in the script listing 2.2 are executed in agreement with the conditions reported at
lines 3, 5, and 9, respectively. To better understand how the indentation works in
Python, consider the code listing 2.3. The instructions from line 1 to 3 and at line
12 are always executed each time we run the script. The interpreter executes the
instructions at lines 5, 9, 10, and 11 if, and only if, the variable A is equal to 1.
Finally, the interpreter executes lines 7 and 8 when A and B are equal to 1 and 3,
respectively.

1 # this instruction is always executed
2 # this instruction is always executed
3 # this instruction is always executed
4 if A==1:
5 # this instruction is executed if A = 1
6 if B = 3:
7 # this instruction is executed if A = 1 and B = 3
8 # this instruction is executed if A = 1 and B = 3
9 # this instruction is executed if A = 1
10 # this instruction is executed if A = 1
11 # this instruction is executed if A = 1
12 # this instruction is always executed

Listing 2.3 Iterate a series of numbers.

Take in mind that the indentation is a fundamental concept in Python, allowing
the definition of simple operations like conditional statements, loops, and functions,
but also more complex structures like modules, and packages.

For Loops

The for loop in Python iterates over a sequence (i.e, lists, tuples, and strings) or other
iterable objects. As an example, the code listing 2.4 displays an iteration over the list
named rocks. In detail, at line 1 we define a list (i.e., rocks), at line 3 we implement
the iteration, and at line 4 we print on the screen the result of the iterations, i.e., each
element of the sequence.

Often, we perform iterations using range(). The command range() is a Python
function which returns a sequence of integers.

2.4 Conditional Statements, Indentation, Loops, and Functions 19

1 rocks = [’sedimentary’, ’igneous intrusive’, ’igneous effusive’,
’methamorphic’]

2
3 for rock in rocks:
4 print(rock)
5
6 ’’’
7 Output:
8 sedimentary
9 igneous intrusive
10 igneous effusive
11 methamorphic
12 ’’’

Listing 2.4 Iterate over a list.

1 print(’a sequence from 0 to 2’)
2 for i in range(3):
3 print(i)
4
5 print(’----------------------’)
6 print(’a sequence from 2 to 4’)
7 for i in range(2,5):
8 print(i)
9
10 print(’----------------------’)
11 print(’a sequence from 2 to 8 with a step of 2’)
12 for i in range(2,9,2):
13 print(i)
14
15 ’’’
16 Output:
17 a sequence from 0 to 2
18 0
19 1
20 2
21 ----------------------
22 a sequence from 2 to 4
23 2
24 3
25 4
26 ----------------------
27 a sequence from 2 to 8 with a step of 2
28 2
29 4
30 6
31 8
32 ’’’

Listing 2.5 Plotting an Histogram distribution as probability density in Python.

20 2 Python Essentials for a Geologist

The range syntax is range(start, stop, step) where start, stop, and step parameters
are the initial, the final, and the step values of the sequence, respectively. Note that the
upper limit (i.e., stop) is not included in the sequence. If we pass only one argument
to the range function [e.g., range(6)], it is interpreted as the stop parameter, with the
sequence starting from 0. The code listing 2.5 reports some examples of iterations
over a sequence of numbers generated using the range() function.

While Loops

The while loop checks a test-condition. In detail, the loop starts only if the test-
condition is True. After each iteration, the test-condition is checked again and the
loop continues until the test-condition is False. To better understand, consider the
code listing 2.6. Al line 1, we define the object MyVar and we assign to it a value
equal to 0. At line 3, we start evaluating the test-condition MyVar < 5. Being MyVar
equal to 0, test-condition is True and the interpreter enters the loop. At line 4, it
prints MyVar (i.e., 0), and at line 5, MyVar is updated to a value equal to 1. Now,
the test-condition is evaluated again, and the loop goes ahead until it remains True
(i.e., MyVar < 5). As a consequence, the interpreter repeats the instructions at lines
4 and 5 (i.e., the block of code with the same indentation after the test condition),
until MyVar reaches the value of 5.

1 MyVar = 0
2
3 while MyVar < 5:
4 print(MyVar)
5 MyVar = MyVar + 1
6
7 ’’’
8 Output:
9 0
10 1
11 2
12 3
13 4
14 ’’’

Listing 2.6 Iterate a series of numbers.

Functions

A function is a block of reusable code that is developed to complete a specific task.
Function blocks begin with the keyword def followed by the name of the function
and parentheses (e.g., code listing 2.7). Input parameters or arguments should be
placed within these parentheses. The code block of a function starts after a colon

2.5 Importing External Libraries 21

(:) and, therefore, it has to be indented. Using the optional statement return, we can
pass back to the caller a single or multiple answers (for example some variables
computed within the function). The code listing 2.7 shows how to define and use
a simple function. At line 1, we define a function, named sum, accepting two input
parameters: a and b. At line 3, the function computes the variable c by summing a
and b. Finally, the function ends at line 3, returning c to the caller. At line 5, we define
the variable res by calling the function sum with a=2 and b=3 as input parameters.
At line 6, we print a string containing the value of res. Note that the str() function
converts numbers to strings.

1 def sum(a, b):
2 c = a + b
3 return c
4
5 res = sum(a=2, b=3)
6 print(’the result is ’ + str(res))
7
8 ’’’
9 Output:
10 the result is 5
11 ’’’

Listing 2.7 Defining a function.

2.5 Importing External Libraries

The Anaconda Python distribution includes almost all the packages that are used for
the most common operations in Data Science. Examples are NumPy, SciPy, pandas,
matplotlib, seaborn, and scikit-learn, briefly described in section 1.5, just to cite a
few. The import and from statements allow us to import entire modules, packages,
or single functions in our scripts. The code listing 2.8 reports examples of using
the import and from statements. Note that at line 1 of the code listing 2.8, we are
importing the entire pandas package in an object named pd. At line 2, we import the
matplotlib module pyplot as plt. At line 3, the random() function is imported from
the NumPy package. Finally, at line 4, we import all the functions in the SymPy
package.

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 from numpy import random
4 from sympy import *

Listing 2.8 Use of import and from statements.

22 2 Python Essentials for a Geologist

2.6 Basic Operations and Mathematical Functions

Basic mathematical operators like the sum or the multiplications are always available
in Python and listed in Table 2.3.

Additional trigonometric and arithmetic functions can be accessed using the
math and NumPy libraries. Also, these libraries contain relevant constants like the
c (Archimede’s constant) and 4 (Euler’s number). The main difference between the
math of NumPy libraries relies in the fact that the first is minded to work with scalars
and the second is optimized to operate with arrays. However, NumPyworks well with
scalars too. Being NumPy more flexible than math, in the present book I will provide
examples using the NumPy library only. Tables 2.4 and 2.5 report some relevant
NumPy constants and functions, respectively. Also, the code listing 2.9 report some
introductory examples on how to use NumPy constants and mathematical functions.

Table 2.3 Basic mathematical operations in Python.

Operator Description Example Operator Description Example

+ Addition 3 + 2 = 5 − Subtraction 3 − 2 = 1
∗ Multiplication 3 ∗ 2 = 6 / Division 6 / 2 = 3
** Power 3 ** 2 = 9 % Modulus 2 % 2 = 0

Table 2.4 Relevant constants in NumPy.

Numpy Description Value Numpy Description Value

e Euler’s number (e) 2.718... pi Archimedes’ const. (c) 3.141...
euler_gamma Euler’s constant (W) 0.577... inf positive infinity ∞

Table 2.5 Introducing exponents, logarithms, and trigonometric, functions in NumPy.

Numpy Description Numpy Description Numpy Description

sin() Trigonom. sine cos() Trigonom. cosine tan() Trigonom. tangent
arcsin() Inverse sine arccos() Inverse cosine arctan() Inverse tangent
exp() Exponential log() Natural logarithm log10() Base 10 logarithm
log2() Base-2 logarithm sqrt() Square-root ans() Absolute value

2.6 Basic Operations and Mathematical Functions 23

1 import numpy as np #import numpy
2
3 # relevant constants
4 greek_p = np.pi
5 euler_number = np.e
6
7 # print greek_p and euler_number on the screen
8 print("The Archimedes’ constant is " + str(greek_p))
9 print("The Euler’s number is " + str(euler_number))
10
11 # trigonometric functions
12 x = np.sin(greek_p / 2) # x = 1 expected
13
14 # print the result on the screen
15 print("the sine of a quarter of radiant is " + str(x))
16
17
18 # defining a 1D array in numpy
19 myArray = np.array([4, 8, 27])
20 # print myArray on the screen
21 print("myArray is equal to " + str(myArray))
22
23 log10_myArray = np.log10(myArray)
24
25 # print the result on the screen
26 print("The the base 10 logarithm of the elements in myArray is")
27 print(log10_myArray)
28
29 ’’’
30 Output:
31 The Archimedes’ constant is 3.141592653589793
32 The Euler’s number is 2.718281828459045
33 the sine of a quarter of radiant is 1.0
34 myArray is equal to [4 8 27]
35 The the base 10 logarithm of the elements in myArray is
36 [0.60205999 0.90308999 1.43136376]
37 ’’’

Listing 2.9 Our first approach with NumPy.

Now, we are now ready to begin learning how to solve geological problems using
Python.

Chapter 3
Starting Solving Geological Problems Using
Python

3.1 My First Binary Diagram Using Python

We start learning Python for the analysis of geological data performing two basic
operations: importing data set using the pandas library and their representation in
binary diagrams. Let’s start with importing the data set using the pandas library. As
introduced in section 1.5, pandas is a Python library (i.e., a tool) designed to help
in working with structured data. In the practice, it provides several, ready to use,
functions to work with scientific data. As an example, we can easily use pandas to
import a data set stored in an Excel spreadsheet or a text file using a single row of
code. To understand, look at the code listing 3.1.

1 import pandas as pd
2
3 #Example 1
4 myDataset1 = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,
5 sheet_name=’Supp_traces’)

Listing 3.1 Importing an Excel file in Python.

At line 1, we import the pandas library by creating an object named pd. Now, the
pd object stores all pandas functionalities.

At line 4, we define a pandas DataFrame (i.e., myDataset1) reading an Excel
file named ’Smith_glass_post_NYT_data.xlsx’. Also, being an Excel file potentially
made of several spreadsheets, we point to a specific spreadsheet: Supp_traces. The
imported data set contains trace element chemical concentrations of volcanic tephras
published bySmith et al. (2011). Itwill be used as a representative proxy of a scientific
geological data set. In detail, it consists of major (Supp_majors) and trace element
(Supp_traces) analyses of tephra samples belonging to the recent activity (last 15
ky) of the Campi Flergrei Caldera (Italy).

The instruction pd.read_excel() accepts many input parameters allowing great
flexibility. Two of the most important are: 1) a valid string path and 2) the

25

26 3 Starting Solving Geological Problems Using Python

Cs Column

File name

Sheet names

Fig. 3.1 The Smith_glass_post_NYT_data.xlsx Excel file.

sheet_name. In our case, the string path is the name of the Excel file (i.e.,
’Smith_glass_post_NYT_data.xlsx’). If we provide the file name only as string path,
the Python script and the Excel file must be placed in the same folder. Additional
allowed string paths are local file addresses (e.g., ’/Users/mauriziopetrelli/Docu-
ments/file.xlsx’) or valid URL schemes, including http, ftp, and s3. Regarding the
sheet_name parameter, it can be a string, an integer, a list, or None. The default value
is 0, meaning that it opens the first sheet of the Excel file. In detail, integers and
strings indicate sheet positions starting from 0 and the sheet names, respectively.
Finally, lists of strings or integers are used to request multiple sheets.

As stated before, at line 4 of the code listing 3.1 we defined a DataFrame. What is
a DataFrame? A DataFrame "is a 2-dimensional labeled data structure with columns
of potentially different types"1. What does it mean? We can imagine a DataFrame
as a simple table, where Python has the full control.

To start plotting, we introduce an additional library named matplotlib. Matplotlib
is "a comprehensive library for creating static, animated, and interactive visualiza-
tions in Python. It is a Python 2D plotting library which produces publication quality
figures in a variety of hardcopy formats and interactive environments across plat-
forms"2. It generates plots, histograms, power spectra, bar charts, scatter-plots, etc...,
with just a few lines of code. Matplotlib allows two different styles of writing: a) the
pyplot and and the object oriented Application Programming Interfaces (APIs). In
matplotlib.pyplot (i.e., pyplot-style), each function operates a change to the active

1 https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html
2 https://matplotlib.org

3.1 My First Binary Diagram Using Python 27

figure. In the practice, to each command corresponds an effect on your diagram and
it can be easily minded, organized, and managed in the imperative, i.e., the most
basic and easiest (cf. section 1.2), way of coding. As drawback, matplotlib.pyplot
is less-flexible and powerful than the matplotlib object-oriented interface (i.e., the
OO-style). To note, learning the OO-style is not more difficult than pyplot. As a
consequence, my idea is to start familiarizing with the OO-style directly starting
with easy examples, then going in deeper details (see Appendix C).

As an example, the code listing 3.2 shows how to make a simple binary diagram
using the OO-style. In detail, the code listing 3.2 highlights how to plot the elements
Th against Zr in a scatter diagram. Theworkflow is simple: at lines 1 and 2, we import
the pandas library and matplotlib.pyplot module, respectively. We know already the
meaning of line 4, i.e., importing the ’Smith_glass_post_NYT_data.xlsx’ Excel file
into a DataFrame named myDataset1. At lines 6 and 7, we define two sequences
of data selecting the columns Zr and Th, respectively, from myDataset1. At line 9,
we generate a figure (i.e., the object fig) containing only one Axes (ax). Now, the
terms Figure and Axes need additional clarifications. In matplotlib, the Figure object
represent the whole diagram whereas the Axes are what you typically think when
using the word ’plot’ (Appendix C). A given figure can host a single (i.e., a simple
diagram) or many Axes (i.e., a figure containing two or more sub-plots).

1 import pandas as pd
2 import matplotlib.pyplot as plt
3
4 myDataset1 = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
5
6 x = myDataset1.Zr
7 y = myDataset1.Th
8
9 fig, ax = plt.subplots() # Create a figure containing one axes
10 ax.scatter(x, y)

Listing 3.2 First attempt in making a binary diagram in Python.

Although the diagram reported in Fig. 3.2 is a good start for a novice, it misses
many mandatory information (e.g., axis label). So, let’s start adding features to the
diagram. As an example, ax.set_title(), ax.set_xlabel(), and ax.set_ylabel() add a title
and labels to the x- and y-axis, respectively. Figure 3.3 displays the diagram of Fig.
3.2, updated with a new title and axes labels. To improve our skills about the use of
Python in the visualization of scientific data look at the code listing 3.4 showing
a procedure to slice a data set. In detail, lines 2 and 3 (code listing 3.4) describe
how to divide the original data set (i.e., myDataset1) into two sub data sets (i.e.,
mySubDataset1 and mySubDataset2) characterized by Zr contents above and below
450 ppm, respectively.

28 3 Starting Solving Geological Problems Using Python

200 300 400 500 600 700 800 900

20

30

40

50

60

70

80

90

Fig. 3.2 The result of our first attempt in making a binary diagram in Python.

1 fig, ax = plt.subplots()
2 ax.scatter(x, y)
3 ax.set_title("My First Diagram")
4 ax.set_xlabel("Zr [ppm]")
5 ax.set_ylabel("Th [ppm]")

Listing 3.3 Second attempt: a binary diagram in Python including a title and axis labels.

Then, mySubDataset1 and mySubDataset2 are plotted at lines 11 and 16, respec-
tively. Note that all the plotting instances (i.e., lines 11 and 16) after the command
plt.subplots(), display the results in the same figure. Fig. 3.4 shows the result of
code listing 3.4.

We now continue with an additional example of DataFrame slicing. In detail, the
code listing 3.5, shows how to filter the original data set using the labels reported
in ’Epoch’ column. These labels divide the eruptions in four different periods, i.e.,
one, two, three, and three-b. After the slicing in sub data sets (lines 3, 6, 9, and 12),
samples belonging to different Epochs are plotted using unique labels (lines 4, 7, 10,
and 13, respectively).

The reader already familiar with the Python programming language may suggest
a way to compress the code reported above making it concise, and more elegant
using a loop (code listing 3.6).

3.1 My First Binary Diagram Using Python 29

200 300 400 500 600 700 800 900
Zr [ppm]

20

30

40

50

60

70

80

90

Th
 [p

pm
]

My First Diagram

Fig. 3.3 The result of our second attempt in making a binary diagram in Python; it now includes a
title and axis labels.

1 # Define two sub-dataset for Zr>450 and Zr<450 respectively
2 mySubDataset1= myDataset1[myDataset1.Zr> 450]
3 mySubDataset2= myDataset1[myDataset1.Zr< 450]
4
5 #generate a new picture
6 fig, ax = plt.subplots()
7 # Generate the scatter Zr Vs Th diagram for Zr > 450
8 # in blue also defining the legend caption as "Zr > 450 [ppm]"
9 x1 = mySubDataset1.Zr
10 y1 = mySubDataset1.Th
11 ax.scatter(x1, y1, color=’blue’, label= "Zr > 450 [ppm]")
12 # Generate the scatter Zr Vs Th diagram for Zr < 450
13 # in red also defining the legend caption as "Zr < 450 [ppm]"
14 x2 = mySubDataset2.Zr
15 y2 = mySubDataset2.Th
16 ax.scatter(x2, y2, color=’red’, label= "Zr < 450 [ppm]")
17
18 ax.set_title("My Second Diagram")
19 ax.set_xlabel("Zr [ppm]")
20 ax.set_ylabel("Th [ppm]")
21 # generate the legend
22 ax.legend()

Listing 3.4 Making a binary diagram with a sub-sampling (i.e., Zr>450 and Zr<450 ppb,
respectively) of the original data set.

30 3 Starting Solving Geological Problems Using Python

200 300 400 500 600 700 800 900
Zr [ppm]

20

30

40

50

60

70

80

90

Th
 [p

pm
]

My Second Diagram
Zr > 450 [ppm]
Zr < 450 [ppm]

Fig. 3.4 The result of the code reported in the listing 3.4.

1 fig, ax = plt.subplots()
2
3 myData1 = myDataset1[(myDataset1.Epoch == ’one’)]
4 ax.scatter(myData1.Zr, myData1.Th, label=’Epoch 1’)
5
6 myData2 = myDataset1[(myDataset1.Epoch == ’two’)]
7 ax.scatter(myData2.Zr, myData2.Th, label=’Epoch 2’)
8
9 myData3 = myDataset1[(myDataset1.Epoch == ’three’)]
10 ax.scatter(myData3.Zr, myData3.Th, label=’Epoch 3’)
11
12 myData4 = myDataset1[(myDataset1.Epoch == ’three-b’)]
13 ax.scatter(myData4.Zr, myData4.Th, label=’Epoch 3b’)
14
15 ax.set_title("My Third Diagram")
16 ax.set_xlabel("Zr [ppm]")
17 ax.set_ylabel("Th [ppm]")
18 ax.legend()

Listing 3.5 Binary diagram with a sub-sampling (i.e., using the labels of the ’Epoch’ column)
of the original data set.

3.1 My First Binary Diagram Using Python 31

200 300 400 500 600 700 800 900
Zr [ppm]

20

30

40

50

60

70

80

90
Th

 [p
pm

]

My Third Diagram
Epoch 1
Epoch 2
Epoch 3
Epoch 3b

Fig. 3.5 The result of the code reported in the listing 3.5.

1 epochs = [’one’,’two’,’three’,’three-b’]
2
3 fig, ax = plt.subplots()
4 for epoch in epochs:
5 myData = myDataset1[(myDataset1.Epoch == epoch)]
6 ax.scatter(myData.Zr, myData.Th, label="Epoch " + epoch)
7
8 ax.set_title("My Third Diagram again")
9 ax.set_xlabel("Zr [ppm]")
10 ax.set_ylabel("Th [ppm]")
11 ax.legend()

Listing 3.6 Re-writing the code reported in the listing 3.5 using a for loop.

As learned in the section 2.4 the for loop is utilized in Python to make iterations.
You should become proficient in the use of loops, conditional statements, and func-
tions (section 2.4). However, many everyday operations and tasks can be completed
successfully without a deep knowledge of the syntax and “core semantics” of the
Python language. So let’s solve our first geological problems.

32 3 Starting Solving Geological Problems Using Python

200 300 400 500 600 700 800 900
Zr [ppm]

20

30

40

50

60

70

80

90
Th

 [p
pm

]

My Third Diagram again
Epoch one
Epoch two
Epoch three
Epoch three-b

Fig. 3.6 The result of the code reported in the listing 3.6

3.2 Start Making Models in Earth Science

The development of a simple model in the field of Earth Sciences can provide useful
information regarding Python syntax, workflow and way of thinking. This section
shows how to develop a simple function (section 2.4) describing the evolution
of trace elements in a magmatic system. In detail, the relation reported in Eq. 3.1
describes the evolution of the concentration (C) of a trace element in the liquid phase
of a magmatic system during the process of crystallization at the thermodynamic
equilibrium (Rollinson, 1993):

� =
�0

� (1 − �) + � (3.1)

Where �>, �, and � are the initial concentration, the bulk partition coefficient of
the trace element between melt and crystal, and the relative amount of melt in the
system, respectively. The code listing 3.7 describes how to develop a function to
solve the relation reported in Eq. 3.1.

In the code listing 3.7, at line 1 we define a function named EC accepting �,
�, and �0 as input parameters. Now, moving to line 2, we observe that the code
is indented. Remind that the indentation refers to the spaces that are used at the
beginning of a row (section 2.4). All consecutive rows characterized by the same

3.2 Start Making Models in Earth Science 33

indentation belong to the same block of code. In our case, indented lines 2 and 3 are
part of the function EC.

1 def EC(F, D, C0):
2 CL = C0/(D*(1-F)+F)
3 return CL
4
5 MyC = EC(F=0.5,D=0.1,C0=100)
6
7 print(’RESULT: ’+ str(int(MyC)) + ’ ppm’)
8
9 ’’’
10 Output:
11 RESULT: 181 ppm
12 ’’’

Listing 3.7 Defining a function in python to model the Eq. 3.1.

In detail, we perform the computation and provide the results at lines 2 and 3,
respectively. At line 5, we recall the function EC and we compute the concentration
of a trace element in melt phase of a system characterized by �, �, and �0 equal
to 0.5, 0.1 and 100 ppm, respectively. The result is 181 ppm, printed on the screen
at line 7. The line 7 of the code listing 3.7 requires further explanations. In detail,
the statement print() reports the content within brackets on the screen, whereas the
functions str() and int() convert a number to a string and a decimal number to an
integer, respectively.

Code listing 3.8 reports a more exhaustive investigation of Eq. 3.1 for � values
ranging from 1.0 to 0.3. For the readers that are not familiar with the Eq. 3.1, the
Figure 3.7 shows the behaviour of an incompatible elements (� < 1,i.e., those
elements that not easily enters in the crystals that are growing in the system and
prefers remaining in the melt phase) from a completely molten system (i.e. � = 1)
to a magmatic mush characterized by relative amount of melt in the order of 0.3.

The meaning of the statement at line 1 of code listing 3.8 is now straightforward:
it imports matplotlib.pyplot functionalities in our script. At line 2, we import the
NumPy library. As introduced in section 1.5, NumPy is a package for scientific
computing, able to manage N-dimensional arrays, linear algebra, Fourier transform,
and random numbers. The meaning of lines 4-6 is also straightforward: they define
the EC function as in the code listing 3.7.

The use of NumPy starts at line 8 with the statement np.linspace(0.3, 1, 8). It
generates a 1D array, made of 8 elements, starting at 0.3 and ending at 1.0. The code
listing 3.9 shows the result of printing myF on the screen.

Moving back to code listing 3.8, at line 10 we call the EC function using myF
(i.e., a 1D array of 8 elements), 0.1, and 100 ppm as input parameters for �, �, and
�0, respectively. The result is MyC, a 1D array of 8 element, one for each element of
the arrayMyF. At line 13, we plot the results (i.e. MyF vs.MyC) using the instruction
ax.plot(). By default, it plots a binary diagram connecting successive points using a
line. Fig. 3.7 displays the result of the code listing 3.8.

34 3 Starting Solving Geological Problems Using Python

1 import matplotlib.pyplot as plt
2 import numpy as np
3
4 def EC(F, D, C0):
5 CL = C0/(D*(1-F)+F)
6 return CL
7
8 myF = np.linspace(0.3,1, 8)
9
10 myC = EC(F=myF,D=0.1,C0=100)
11
12 fig, ax = plt.subplots()
13 ax.plot(myF, myC, label="Eq cryst. D = 0.1")
14
15 ax.set_xlabel(’F’)
16 ax.set_ylabel(’C [ppm]’)
17 ax.legend()

Listing 3.8 Exploring the Eq. 3.1 in the F range from 0.3 to 1 and plot the results.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
F

100

125

150

175

200

225

250

275

C
[p

pm
]

Eq cryst. D = 0.1

Fig. 3.7 The result of the code reported in the code listing 3.8

3.2 Start Making Models in Earth Science 35

1 myF = np.linspace(0.3,1, 8)
2
3 print(myF)
4
5 ’’’
6 Output:
7 [0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.]
8 ’’’

Listing 3.9 The np.linspace() statement.

1 myF = np.arange(0,10, 1)
2
3 print(myF)
4
5 ’’’
6 Output:
7 [0 1 2 3 4 5 6 7 8 9]
8 ’’’

Listing 3.10 The np.arange() statement.

1 import matplotlib.pyplot as plt
2 import numpy as np
3
4 def EC(F, D, C0):
5 CL = C0/(D*(1-F)+F)
6 return CL
7
8 myF = np.linspace(0.3,1, 8)
9
10 myC1 = EC(F=myF,D=0.1,C0=100)
11 myC2 = EC(F=myF,D=1,C0=100)
12 myC3 = EC(F=myF,D=2,C0=100)
13
14 fig, ax = plt.subplots()
15 ax.plot(myF, myC1, label="Eq cryst. D = 0.1")
16 ax.plot(myF, myC2, label="Eq cryst. D = 1")
17 ax.plot(myF, myC3, label="Eq cryst. D = 2")
18
19 ax.set_xlabel(’F’)
20 ax.set_ylabel(’C [ppm]’)
21 ax.legend()

Listing 3.11 Exploring the Eq. 3.1 for different values of �.

36 3 Starting Solving Geological Problems Using Python

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
F

50

100

150

200

250
C

[p
pm

]

Eq cryst. D = 0.1
Eq cryst. D = 1
Eq cryst. D = 2

Fig. 3.8 The result of the code reported in the code listing 3.11 and 3.12.

1 import matplotlib.pyplot as plt
2 import numpy as np
3
4 def EC(F, D, C0):
5 CL = C0/(D*(1-F)+F)
6 return CL
7
8 myF = np.linspace(0.3,1, 8)
9
10 D = [0.1, 1, 2]
11
12 fig, ax = plt.subplots()
13
14 for myD in D:
15 myC = EC(F=myF, D=myD, C0=100)
16 ax.plot(myF, myC, label=’Eq cryst. D = ’ + str(myD))
17
18
19 ax.set_xlabel(’F’)
20 ax.set_ylabel(’C [ppm]’)
21 ax.legend()

Listing 3.12 Exploring the Eq. 3.1 for different values of �, using a loop.

3.3 Quick Intro to Spatial Data Representation 37

There are many other ways to define a 1D array in NumPy. As an example, the
np.arange(start, stop, step) functionality provide a similar way to obtain a 1D array
(code listing 3.10).

To investigate the behaviour of the Eq. 3.1 for different � values, we could
proceed as reported in code listing 3.11. Here, we define three models for different
� values (lines 10, 11, and 12). Then, we plot the results in a single diagram (lines
15, 16, and 17) generated at line 14.

Again, the code listing 3.11, although easy to understand for a novice, it is nor
elegant, neither efficient. The code listing 3.12, shows how to obtain the same results
of the code listing 3.11, but using a loop instead of defining each model separately.

3.3 Quick Intro to Spatial Data Representation

Visualizing spatial data is a fundamental task in geology. It has application in many
fields like geomorphology, hydrology, volcanology, and geochemistry to cite just a
few.

In this section, we will perform a simple task to start familiarizing with spatial
data: import a data elevation model (DEM) stored in a .csv file and display each point
using a color proportional to the elevation value. A .csv file is a text-file containing
data separated by a delimiter like a comma, a tab, or a semicolon. To begin, let’s
start evaluating the data-set stored in the DEM.csv file (Fig. 3.9). It consists of four
columns: an unique index, the elevation, the x-coordinates, and the y-coordinates,
respectively (3.9). The data set refers to the Umbria region in Italy, where I currently
live.

Column names
First row

Delimiter

Fig. 3.9 The DEM.csv comma delimited file.

38 3 Starting Solving Geological Problems Using Python

Now, look at the code listing 3.13. At line 1 and 2, we import the pandas library
and the matplotlib.pyplot subpackage. As you already know, they are collections of
functions and methods to manage and plot scientific data.

The command pd.read_csv() at line 4 imports the .csv file named DEM.csv creat-
ing a new Dataframe (i.e., a table) named MyData. In detail, MyData now contains
four columns named POINTID, ELEVATION, X_LOC, and Y_LOC, respectively.
They refer to a unique identifier (POINTID), the elevation value (ELEVATION),
and the (x,y) coordinates. The lines 6, 7, and 8 define three 1D arrays selecting
the columns X_LOC, Y_LOC, and ELEVATION to be plotted successively. At line
10 the command plt.subplots() generates Figure containing a single Axes. Finally,
the command ax.scatter() at line 11 creates a scatter plot filling each X_LOC and
Y_LOC coordinate with a color proportional to the ELEVATION value (Fig. 3.10).
The parameter cmap=’hot’ within the introduction ax.scatter() at line 11 of code
listing 3.13 sets the colorbar to ’hot’. In this case, the lowest and the highest values
of the colorbar, set at line 14, are characterized by a black and withe color respec-
tively. Intermediate colors follow the sequence of optical emissions of a dark body
becoming progressively hotter (Fig. 3.10). Lines from 15 to 17 provide instructions
to plot the colorbar (line 15), set the colorbar label (line 16), and the color of colorbar
edges (line 17). Figure 3.11 show the result of code listing 3.13, setting cmap equal
to ’hot’. Figure 3.12 reports most of colormaps available in matplotlib.

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 from matplotlib import cm
4
5 MyData = pd.read_csv(’DEM.csv’)
6 fig, ax = plt.subplots()
7 ax.scatter(x = MyData.X_LOC.values,
8 y = MyData.Y_LOC.values,
9 c=MyData.ELEVATION.values,
10 s=2, cmap=’hot’, linewidth=0, marker=’o’)
11 ax.axis(’equal’)
12 ax.axis(’off’)
13 colorbar = fig.colorbar(cm.ScalarMappable(cmap=’hot’), extend=’

max’, ax=ax)
14 colorbar.set_label(’Elevation [m]’, rotation=270, labelpad=20)
15 colorbar.outline.set_edgecolor(’Grey’)

Listing 3.13 Importing a data elevation model (DEM) stored in a .csv file and displaying the data
as a scatter plot.

3.3 Quick Intro to Spatial Data Representation 39

0

500

1000

1500

2000

2500

Elevation [m
]

Fig. 3.10 The result of the code reported in the code 3.13.

0

500

1000

1500

2000

2500

Elevation [m
]

Fig. 3.11 The same of Fig. 3.10, but setting cmap=’plasma’.

40 3 Starting Solving Geological Problems Using Python

viridis
plasma
inferno
magma

cividis
Greys

Purples
Blues

Greens
Oranges

Reds
YlOrBr
YlOrRd

OrRd
PuRd
RdPu
BuPu
GnBu
PuBu

YlGnBu
PuBuGn

BuGn
YlGn

binary
gray

bone
pink

spring
summer
autumn

winter
cool
hot

afmhot
gist_heat

copper
PiYG

PRGn
BrBG
PuOr
RdGy
RdBu

RdYlBu
RdYlGn
Spectral

coolwarm
bwr

seismic

Fig. 3.12 Examples of colormaps potentially used in matplotlib.

Part II
Describing Geological Data

Chapter 4
Graphical Visualization of a Geological Data Set

4.1 The Statistical Description of a Data Set, Key Concepts

As reported by Ross (2017), "Statistics is the art of learning from data. It is concerned
with the collection of data, their subsequent description, and their analysis, which
often leads to the drawing of conclusions." In this section, we are going to provide
some basic definitions for a proficient description of a geological data set. Note that
data visualization is of paramount importance to understand data (Tufte, 2001). As
a consequence, visualizing data should always come before any advanced statistical
modelling (Healy, 2019; Tufte, 2001).

Population: The population is the set of all the elements of our interest. As an
example, suppose to collect the strikes and dips of planar features (e.g., bedding
planes, foliation planes, fold axial planes, fault planes, and joints) in a selected area.
The population of the strikes is the set of all strikes, e.g., for a specific feature.
Typically, the whole population cannot be measured, so we are forced to analyze a
restricted sample of the population (Ross, 2017).

Sample: a subgroup of the population that will be studied in detail is called a
sample (Ross, 2017). Examples are set of measurements of strikes, spring discharges
rates or the acquisition of �$2 flow rates for selected locations in volcanic areas.
In geology, a piece of rock to be analysed is also called ’sample’. This is because it
derives from the sampling of a specific rock formation (i.e., the population).

Discrete and continuous data: discrete data can only assume specific values.
An example of discrete data is the number of springs in a specific area. Data are
continuous when they can take any value within a range. The results of whole rock
analyses and the measurements of flow discharge rates for springs are examples of
continuous data (Ross, 2017).

Frequency distribution of a sample: a frequency distribution of a sample is
a representation displaying the number of observations within a given interval. It
could be either in tabular or graphical form (Ross, 2017).

43

44 4 Graphical Visualization of a Geological Data Set

4.2 Visualizing Univariate Sample Distributions

Histograms

A histogram is a bar-graph diagram where bars are placed adjacent to each other. It
provides a qualitative description of an univariate sample distribution. The vertical
axis of a histogram diagram can represent either absolute class frequencies, relative
class frequencies, or probability densities. The intervals (i.e., bins) are contiguous
and are often, but they are not required to be, of equal size.

The visual inspection of a histogram diagram provide many important informa-
tion, including: 1) the degree of symmetry of the distribution; 2) its spread; 3) the
presence of one or more classes characterized by high frequencies; 4) the occurrence
of gaps; 5) the presence of outliers.

In Python, the instruction matplotlib.axes.Axes.hist() generates and draws his-
tograms with great flexibility. As an example, consider the code listing 4.1. At lines
1 and 2, the pandas library and matplotlib.pyplot module are imported, respectively.
At line 4, we define a DataFrame (i.e., myDataset) by importing the ’Supp_traces’
spreadsheet of the ’Smith_glass_post_NYT_data.xlsx’ file. At line 6, we generate
a new Figure containing a single Axes. At line 7, we plot the histogram for the Zr
column in myDataset.

The arguments bins define: 1) as a integer, the number of bins; 2) as a sequence,
the edges of bins. In the specific case, bins = ’auto’ uses a matplotlib internal
method to estimate the optimal number of bins1. The arguments color and edgecolor
define the color of bar filling and bar edges, respectively. Finally, the argument alpha
define the transparency. More details on how to customize an histogram diagram in
matplotlib can be found in the official documentation2

1 import pandas as pd
2 import matplotlib.pyplot as plt
3
4 myDataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
5
6 fig, ax = plt.subplots()
7 ax.hist(myDataset.Zr, bins = ’auto’, edgecolor=’black’, color=’

tab:blue’, alpha=0.8)
8 ax.set_xlabel(’Zr [ppm]’)
9 ax.set_ylabel(’Counts’)

Listing 4.1 Plotting an Histogram distribution using absolute frequencies in Python.

The code listing 4.2 performs the same operations of the code listing 4.1, but
adding the instruction density = True at line 7. Using density = True, the y axes is

1 https://numpy.org/doc/stable/reference/generated/numpy.histogram_bin_edges.html
2 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.hist.html

4.2 Visualizing Univariate Sample Distributions 45

200 300 400 500 600 700 800 900
Zr [ppm]

0

10

20

30

40

50

60

70

Co
un

ts

Fig. 4.1 The result of the code listing 4.1.

reported as probability density. In this case, the area under the whole histogram, i.e.,
the integral, will sum to 1). This is achieved by dividing the absolute frequencies
by bin widths. The use of probability densities correspond to a first attempt in
approximating a probability distribution, described in chapter 9.

1 import pandas as pd
2 import matplotlib.pyplot as plt
3
4 myDataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
5
6 fig, ax = plt.subplots()
7 ax.hist(myDataset.Zr, bins = ’auto’, edgecolor=’black’, color=

’tab:blue’, alpha=0.8, density = True)
8 ax.set_xlabel(’Zr [ppm]’)
9 ax.set_ylabel(’Counts’)

Listing 4.2 Plotting a histogram distribution as probability density in Python.

46 4 Graphical Visualization of a Geological Data Set

200 300 400 500 600 700 800 900
Zr [ppm]

0.000

0.001

0.002

0.003

0.004
Pr

ob
ab

ilit
y

De
ns

ity

Fig. 4.2 The result of the code listing 4.2.

Plot of a cumulative distribution

A cumulative distribution function (CDF, also known as cumulative density function)
of a distribution, evaluated at the value x, tells us the probability to get values less
than or equal to x. The script listing 4.3 displays how to plot a cumulative distribution
using hist(). It consists in adding the argument cumulative = 1 or cumulative = True
to the hist() instruction. The parameter histtype=’step’ avoid the filling of the area
below the cumulative distribution. Finally the parameters linewidth and color define
the line width and color, respectively.

1 fig, ax = plt.subplots()
2 ax.hist(myDataset.Zr, bins=’auto’, density=True, histtype=’step’,

linewidth=2, cumulative=1, color=’tab:blue’)
3 ax.set_xlabel(’Zr [ppm]’)
4 ax.set_ylabel(’Likelihood of occurrence’)

Listing 4.3 Plotting a cumulative distribution in Python.

4.3 Preparing Publication Ready Binary Diagrams 47

200 300 400 500 600 700 800 900
Zr [ppm]

0.0

0.2

0.4

0.6

0.8

1.0

Lik
el

ih
oo

d
of

 o
cc

ur
re

nc
e

Fig. 4.3 The result of the code listing 4.3.

4.3 Preparing Publication Ready Binary Diagrams

Subplots

There are many options to create multiple subplots in matplotlib. In my opinion,
the easiest is to create an empty figure, i.e., fig = plt.figure(), then adding multiple
Axes (i.e., subplots), using the method fig.add_subplot(nrows, ncols, index)]. The
parameters(nrows), (ncols), and index indicate the numbers of rows, the numbers of
columns (ncols) and the positional index, respectively. In details, the index starts at
1 in the upper left corner and increases to the right. To better understand, consider
the code listing 4.4.

At line 1, we import the matplotlib.pyplot module. At line 3, we generate a new
empty figure (i.e., fig). From line 6, we start creating and plotting a grid of diagrams
(i.e., three columns and two rows) using fig.add_subplot() (i.e., lines 6, 10, 14, 18,
22, and 26). In the middle of each diagram, we plot a text highlighting nrows, ncols,
and the index, respectively, using the command text(). Finally, the tight_layout()
automatically adjusts subplot parameters so that the subplot(s) fits into the figure
area. Avoiding using the tight_layout(), some overlaps among the elements of the
diagram may occur.

48 4 Graphical Visualization of a Geological Data Set

1 import matplotlib.pyplot as plt
2
3
4 fig = plt.figure()
5 # index 1
6 ax1 = fig.add_subplot(2, 3, 1)
7 ax1.text(0.5, 0.5, str((2, 3, 1)), fontsize=18, ha=’center’)
8
9 # index 2
10 ax1 = fig.add_subplot(2, 3, 2)
11 ax1.text(0.5, 0.5, str((2, 3, 2)), fontsize=18, ha=’center’)
12
13 # index 3
14 ax1 = fig.add_subplot(2, 3, 3)
15 ax1.text(0.5, 0.5, str((2, 3, 3)), fontsize=18, ha=’center’)
16
17 # index 4
18 ax1 = fig.add_subplot(2, 3, 4)
19 ax1.text(0.5, 0.5, str((2, 3, 4)), fontsize=18, ha=’center’)
20
21 # index 5
22 ax1 = fig.add_subplot(2, 3, 5)
23 ax1.text(0.5, 0.5, str((2, 3, 5)), fontsize=18, ha=’center’)
24
25 # index6
26 ax1 = fig.add_subplot(2, 3, 6)
27 ax1.text(0.5, 0.5, str((2, 3, 6)), fontsize=18, ha=’center’)
28
29 plt.tight_layout()

Listing 4.4 Subplots with matplotlib.

As already pointed, the code listing 4.4, although easy to understand for a novice
to Python, is nor elegant neither efficient. We can improve it, obtaining the same
results using a for loop (code listing 4.5).

1 import matplotlib.pyplot as plt
2
3 fig = plt.figure()
4
5 for i in range(1, 7):
6 ax = fig.add_subplot(2,3,i)
7 plt.text(0.5, 0.5, str((2, 3, i)), fontsize=18, ha=’center’)
8
9 plt.tight_layout()

Listing 4.5 Subplots with matplotlib using a loop

4.3 Preparing Publication Ready Binary Diagrams 49

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(2, 3, 1)

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(2, 3, 2)

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(2, 3, 3)

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(2, 3, 4)

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(2, 3, 5)

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(2, 3, 6)

Fig. 4.4 The result of the code listing 4.4.

Markers

The option markers in scatter diagrams or other plots defines the shape of the symbol
utilized to identify samples within the diagram. The code listing 4.6 and Fig. 4.5
show how to manage the marker parameter. Also, Table 4.1 reports an almost
complete list of markers available in Python.

Table 4.1 Marker codes in matplotlib scatter and plot diagrams.

marker Symbol marker Symbol marker Symbol

. o v
∧ < >

1 2 4
4 8 s
p h H
+ x D
d | _

50 4 Graphical Visualization of a Geological Data Set

1 fig = plt.figure()
2
3 ax1 = fig.add_subplot(2, 2, 1)
4 ax1.scatter(myDataset.Zr, myDataset.Th, marker=’x’, label="

cross")
5 ax1.set_xlabel("Zr [ppm]")
6 ax1.set_ylabel("Th [ppm]")
7 ax1.set_xlim([100, 1000])
8 ax1.set_ylim([0, 100])
9 ax1.legend()
10
11 ax2 = fig.add_subplot(2, 2, 2)
12 ax2.scatter(myDataset.Zr, myDataset.Th, marker=’o’,label="

circle")
13 ax2.set_xlabel("Zr [ppm]")
14 ax2.set_ylabel("Th [ppm]")
15 ax2.set_xlim([100, 1000])
16 ax2.set_ylim([0, 100])
17 ax2.legend()
18
19 ax3 = fig.add_subplot(2, 2, 3)
20 ax3.scatter(myDataset.Zr, myDataset.Th, marker=’^’,label="

triangle")
21 ax3.set_xlabel("Zr [ppm]")
22 ax3.set_ylabel("Th [ppm]")
23 ax3.set_xlim([100, 1000])
24 ax3.set_ylim([0, 100])
25 ax3.legend()
26
27 ax4 = fig.add_subplot(2, 2, 4)
28 ax4.scatter(myDataset.Zr, myDataset.Th, marker=’d’,label="

diamond")
29 ax4.set_xlabel("Zr [ppm]")
30 ax4.set_ylabel("Th [ppm]")
31 ax4.set_xlim([100, 1000])
32 ax4.set_ylim([0, 100])
33 ax4.legend()
34
35 fig.tight_layout()

Listing 4.6 Setting markers in scatter diagrams.

Marker dimensions

The dimension of markers can be defined by the option s in scatter diagrams. The
code listing 4.7 and Fig. 4.6 show how to control the marker dimension.

4.3 Preparing Publication Ready Binary Diagrams 51

200 400 600 800 1000
Zr [ppm]

0

20

40

60

80

100

Th
 [p

pm
]

cross

200 400 600 800 1000
Zr [ppm]

0

20

40

60

80

100

Th
 [p

pm
]

circle

200 400 600 800 1000
Zr [ppm]

0

20

40

60

80

100

Th
 [p

pm
]

triangle

200 400 600 800 1000
Zr [ppm]

0

20

40

60

80

100

Th
 [p

pm
]

diamond

Fig. 4.5 The result of the code listing 4.6. The codes to change marker shapes are reported in 4.1.

200 400 600 800 1000
Zr [ppm]

0

20

40

60

80

100

Th
 [p

pm
]

size 10

200 400 600 800 1000
Zr [ppm]

0

20

40

60

80

100

Th
 [p

pm
]

size 50

200 400 600 800 1000
Zr [ppm]

0

20

40

60

80

100

Th
 [p

pm
]

size 100

200 400 600 800 1000
Zr [ppm]

0

20

40

60

80

100

Th
 [p

pm
]

size 200

Fig. 4.6 The result of the code listing 4.7.

52 4 Graphical Visualization of a Geological Data Set

1 fig = plt.figure()
2
3 ax1 = fig.add_subplot(2, 2, 1)
4 plt.scatter(myDataset.Zr, myDataset.Th, marker=’o’, s = 10,

label="size 10")
5 ax1.set_xlabel("Zr [ppm]")
6 ax1.set_ylabel("Th [ppm]")
7 ax1.set_xlim([100, 1000])
8 ax1.set_ylim([0, 100])
9 ax1.legend()
10
11 ax2 = fig.add_subplot(2, 2, 2)
12 ax2.scatter(myDataset.Zr, myDataset.Th, marker=’o’, s = 50,

label="size 50")
13 ax2.set_xlabel("Zr [ppm]")
14 ax2.set_ylabel("Th [ppm]")
15 ax2.set_xlim([100, 1000])
16 ax2.set_ylim([0, 100])
17 ax2.legend()
18
19 ax3 = fig.add_subplot(2, 2, 3)
20 ax3.scatter(myDataset.Zr, myDataset.Th, marker=’o’, s = 100,

label="size 100")
21 ax3.set_xlabel("Zr [ppm]")
22 ax3.set_ylabel("Th [ppm]")
23 ax3.set_xlim([100, 1000])
24 ax3.set_ylim([0, 100])
25 ax3.legend()
26
27 ax4 = fig.add_subplot(2, 2, 4)
28 ax4.scatter(myDataset.Zr, myDataset.Th, marker=’o’, s = 200,

label="size 200")
29 ax4.set_xlabel("Zr [ppm]")
30 ax4.set_ylabel("Th [ppm]")
31 ax4.set_xlim([100, 1000])
32 ax4.set_ylim([0, 100])
33 ax4.legend()
34
35 fig.tight_layout()

Listing 4.7 Plotting a histogram distribution as probability density in Python.

Marker colors

It is possible to define the color of both the edge and the body of markers in scatter
diagrams using the edgecolor and c options respectively (code listing 4.8 and Fig.
4.9). The c and edgecolor parameters can be a sequence of colors (i.e., one for each
symbol of the diagram) or a single value. In the latter case, they specify the same
color for all the symbols in the diagram. Color values can be specified in different
way.

4.3 Preparing Publication Ready Binary Diagrams 53

black k dimgray dimgrey
gray grey darkgray darkgrey
silver lightgray lightgrey gainsboro
whitesmoke w white snow
rosybrown lightcoral indianred brown
firebrick maroon darkred r
red mistyrose salmon tomato
darksalmon coral orangered lightsalmon
sienna seashell chocolate saddlebrown
sandybrown peachpuff peru linen
bisque darkorange burlywood antiquewhite
tan navajowhite blanchedalmond papayawhip
moccasin orange wheat oldlace
floralwhite darkgoldenrod goldenrod cornsilk
gold lemonchiffon khaki palegoldenrod
darkkhaki ivory beige lightyellow
lightgoldenrodyellow olive y yellow
olivedrab yellowgreen darkolivegreen greenyellow
chartreuse lawngreen honeydew darkseagreen
palegreen lightgreen forestgreen limegreen
darkgreen g green lime
seagreen mediumseagreen springgreen mintcream
mediumspringgreen mediumaquamarine aquamarine turquoise
lightseagreen mediumturquoise azure lightcyan
paleturquoise darkslategray darkslategrey teal
darkcyan c aqua cyan
darkturquoise cadetblue powderblue lightblue
deepskyblue skyblue lightskyblue steelblue
aliceblue dodgerblue lightslategray lightslategrey
slategray slategrey lightsteelblue cornflowerblue
royalblue ghostwhite lavender midnightblue
navy darkblue mediumblue b
blue slateblue darkslateblue mediumslateblue
mediumpurple rebeccapurple blueviolet indigo
darkorchid darkviolet mediumorchid thistle
plum violet purple darkmagenta
m fuchsia magenta orchid
mediumvioletred deeppink hotpink lavenderblush
palevioletred crimson pink lightpink

Fig. 4.7 Named colors, taken for the official documentation of matplotlib.

Fig. 4.8 An example of color picker. To get the hexadecimal RGB value, you simply need to copy
the code in the HEX box.

54 4 Graphical Visualization of a Geological Data Set

Examples are hexadecimal RGB values (e.g., ’#8B0000’), letters or names (Fig.
4.7, taken from the official documentation of matplotlib3), and gray scale levels (i.e.,
a value from 0 to 1, where 0 is black and 1 is white). To achieve the best flexibility
with colors, I suggest using the hexadecimal RGB values, also known as HEX
codes. An HEX code starts with the # symbol followed by six-digits, a combination
three hxadecimal values ranging form 00 to FF (i.e., form 0 to 255 if reported to
decimal notation). The first, second and third values represent the red, green and
blue components of the color, respectively. At a first sight, the HEX notation could
appear hard to use and not straightforward. However, you only need to use a "color
picker" to select the color of your choice, and get the relative HEX code. Figure 4.8
displays the color picker provided by Google.

200 400 600 800 1000
Zr [ppm]

0

20

40

60

80

100

Th
 [p

pm
]

example using hex RGB colors

200 400 600 800 1000
Zr [ppm]

0

20

40

60

80

100

Th
 [p

pm
]

example using color letters

200 400 600 800 1000
Zr [ppm]

0

20

40

60

80

100

Th
 [p

pm
]

example using color names

200 400 600 800 1000
Zr [ppm]

0

20

40

60

80

100

Th
 [p

pm
]

example using color gray levels

Fig. 4.9 The result of the code listing 4.8.

3 https://matplotlib.org/examples/color/named_colors.html

4.3 Preparing Publication Ready Binary Diagrams 55

1 fig = plt.figure()
2
3 ax1= fig.add_subplot(2, 2, 1)
4 ax1.scatter(myDataset.Zr, myDataset.Th, marker=’o’, s = 60, c=

’#8B0000’ , edgecolor=’#000000’, label="example using hex
RGB colors")

5 ax1.set_xlabel("Zr [ppm]")
6 ax1.set_ylabel("Th [ppm]")
7 ax1.set_xlim([100, 1000])
8 ax1.set_ylim([0, 100])
9 ax1.legend()
10
11 ax2= fig.add_subplot(2, 2, 2)
12 ax2.scatter(myDataset.Zr, myDataset.Th, marker=’o’, s = 60, c

=’r’ , edgecolor=’k’, label="example using color letters"
)

13 ax2.set_xlabel("Zr [ppm]")
14 ax2.set_ylabel("Th [ppm]")
15 ax2.set_xlim([100, 1000])
16 ax2.set_ylim([0, 100])
17 ax2.legend()
18
19 ax3= fig.add_subplot(2, 2, 3)
20 ax3.scatter(myDataset.Zr, myDataset.Th, marker=’o’, s = 60, c

=’blue’ , edgecolor=’black’, label="example using color
names")

21 ax3.set_xlabel("Zr [ppm]")
22 ax3.set_ylabel("Th [ppm]")
23 ax3.set_xlim([100, 1000])
24 ax3.set_ylim([0, 100])
25 ax3.legend()
26
27 ax4= fig.add_subplot(2, 2, 4)
28 ax4.scatter(myDataset.Zr, myDataset.Th, marker=’o’, s = 60, c=

’0.4’ , edgecolor=’0’, label="example using color gray
levels")

29 ax4.set_xlabel("Zr [ppm]")
30 ax4.set_ylabel("Th [ppm]")
31 ax4.set_xlim([100, 1000])
32 ax4.set_ylim([0, 100])
33 ax4.legend()
34
35 fig.tight_layout()

Listing 4.8 Plotting a histogram distribution as probability density in Python.

56 4 Graphical Visualization of a Geological Data Set

Managing legends

The legend is a fundamental element of diagrams, often providing key notation to
decipher the information presented in a plot. I already introduced how to add a legend
in a plot using the ax.legend() command. It automatically creates a legend entry for
each labeled element in the diagram.

We will see now how to customize your legend. In detail I will show you how to
set the position and add a title to your legend.

The loc parameter sets the position of a legend within the diagram. Allowed
entries for loc are: ’best’, ’upper right’, ’upper left’, ’lower left’, ’lower right’, ’center
left’, ’center right’, ’lower center’, ’upper center’, and ’center’. The loc parameter can
also be also expressed giving the coordinates of the lower-left corner of the legend.
Some examples are reported in the code listing 4.9 and displayed in Fig 4.10. If not
specified, the loc parameter assumes the ’best’ option, meaning that it will attempt
to achieve the minimum overlap with other drawn elements.

The title parameter adds a title to a legend with title_fontsize defining its font
dimension.

Also, frameon (i.e. True or False), ncol (i.e, an integer), and framealpha (i.e, from
0 to 1) define the presence of a frame, its transparency, and the numbers of columns,
respectively (code listing 4.10, and Fig. 4.11).

1 import pandas as pd
2 import matplotlib.pyplot as plt
3
4 myDataset1 = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
5
6 x = myDataset1.Zr
7 y = myDataset1.Th
8
9
10 loc_parameters = [’upper right’ , ’upper left’, ’lower left’,

’lower right’,’center’ ,’center left’]
11
12 fig = plt.figure()
13 for i in range(len(loc_parameters)):
14 ax = fig.add_subplot(3,2,i+1)
15 ax.scatter(x, y, marker = ’s’, color = ’#c7ddf4’,

edgecolor = ’#000000’, label="loc = " + loc_parameters[i])
16 ax.set_xlabel("Zr [ppm]")
17 ax.set_ylabel("Th [ppm]")
18 ax.legend(loc=loc_parameters[i])
19
20 fig.tight_layout()

Listing 4.9 Customizing legend position using the loc parameter.

4.3 Preparing Publication Ready Binary Diagrams 57

250 500 750
Zr [ppm]

25

50

75

Th
 [p

pm
]

loc = upper right

250 500 750
Zr [ppm]

25

50

75

Th
 [p

pm
]

loc = upper left

250 500 750
Zr [ppm]

25

50

75

Th
 [p

pm
]

loc = lower left

250 500 750
Zr [ppm]

25

50

75

Th
 [p

pm
]

loc = lower right

250 500 750
Zr [ppm]

25

50

75

Th
 [p

pm
]

loc = center

250 500 750
Zr [ppm]

25

50

75

Th
 [p

pm
]

loc = center left

Fig. 4.10 The result of the code listing 4.9.

1 import pandas as pd
2 import matplotlib.pyplot as plt
3
4 myDataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
5
6 myDataset1= myDataset[myDataset.Epoch == ’one’]
7 myDataset2 = myDataset[myDataset.Epoch == ’two’]
8
9
10 fig = plt.figure()
11 ax1 = fig.add_subplot(2,1,1)
12 ax1.scatter(myDataset1.Zr, myDataset1.Th, marker = ’s’, color

= ’#c7ddf4’, edgecolor = ’#000000’, label="First Epoch")
13 ax1.scatter(myDataset2.Zr, myDataset2.Th, marker = ’o’, color

= ’#ff464a’, edgecolor = ’#000000’, label="Second Epoch")
14 ax1.set_xlabel("Zr [ppm]")
15 ax1.set_ylabel("Th [ppm]")
16 ax1.legend(loc=’upper left’, framealpha=1, frameon=True, title

="Age < 15 ky", title_fontsize=10)
17
18 ax2 = fig.add_subplot(2,1,2)
19 ax2.scatter(myDataset1.Zr, myDataset1.Th, marker = ’s’, color

= ’#c7ddf4’, edgecolor = ’#000000’, label="First Epoch")
20 ax2.scatter(myDataset2.Zr, myDataset2.Th, marker = ’o’, color

= ’#ff464a’, edgecolor = ’#000000’, label="Second Epoch")
21 ax2.set_xlabel("Zr [ppm]")
22 ax2.set_ylabel("Th [ppm]")
23 ax2.legend(frameon=False, loc=’lower right’, ncol=2, title="

Age < 15 ky", title_fontsize=10)
24
25 fig.tight_layout()

Listing 4.10 Customizing legend parameters.

58 4 Graphical Visualization of a Geological Data Set

200 300 400 500 600 700 800 900
Zr [ppm]

20

30

40

50

60

70

80

90

Th
 [p

pm
]

Age < 15 ky
First Epoch
Second Epoch

200 300 400 500 600 700 800 900
Zr [ppm]

20

30

40

50

60

70

80

90

Th
 [p

pm
]

Age < 15 ky
First Epoch Second Epoch

Fig. 4.11 The result of the code listing 4.10.

Rounding decimals, text formatting, symbols, and special characters

To reports data in diagrams (e.g., in the legend or as annotation), the rounding of a
number or a string formatting is often required. In these cases, the .format() method
is a flexible and useful tool. In detail, it allows positional injection of variables (i.e.,
numbers or strings) within strings and value formatting. To place a variable within a
string, it is used a placeholder (i.e., {}). Also, it allows you to format date, times, or
numbers and round decimals. To better understand, please consider the code listing
4.12. It reports some examples for the use of .format() in practical cases. In detail,
at lines 5 and 7 it is used to insert two variables (i.e., name and surname) at specific
positions of the text. Also, at lines 12 to 15, it shows how to insert a value (i.e., the
Archimedećonstant) and round it to a specific number of digits.

Also, the code listing 4.13 provide additional examples on the use of .format()
for the use of plus and minus (lines 5-6), the reporting as percent (line 12), and the
scientific notation (lines 18-19).

4.3 Preparing Publication Ready Binary Diagrams 59

In addition, to insert characters that are illegal in a string (e.g, " or ’ when they
define the string), or do a specific action (e.g., go to a new line) you should use the
escape character \. The table 4.2 and the code listing 4.11, provide you with some
useful examples.

Table 4.2 Special characters and specific actions in strings using the escape character \.

Command Result Commnad Result Command Result

\n New Line \’ Single Quote \" Double Quote
\textbackslash \ \ooo octal value \xhh hex value

1 # Go to new line using \n
2 print(’---

’)
3 print("My name is\nMaurizio Petrelli")
4
5 # Inserting characters using octal values
6 print(’---

’)
7 print("\100 \136 \137 \077 \176")
8
9 # Inserting characters using hex values
10 print(’---

’)
11 print("\x23 \x24 \x25 \x26 \x2A")
12 print(’---

’)
13
14 ’’’Output:
15 ---
16 My name is
17 Maurizio Petrelli
18 ---
19 @ ^ _ ? ~
20 ---
21 # $ % & *
22 ---
23 ’’’

Listing 4.11 Using the escape character \.

Our next challenge is: how to insert symbols and equations in diagrams? In my
opinion, the simplest and most direct way to apply text formatting (e.g., apex and
subscripts), insert symbols (i.e., ` or [), and introduce special characters (e.g., ±)
in matplotlib is the TEX markup. Shortly, TEX provides the foundations for LATEX, a
high-quality typesetting system. In the practice, we can refer to LATEX as the de facto
standard for the communication and publication of scientific documents4.

4 https://www.latex-project.org

60 4 Graphical Visualization of a Geological Data Set

Table 4.3 Introducing TEX notation in matplotlib. Example: r’$xˆ 2$’→ G2.

TEX Result TEX Result TEX Result

xˆ2 G2 x_2 G2 \ pm ±
\ alpha U \ beta V \ gamma W

\ rho d \ sigma f \ delta X

\ pi c \ eta [\ mu `

\ int
∫

\ sum
∑

\ prod
∏

\ leftarrow ← \ rightarrow → \ uparrow ↑
\ Leftarrow ⇐ \ Rightarrow ⇒ \ Uparrow ⇑
\ infty ∞ \ nabla ∇ \ partial m

\ neq ≠ \ simeq ' \ approx ≈

1 # Introductory examples
2 name = ’Maurizio’
3 surname = ’Petrelli’
4 print(’---’)
5 print(’My name is {}’.format(name))
6 print(’---’)
7 print(’My name is {} and my surname is {}’.format(name,

surname))
8 print(’---’)
9 # Decimal Number formatting
10 pi = 3.14159265358979323846
11 print(’--’)
12 print("The 2 digit Archimedes’ constant is equal to {:.2f}".

format(pi))
13 print("The 3 digit Archimedes’ constant is equal to {:.3f}".

format(pi))
14 print("The 4 digit Archimedes’ constant is equal to {:.4f}".

format(pi))
15 print("The 5 digit Archimedes’ constant is equal to {:.5f}".

format(pi))
16 print(’--’)
17
18 ’’’Results
19 ---
20 My name is Maurizio
21 ---
22 My name is Maurizio and my surname is Petrelli
23 ---
24 --
25 The 2 digit Archimedes’ constant is equal to 3.14
26 The 3 digit Archimedes’ constant is equal to 3.142
27 The 4 digit Archimedes’ constant is equal to 3.1416
28 The 5 digit Archimedes’ constant is equal to 3.14159
29 --
30 ’’’

Listing 4.12 Familiarizing with .format().

4.3 Preparing Publication Ready Binary Diagrams 61

1 # Explicit positive and negative reporting
2 a = +5.34352
3 b = -6.3421245
4 print(’---’)
5 print("The plus symbol is not reported: {:.2f} | {:.2f}".format

(+5.34352, -6.3421245))
6 print("The plus symbol is reported: {:+.2f} | {:+.2f}".format(a,

b))
7 print(’---’)
8
9 # Reporting as percent
10 c = 0.1558
11 print(’---’)
12 print("Reporting as percent: {:.1%}".format(c))
13 print(’---’)
14
15 # Scientific notation
16 d = 6580000000000
17 print(’---’)
18 print("Scientific notation using e: {:.1e}".format(d))
19 print("Scientific notation using E: {:.1E}".format(d))
20 print(’---’)
21
22 ’’’Results
23 ---
24 The plus symbol is not reported: 5.34 | -6.34
25 The plus symbol is reported: +5.34 | -6.34
26 ---
27 ---
28 Reporting as percent: 15.6%
29 ---
30 ---
31 Scientific notation using e: 6.6e+12
32 Scientific notation using E: 6.6E+12
33 ---
34 ’’’

Listing 4.13 More about number reporting using .format().

Teaching TEX and LATEX is far behind the scope of the present book but the
reader is invited to refer to specialised books(Kopka & Daly, 2003; Lamport, 1994;
Mittelbach et al., 2004). However, knowing a few specific rules and notations will
greatly help us in upgrade the quality of our diagrams significantly. Note that any
text element in matplotlib can use advanced formatting, mathematical elements, and
symbols. To start using TEX in matplotlib, we have to precede the quotes defining a
string with an r (i.e. r’this is my string’), and surround the math text using the dollar
symbol ($). The code listing 4.14 shows an example on how to use the TEX notation
to improve the quality of our diagrams (Fig. 4.12).

Also, table 4.3, provides some common TEX instructions such as how to apply
apex and subscripts, insert Greek letters like `, [, and c, using special characters
(e.g., ±,∞), or mathematical expressions (e.g.,

∫ 1
0
).

62 4 Graphical Visualization of a Geological Data Set

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 import numpy as np
4
5
6 def MyLine(x,m,q):
7 y = m * x + q
8 return y
9
10
11 myDataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_majors’, engine=’openpyxl’)
12
13 myDataset1= myDataset[myDataset.Epoch == ’one’]
14 myDataset2 = myDataset[myDataset.Epoch == ’two’]
15
16
17 x = np.linspace(52.5, 62, 100)
18 y = MyLine(x,m=0.3, q= -10.3)
19
20
21 fig, ax = plt.subplots()
22
23 ax.scatter(myDataset1.SIO2, myDataset1.K2O, marker = ’s’,

color = ’#c7ddf4’, edgecolor = ’#000000’, label=r’1^{st}
Epoch’)

24 ax.scatter(myDataset2.SIO2, myDataset2.K2O, marker = ’s’,
color = ’#ff464a’, edgecolor = ’#000000’, label=r’2^{nd}
Epoch’)

25 ax.plot(x,y, color = ’#342a77’)
26
27 ax.annotate(r’What is the 1σ for this point?’, xy

=(47.6, 6.6), xytext=(47, 8.8), arrowprops=dict(arrowstyle
="->", connectionstyle="arc3"))

28 ax.text(52.4, 5.6, r’$ Na_2O = 0.3 \cdot SiO_2 -10.3$’, dict(
size=10,rotation=33))

29
30 ax.text(53.5, 5.1, r’$ \mu_{SiO_2} = \frac {a_{1}+a_{2}+\cdots

+a_{n}}{n}$ = ’ + ’{:.1f} [wt.%]’.format(57.721) , dict(
size=11.5))

31
32 ax.xlabel(r’SiO$_2$ [wt%]’)
33 ax.ylabel(r’K$_2$O [wt%]’)
34
35 ax.legend()

Listing 4.14 Using TEX notation in matplotlib.

As drawback, adding r before the string precludes the use of .format() and \ as
escape character. To overcome this problem, I suggest to split the string into sub-

4.3 Preparing Publication Ready Binary Diagrams 63

48 50 52 54 56 58 60 62
SiO2 [wt%]

5

6

7

8

9

10

K 2
O

[w
t%

]
What is the 1 for this point?

Na2O
= 0.3

SiO2
10.3

SiO2 = a1 + a2 + + an
n = 57.7 [wt.%]

1st Epoch
2nd Epoch

Fig. 4.12 The result of the code listing 4.14.

strings and then concatenate them using the + symbol, as reported in the code listing
4.12 (line 29).

Binary diagrams: plot() vs scatter()

In the previous sections, we introduced two different methods to visualize geolog-
ical data in binary diagrams: the plot() and scatter() functions implemented in the
matplotlib sub-package named pyplot. The two methods share many functionalities
and can be often used indifferently. As an example, look at the code listing 4.15,
showing how to plot a binary diagram with square markers.

Nevertheless, plot() and scatter() have some distinctions. As an example, the
plot() function only can connect with a line the points defined by a sequence of (x,y)
coordinates (Fig 4.14. Table 4.4, shows the main parameters that can be used to
personalize the aesthetics of a plt.plot() diagram. However, the plot() function is less
flexible than scatter() for marker sizing, and coloring. For each plot() declaration,
all symbols must be of the same size, and color. On the contrary, using scatter()
you can set different colors, and sizes for each marker. As an example, Fig 4.14
shows symbols with size proportional to the � parameter and color defined by the
color sequence. Sometime, you will need to combine them. As an example, if you
would like to plot and connect a sequence of samples with different colors and
dimensions, you could use scatter for symbols and plot for the connecting line. The

64 4 Graphical Visualization of a Geological Data Set

zorder parameter is an integer number defining the stratigraphy of different layers
in the diagram. In the specific case of code listing 4.16 (lines 34 and 35), it places
symbols above the line.

Table 4.4 Parameters allowing the personalisation of a plot() diagram.

Parameter Values Description

alpha [0,1] Set the trasparency
color, c a color value (e.g., Fig. 4.8 and 4.7) Set the color of the line
fillstyle {’full’, ’left’, ’right’, ’bottom’, ’top’, ’none’} Set the marker fill style
linestyle, ls {’-’, ’–’, ’-.’, ’:’, ”, (offset, on-off-seq), ...} Set the style of the line
linewidth, lw a float number Set the line width in points
marker a marker style (e.g., Tab. 4.1) Set the marker style
markeredgecolor, mec a color value Set the marker edge color
markeredgewidth, mew a float number Set the marker edge width
markerfacecolor, mfc a color value Set the marker face color
markersize, ms float number Set the marker size in points

1 import pandas as pd
2 import matplotlib.pyplot as plt
3
4 myDataset1 = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
5
6 x = myDataset1.Zr
7 y = myDataset1.Th
8
9 fig = plt.figure()
10 ax1 = fig.add_subplot(1,2,1)
11 ax1.scatter(x, y, marker = ’s’, color = ’#ff464a’, edgecolor = ’

#000000’)
12 ax1.set_title("using scatter()")
13 ax1.set_xlabel("Zr [ppm]")
14 ax1.set_ylabel("Th [ppm]")
15 ax2 = fig.add_subplot(1,2,2)
16 ax2.plot(x, y, marker = ’s’, linestyle = ’’, color = ’#ff464a’,

markeredgecolor = ’#000000’)
17 ax2.set_title("using plot()")
18 ax2.set_xlabel("Zr [ppm]")
19 ax2.set_ylabel("Th [ppm]")
20 fig.tight_layout()

Listing 4.15 Often plot() and scatter() can be used to solve the same tasks.

4.3 Preparing Publication Ready Binary Diagrams 65

200 400 600 800
Zr [ppm]

20

30

40

50

60

70

80

90

Th
 [p

pm
]

using plt.scatter()

200 400 600 800
Zr [ppm]

20

30

40

50

60

70

80

90

Th
 [p

pm
]

using plt.plot()

Fig. 4.13 The result of the code listing 4.15.

1 import matplotlib.pyplot as plt
2 import numpy as np
3
4 def EC(F, D, C0):
5 CL = C0 / (D * (1 - F) + F)
6 return CL
7
8 myF = np.linspace(0.1, 1, 10)
9
10 myC1 = EC(F=myF, D=0.1, C0=100)
11
12 colors = [’#ff9494’,’#cbeaa2’,’#d1a396’,’#828fc3’,’#95b2e5’,’#

e9b8f4’,’#f4b8e5’,’#b8f4f2’,’#c5f4b8’,’#f9ca78’]
13
14 fig = plt.figure()
15 ax1 = fig.add_subplot(2,2,1)
16 ax1.plot(myF, myC1, marker = ’o’, linestyle = ’-’, markersize

= 5)
17 ax1.set_xlabel(’F’)
18 ax1.set_ylabel(’C [ppm]’)
19
20 ax2 = fig.add_subplot(2,2,2)
21 ax2.scatter(myF, myC1, marker = ’o’, s = myF*150)
22 ax2.set_xlabel(’F’)
23 ax2.set_ylabel(’C [ppm]’)
24
25 ax3 = fig.add_subplot(2,2,3)
26 ax3.scatter(myF, myC1, marker = ’o’, c = colors, s = myF*150)
27 ax3.set_xlabel(’F’)
28 ax3.set_ylabel(’C [ppm]’)
29
30 ax4 = fig.add_subplot(2,2,4)
31 ax4.plot(myF, myC1, marker = ’’, linestyle=’-’, zorder = 0)
32 ax4.scatter(myF, myC1, marker = ’o’, c = colors, s = myF*150,

zorder = 1)
33 ax4.set_xlabel(’F’)
34 ax4.set_ylabel(’C [ppm]’)
35
36 fig.tight_layout()

Listing 4.16 Main differences between plot() and scatter().

66 4 Graphical Visualization of a Geological Data Set

0.2 0.4 0.6 0.8 1.0
F

100

200

300

400

500

C
[p

pm
]

0.2 0.4 0.6 0.8 1.0
F

100

200

300

400

500

C
[p

pm
]

0.2 0.4 0.6 0.8 1.0
F

100

200

300

400

500

C
[p

pm
]

0.2 0.4 0.6 0.8 1.0
F

100

200

300

400

500

C
[p

pm
]

Fig. 4.14 The result of the code listing 4.16

An Example of publication-ready diagram

As a final task, we are going to prepare a publication-ready diagram (code list-
ing 4.17). In code listing 4.17, lines 1 and 2 import the pandas library and the
matplotlib.pyplot module, respectively. At line 4, the Excel file is imported in a
DataFrame named myDataset. Lines 6, 7, and 8 define three sequences named
epochs, colors, and markers, respectively. At line 10, we generate a new empty fig-
ure. At line 11 a loop iterate over the sequences of epochs, colors, and markers using
the zip() function. This enables us to iterate over two or more lists at the same time.
Then, i.e., line 12, a newDataFrame namedmyData is defined by filtering myDataset
using the labels the Epoch column. At line 13 we add a Zr vs. Th scatter diagram of
the resulting myData to the figure generated at line 10. Finally, we add axis labels
(lines 15 and 16), and a legend with a title (line 17). Note that \n simply defines a
new line in legend title.

4.3 Preparing Publication Ready Binary Diagrams 67

1 import pandas as pd
2 import matplotlib.pyplot as plt
3
4 myDataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
5
6 epochs = [’one’,’two’,’three’,’three-b’]
7 colors = [’#c8b4ba’,’#f3ddb3’,’#c1cd97’,’#e18d96’]
8 markers = [’o’,’s’,’d’,’v’]
9
10 fig, ax = plt.subplots()
11 for (epoch,color,marker) in zip(epochs, colors, markers):
12 myData = myDataset[(myDataset.Epoch == epoch)]
13 ax.scatter(myData.Zr, myData.Th, marker=marker, s = 50, c=

color , edgecolor=’0’, label="Epoch " + epoch)
14
15 ax.set_xlabel("Zr [ppm]")
16 ax.set_ylabel("Th [ppm]")
17 ax.legend(title="Phlegraean Fields \n Age < 15 ky")

Listing 4.17 Plotting a histogram distribution as probability density in Python.

200 300 400 500 600 700 800 900
Zr [ppm]

20

30

40

50

60

70

80

90

Th
 [p

pm
]

Phlegraean Fields
 Age < 15 ky

Epoch one
Epoch two
Epoch three
Epoch three-b

Fig. 4.15 The result of the code listing 4.17.

68 4 Graphical Visualization of a Geological Data Set

4.4 Visualization of Multivariate Data: a First Attempt

0

500

1000

1500

2000

Ba

200

400

600

800

Zr

0 1000 2000
Ba

20

40

60

80

Th

250 500 750
Zr

25 50 75
Th

Fig. 4.16 The result of the code listing 4.18.

The seaborn.pairplot() function plots pairwise relationships in a data set. By
default, this function creates a grid of diagrams where each variable in the data set
is shared in the y-axis across a single row and in the x-axis across a single column.
In diagonal diagrams, the pairplot() function draws a plot showing the univariate
distribution for the variable in that column5. The code listing 4.18 shows how to
generate a pairplot() diagram using Ba, Zr, and Th. In detail, at line 1 and 2, we
import the pandas and seaborn libraries, respectively. We know already the meaning
of line 4, i.e., importing an Excel file in a DataFrame named myDataset. At line 6,
we generate a new DataFrame (i.e., myDadaset1) by filtering myDataset for Ba, Zr,
and Th columns. More details about the filtering and slicing of a DataFrame are
reported in Appendix D. Finally, at line 7 we generate a pairpolt diagram. Figure
4.16 displays the pairplot generated using the code listing 4.18

5 https://seaborn.pydata.org/generated/seaborn.pairplot.html

4.4 Visualization of Multivariate Data: a First Attempt 69

1 import pandas as pd
2 import seaborn as sns
3
4 myDataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
5
6 myDataset1 = myDataset[[’Ba’,’Zr’,’Th’]]
7 sns.pairplot(myDataset1)

Listing 4.18 A first attempt in visualizing multivariate data using sns.pairplot().

Chapter 5
Descriptive Statistics 1: Univariate Analysis

5.1 Basics of Descriptive Statistics

Descriptive statistics deals with measures, tools, and strategies that can be used to
summarize a data set. Thesemeasures are quantities extracted from the data providing
information about 1) the location of a data set, sometime defined as central tendency;
2) amount of data variation (i.e., the dispersion), and 3) the degree of symmetry (i.e.,
the skewness). Measures of the location of a data set are the arithmetic, geometric,
and harmonic means. The median and the modal value of mono-modal distributions
are also measures of the location of a data set. The total spread of a data set is a rough
estimation of dispersion. More accurate estimations of the dispersion of a data set
are the variance, the standard deviation, and the inter-quartile range. The skewness
of a data set can be measured by parameters such as the Pearson’s first coefficient of
skewness or the Fischer-Pearson’s coefficient of skewness.

5.2 Location

In descriptive statistics, it is useful to represent an entire data set with a single
value describing its location or position. That single value is defined as the central
tendency. The mean, the median, and the mode fall in this category.

Means

The arithmetic mean `� is the average of all numbers and is defined as:

`� = Ī =
1
=

=∑
8=1

I8 =
I1 + I2 + · · · + I=

=
(5.1)

71

72 5 Descriptive Statistics 1: Univariate Analysis

The geometric mean `� is a type of mean, which indicates the location of a data
set using the product of their values:

`� = (I1I2 · · · I=)
1
= (5.2)

Finally, the harmonic mean `� can be expressed as:

`� =
=

1
I1
+ 1
I2
+ · · · + 1

I=

(5.3)

In the following, when not explicitly specified, I will refer to the symbol ` to
claim the arithmetic mean. One of the ways (remember, there are also many ways to
get the solution of a problem in Python) for getting the different means for a specific
feature (in our case the concentration of a chemical element like Zirconium, Zr) in
the imported data set is reported (code listion 5.1 and Fig. 5.1.

200 300 400 500 600 700 800 900
Zr [ppm]

0.000

0.001

0.002

0.003

0.004

Pr
ob

ab
ilit

y
de

ns
ity

Arithmetic mean
Geometric mean
Harmonic mean
Measurements Hist

Fig. 5.1 The result of the code reported in the listing 5.1.

5.2 Location 73

1 import pandas as pd
2 from scipy.stats.mstats import gmean, hmean
3 import matplotlib.pyplot as plt
4
5 myDataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
6
7 a_mean = myDataset.Zr.mean()
8 g_mean = gmean(myDataset[’Zr’])
9 h_mean = hmean(myDataset[’Zr’])
10
11 print (’-------’)
12 print (’arithmetic mean’)
13 print ("{0:.1f} [ppm]".format(a_mean))
14 print (’-------’)
15
16 print (’geometric mean’)
17 print ("{0:.1f} [ppm]".format(g_mean))
18 print (’-------’)
19
20 print (’harmonic mean’)
21 print ("{0:.1f} [ppm]".format(h_mean))
22 print (’-------’)
23
24 fig, ax = plt.subplots()
25 ax.hist(myDataset.Zr, bins= ’auto’, density = True, edgecolor=

’k’, label=’Measurements Hist’, alpha=0.8)
26 ax.axvline(a_mean, color=’purple’, label=’Arithmetic mean’,

linewidth=2)
27 ax.axvline(g_mean, color=’orange’, label=’Geometric mean’,

linewidth=2)
28 ax.axvline(h_mean, color=’green’, label=’Harmonic mean’,

linewidth=2)
29 ax.set_xlabel(’Zr [ppm]’)
30 ax.set_ylabel(’Probability density’)
31 ax.legend()
32
33 ’’’
34 Output:
35 -------
36 arithmetic mean
37 365.4 [ppm]
38 -------
39 geometric mean
40 348.6 [ppm]
41 -------
42 harmonic mean
43 333.8 [ppm]
44 -------
45 ’’’

Listing 5.1 Measuring and plotting the average values of a data set.

74 5 Descriptive Statistics 1: Univariate Analysis

Median

The median, "4, is the number at the middle of a data set after a sorting from the
lower to the higher value (code listing 5.2 and Fig. 5.2). As a consequence, to obtain
the median value of a data set, data values must be ordered from the smallest to the
largest. If the number of data values is odd, then the sample median is the middle
value in the ordered list; if it is even, then the sample median is the average of the
two middle values (Ross, 2010).

1 import pandas as pd
2 import matplotlib.pyplot as plt
3
4 myDataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
5
6 median = myDataset.Zr.median()
7
8 print (’-------’)
9 print (’median’)
10 print("{0:.1f} [ppm]".format(median))
11 print (’-------’)
12
13 fig, ax = plt.subplots()
14 ax.hist(myDataset.Zr, bins=20, density = True, edgecolor=’k’,

label="Measurements Hist", alpha=0.8)
15 ax.axvline(median, color="orange", label="Median", linewidth=2)
16 ax.set_xlabel(’Zr [ppm]’)
17 ax.set_ylabel(’Probability density’)
18 ax.legend()
19
20 ’’’
21 Output:
22 -------
23 median
24 339.4 [ppm]
25 -------
26 ’’’

Listing 5.2 Measuring and plotting the median of a data set.

Mode

The mode, ">, of a data set is the value that appears most frequently in the data
set (Ross, 2010). In python, it is possible to retrieve the modal value using the
instructions reported in the code listing 5.3.

5.2 Location 75

200 300 400 500 600 700 800 900
Zr [ppm]

0.000

0.001

0.002

0.003

0.004
Pr

ob
ab

ilit
y

de
ns

ity
Median
Measurements Hist

Fig. 5.2 The result of the code reported in the listing 5.2.

1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4
5 myDataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
6
7 hist, bin_edges = np.histogram(myDataset[’Zr’], bins= 20,

density=True)
8 modal_value = (bin_edges[hist.argmax()] + bin_edges[hist.

argmax()+1])/2
9
10 print (’modal value: {0:.0f} [ppm]’.format(modal_value))
11
12 fig, ax = plt.subplots()
13 ax.hist(myDataset.Zr, bins=20, density = True, edgecolor=’k’,

label="Measurements Hist", alpha=0.8)
14 ax.axvline(modal_value , color="orange", label="Modal value",

linewidth=2)
15 ax.set_xlabel(’Zr [ppm]’)
16 ax.set_ylabel(’Probability density’)
17 ax.legend()
18
19 ’’’
20 Output: modal value: 277 [ppm]
21 ’’’

Listing 5.3 Measuring and plotting the modal value of a data set.

76 5 Descriptive Statistics 1: Univariate Analysis

200 300 400 500 600 700 800 900
Zr [ppm]

0.000

0.001

0.002

0.003

0.004
Pr

ob
ab

ilit
y

de
ns

ity
Modal value
Measurements Hist

Fig. 5.3 The result of the code reported in the listing 5.3.

5.3 Dispersion or Scale

We have just introduced several estimators of the central tendency of a data set.
However we have not yet considered any measure of its variability. The range,
the variance and the standard deviation are all estimators of the dispersion (i.e.,
variability) of a data set.

In pandas, we can estimate the range as follow:

Range

A first gross estimator of the variability of a data set is provided by the range. The
range, ', is the difference between the highest and lowest values in the the data set:

' = (I<0G − I<8=) (5.4)

5.3 Dispersion or Scale 77

1 import pandas as pd
2 import matplotlib.pyplot as plt
3
4 myDataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
5
6 R = myDataset[’Zr’].max()- myDataset[’Zr’].min()
7
8 print (’-------’)
9 print (’Range’)
10 print("{0:.0f}".format(R))
11 print (’-------’)
12
13 fig, ax = plt.subplots()
14 ax.hist(myDataset.Zr, bins= 20, density = True, edgecolor=’k’,

label=’Measurements Hist’)
15 ax.axvline(myDataset[’Zr’].max(), color=’purple’, label=’Max

value’, linewidth=2)
16 ax.axvline(myDataset[’Zr’].min(), color=’green’, label=’Min

value’, linewidth=2)
17 ax.axvspan(myDataset[’Zr’].min(), myDataset[’Zr’].max(), alpha

=0.1, color=’orange’, label=’Range = ’ + "{0:.0f}".format(
R) + ’ ppm’)

18 ax.set_xlabel(’Zr [ppm]’)
19 ax.set_ylabel(’Probability density’)
20 ax.legend()

Listing 5.4 Measuring and plotting the range of a data set.

Variance and standard deviation

The variances, for the population (f2
?) and the sample (f2

B) distributions, are defined
as:

f2
? =

∑=
8=1 (I8 − `)2

=
(5.5)

f2
B =

∑=
8=1 (I8 − `)2

= − 1
(5.6)

The standard deviation, f, is the square root of the variance:

f? =

√
f2
? =

√∑=
8=1 (I8 − `)2

=
(5.7)

78 5 Descriptive Statistics 1: Univariate Analysis

200 300 400 500 600 700 800 900
Zr [ppm]

0.000

0.001

0.002

0.003

0.004
Pr

ob
ab

ilit
y

de
ns

ity
Max value
Min value
Measurements Hist
Range = 735 ppm

Fig. 5.4 The result of the code reported in the listing 5.4.

200 300 400 500 600 700 800 900
Zr [ppm]

0.000

0.001

0.002

0.003

0.004

Pr
ob

ab
ilit

y
de

ns
ity

mean - 1-sigma
mean +] 1-sigma
Measurements Hist
mean +/- 1-sigma

Fig. 5.5 The result of the code reported in the listing 5.5.

5.3 Dispersion or Scale 79

fB =

√
f2
B =

√∑=
8=1 (I8 − `)2
= − 1

(5.8)

The variance (f2
B) and the standard deviation (fB) of a sample distribution can be

estimated in pandas using the instructions reported in the code listing 5.5.

1 import pandas as pd
2 import matplotlib.pyplot as plt
3
4 myDataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
5
6 variance = myDataset[’Zr’].var()
7 stddev = myDataset[’Zr’].std()
8
9 print (’-------’)
10 print (’Variance’)
11 print("{0:.0f} [square ppm]".format(variance))
12 print (’-------’)
13 print (’Standard Deviation’)
14 print("{0:.0f} [ppm]".format(stddev))
15 print (’-------’)
16
17 fig, ax = plt.subplots()
18 ax.hist(myDataset.Zr, bins= 20, density = True, edgecolor=’k’,

label=’Measurements Hist’)
19 ax.axvline(myDataset[’Zr’].mean() - stddev, color=’purple’,

label=’mean - 1-sigma’, linewidth=2)
20 ax.axvline(myDataset[’Zr’].mean() + stddev, color=’green’,

label=’mean +] 1-sigma’, linewidth=2)
21 ax.axvspan(myDataset[’Zr’].mean() - stddev, myDataset[’Zr’].

mean() + stddev, alpha=0.1, color=’orange’, label=’mean
+/- 1-sigma’)

22 ax.set_xlabel(’Zr [ppm]’)
23 ax.set_ylabel(’Probability density’)
24 ax.legend()
25
26 ’’’
27 Output:
28 -------
29 Variance
30 14021 [square ppm]
31 -------
32 Standard Deviation
33 118 [ppm]
34 -------
35 ’’’

Listing 5.5 Measuring and plotting the variance and the standard deviation of a data set.

80 5 Descriptive Statistics 1: Univariate Analysis

In pandas, to estimate the variance and the standard deviation for an entire pop-
ulation, you need to change the Delta Degrees of Freedom (ddof). By default, the
pandas commands .var() and .std() use ddof = 1, normalizing the measurements by
(n-1). Setting .var(ddof = 0) and .std(ddof = 0), pandas calculates the f2

? and f? ,
respectively. Variances and standard deviations can be also estimates for NumPy
arrays using the same .var() and .std() commands. Differently form pandas, NumPy
.var() and .std() set ddof = 0 as default parameter, therefore estimating the population
variance (f2

?) and standard deviation (f?), respectively.

Inter quantile range

In descriptive statistics, the inter-quartile range (IQR) is equal to the difference
between 75th and 25th percentiles, or between upper and lower quartiles (code
listing 5.6).

1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4
5 myDataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
6
7 Q1 = np.percentile(myDataset.Zr, 25, interpolation = ’midpoint’)
8 Q3 = np.percentile(myDataset.Zr, 75, interpolation = ’midpoint’)
9
10 IQR = Q3 - Q1 # Interquaritle range (IQR)
11
12 print (’-------’)
13 print (’Interquaritle range (IQR): {0:.0f} [ppm]’.format(IQR))
14 print (’-------’)
15
16 fig, ax = plt.subplots()
17 ax.hist(myDataset.Zr, bins= ’auto’, density = True, edgecolor=’k’

, label=’Measurements Hist’)
18 ax.axvline(Q1, color=’purple’, label=’Q1’, linewidth=2)
19 ax.axvline(Q3, color=’green’, label=’Q3’, linewidth=2)
20 ax.axvspan(Q1, Q3, alpha=0.1, color=’orange’, label=’

Interquaritle range (IQR)’)
21 ax.set_xlabel(’Zr [ppm]’)
22 ax.set_ylabel(’Probability density’)
23 ax.legend()
24
25 ’’’
26 Output:
27 -------
28 Interquaritle range (IQR): 164 [ppm]
29 -------
30 ’’’

Listing 5.6 Measuring and plotting the inter-quartile range (IQR) of a data set.

5.4 Skewness 81

200 300 400 500 600 700 800 900
Zr [ppm]

0.000

0.001

0.002

0.003

0.004
Pr

ob
ab

ilit
y

de
ns

ity
Q1
Q3
Measurements Hist
Interquaritle range (IQR)

Fig. 5.6 The result of the code reported in the listing 5.6.

5.4 Skewness

After the introduction of some parameters providing information about the central
tendency and the variability of a data set, we can start analyzing an index giving
some constraints about of the shape of a distribution: the skewness.

The skewness is a statistical parameter providing information about the symmetry
in a distribution of values. In the case of a symmetric distribution, the arithmetic
mean, the median and the mode express the same value. As a consequence, "> =
"4 = `�. Please note that the coincidence of these three values, although being a
necessary condition for symmetric distributions, does not guarantee the symmetry
of a distribution. On the contrary, the non-coincidence of these three parameters
points to a skewed distribution. In particular, in the cases where "> < "4 < `�
and `� < "4 < "> the distribution is characterized by a tail on the right and left
side, respectively.

In the specific case of Zr concentration distribution, where "> < "4 < `�, a
tail on the right side is present, as expected.

82 5 Descriptive Statistics 1: Univariate Analysis

1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4
5 myDataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
6
7 a_mean = myDataset.Zr.mean()
8
9 median = myDataset.Zr.median()
10
11 hist, bin_edges = np.histogram(myDataset[’Zr’], bins= 20,

density=True)
12 modal_value = (bin_edges[hist.argmax()] + bin_edges[hist.

argmax()+1])/2
13
14
15
16 fig, ax = plt.subplots()
17 ax.hist(myDataset.Zr, bins= 20, density = True, edgecolor=’k’,

label="Measurements Hist")
18 ax.axvline(modal_value , color=’orange’, label=’Modal Value’,

linewidth=2)
19 ax.axvline(median, color=’purple’, label=’Median Value’,

linewidth=2)
20 ax.axvline(a_mean, color=’green’, label=’Arithmetic mean’,

linewidth=2)
21 ax.set_xlabel(’Zr [ppm]’)
22 ax.set_ylabel(’Probability density’)
23 ax.legend()

Listing 5.7 Providing a qualitative test of the skewness of a data set.

A parameter providing information about the skewness of a sample distribution
is the Pearson’s first coefficient of skewness (Eq. 5.9):

U1 =
(` − ">)

fB
(5.9)

A second parameter is the Pearson’s second moment of skewness (Eq. 5.10):

U2 =
3 (` − "4)

fB
(5.10)

An additional parameter providing information about the sample skewness is the
Fisher-Pearson’s coefficient of skewness (Eq. 5.11):

61 =
<3

<
3/2
2

(5.11)

where

5.5 Descriptive Statistics in Pandas 83

<8 =
1
#

#∑
==1
(G [=] − `)8 (5.12)

In Python, the U1, U2, and 61 parameters can be determined as follow as reported
in the code listing 5.8.

1 import numpy as np
2 from scipy.stats import skew
3
4 a_mean = myDataset.Zr.mean()
5 median = myDataset.Zr.median()
6 hist, bin_edges = np.histogram(myDataset[’Zr’], bins= 20,

density=True)
7 modal_value = (bin_edges[hist.argmax()] + bin_edges[hist.

argmax()+1])/2
8 standard_deviation = myDataset[’Zr’].std()
9
10 a1 = (a_mean - modal_value) / standard_deviation
11 a2 = 3 * (a_mean - median) / standard_deviation
12 g1 = skew(myDataset[’Zr’])
13
14 print (’-------’)
15 print ("Pearson’s first coefficient of skewness: {:.2f}".

format(a1))
16 print ("Pearson’s 2nd moment of skewness: {:.2f}".format(a2))
17 print ("Fisher-Pearson’s coefficient of skewness: {:.2f}".

format(g1))
18 print (’-------’)
19
20 ’’’
21 Output:
22 -------
23 Pearson’s first coefficient of skewness: 0.74
24 Pearson’s 2nd moment of skewness: 0.66
25 Fisher-Pearson’s coefficient of skewness: 1.26
26 -------
27 ’’’

Listing 5.8 Measuring the skewness of a data set.

5.5 Descriptive Statistics in Pandas

As reported in the official documentation of pandas, the command describe() "gener-
ates descriptive statistics that summarize the central tendency, dispersion and shape
of a data set’s distribution, excluding NaN (i.e., Not a Number) values."

84 5 Descriptive Statistics 1: Univariate Analysis

200 300 400 500 600 700 800 900
Zr [ppm]

0.000

0.001

0.002

0.003

0.004
Pr

ob
ab

ilit
y

de
ns

ity
Modal Value
Median Value
Arithmetic mean
Measurements Hist

Fig. 5.7 The result of the code reported in the listing 5.7.

1 import pandas as pd
2
3 myDataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
4
5 statistics = myDataset[[’Ba’,’Sr’,’Zr’,’La’]].describe()
6
7 print(statistics)
8
9 ’’’
10 Output:
11 Ba Sr Zr La
12 count 370.000000 369.000000 370.000000 370.000000
13 mean 789.733259 516.422115 365.377397 74.861088
14 std 523.974960 241.922439 118.409962 18.256772
15 min 0.000000 9.541958 185.416567 45.323289
16 25% 297.402777 319.667551 274.660242 61.745228
17 50% 768.562055 490.111131 339.412064 71.642167
18 75% 1278.422645 728.726116 438.847368 83.670805
19 max 2028.221963 1056.132069 920.174406 169.550008
20 ’’’

Listing 5.9 Computing descriptive statistics in pandas.

5.6 Box Plots 85

5.6 Box Plots

A box plot or boxplot describe groups of numerical data using the inter-quartile
distance. Also, box lines extending from the boxes, i.e., whiskers, indicate the vari-
ability outside the upper and lower quartiles. The outliers are sometime plotted as
individual symbols. In detail, the bottom and the top of a box are always the first and
third quartiles. A line is always reported inside the box and it represents the second
quartile (i.e., the median). Regarding the whisker length, by default matplotlib uses
a value equal to 1.5 multiplied by the inter-quartile distance. Any data not included
between the whiskers is considered as an outlier. Using the matplotlib library, a
boxplot can be defined as follow:

1 import pandas as pd
2 import matplotlib.pyplot as plt
3
4 myDataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
5
6 fig, ax = plt.subplots()
7 my_flierprops = dict(markerfacecolor=’#f8e9a1’,

markeredgecolor=’#24305e’, marker=’o’)
8 my_medianprops = dict(color=’#f76c6c’, linewidth = 2)
9 my_boxprops = dict(facecolor=’#a8d0e6’, edgecolor=’#24305e’)
10 ax.boxplot(myDataset.Zr, patch_artist = True, notch=True,

flierprops = my_flierprops , medianprops = my_medianprops ,
boxprops = my_boxprops)

11 ax.set_ylabel(’Zr [ppm]’)
12 ax.set_xticks([1])
13 ax.set_xticklabels([’all Epochs’])
14 plt.show()

Listing 5.10 Providing a qualitative check of the skewness of a data set.

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 import seaborn as sns
4
5 myDataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
6
7 fig, ax = plt.subplots()
8 ax = sns.boxplot(x="Epoch", y="Zr", data=myDataset , palette="

Set3")

Listing 5.11 Providing a qualitative check of the skewness of a data set.

86 5 Descriptive Statistics 1: Univariate Analysis

all Epochs

200

300

400

500

600

700

800

900

Zr
 [p

pm
]

Fig. 5.8 The result of the code reported in the listing 5.10.

three-b three two one
Epoch

200

300

400

500

600

700

800

900

Zr

Fig. 5.9 The result of the code reported in the listing 5.11.

Chapter 6
Descriptive Statistics 2: Bivariate Analysis

6.1 Covariance and Correlation

In the present chapter, we start investigating how to capture the relationships between
two variables, i.e., bivariate statistics. To begin, consider Fig. 6.1, resulting from the
code listing 6.1. As you can infer, the two diagrams reported in Fig. 6.1 are different.
From the previous chapter, we know how to describe each variable (i.e., La, Ce, Sc,
and U) appearing in Fig. 6.1 using indexes of location (e.g., the arithmetic mean),
dispersion (e.g., the standard deviation) and shape (e.g., the skewness).

1 import pandas as pd
2 import matplotlib.pyplot as plt
3
4 myDataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
5
6 fig = plt.figure()
7 ax1 = fig.add_subplot(2,1,1)
8 ax1.scatter(myDataset.La, myDataset.Ce, marker=’o’, edgecolor=’k’

, color=’#c7ddf4’, label=’CFC recent Activity’)
9 ax1.set_xlabel(’La [ppm]’)
10 ax1.set_ylabel(’Ce [ppm]’)
11 ax1.legend()
12
13 ax2 = fig.add_subplot(2,1,2)
14 ax2.scatter(myDataset.Sc, myDataset.U, marker=’o’, edgecolor=’k’,

color=’#c7ddf4’, label=’CFC recent Activity’)
15 ax2.set_xlabel(’Sc [ppm]’)
16 ax2.set_ylabel(’U [ppm]’)
17 ax2.legend()

Listing 6.1 Linear relation between two variables.

87

88 6 Descriptive Statistics 2: Bivariate Analysis

40 60 80 100 120 140 160
La [ppm]

100

150

200

250

300

Ce
 [p

pm
]

CFC recent Activity

0.1 0.0 0.1 0.2 0.3 0.4 0.5
Sc [ppm]

5

10

15

20

25

U
[p

pm
]

CFC recent Activity

Fig. 6.1 The result of the code reported in the listing 6.1.

6.1 Covariance and Correlation 89

However, these indexes, although useful to describe a single variable, are not
able to capture the relationships among them. As an example, the diagram La Vs.
Ce clearly shows an increase in Ce as La increases and vice-versa. Mathematicians
describe this using the concepts of covariance and correlation. On the contrary, it is
not possible to define any simple relation between Sc and U.

Definition: The covariance of two sets of univariate samples G and HH, deriving
from two random variables X and Y, is a measure of their joint variability, or their
degree of correlation (Chatterjee & Hadi, 2013; Montgomery et al., 2012):

�>EGH =

∑=
8=1 (H8 − H̄) (G8 − Ḡ)

= − 1
. (6.1)

A �>EGH > 0 indicates a positive relationship between Y and X. On the contrary,
if �>EGH < 0, the relationship is negative (Chatterjee & Hadi, 2013; Montgomery
et al., 2012). If X and Y are statistically independent, then �>EGH = 0. Please note
that while statistically independent variables are always uncorrelated, the converse
is not necessarily true.

I’d like to stress that the covariance depends on the magnitudes of the two in-
spected variables. As a consequence, it does not tell us much about the strength of
such a relationship (Chatterjee&Hadi, 2013;Montgomery et al., 2012). The normal-
ized version of the covariance, i.e., the correlation coefficient, allows us to overcome
this limitation showing, by its magnitude, the strength of the linear relation.

The Eq. 6.2 define the correlation coefficient, AGH , for two joined univariate sets
of data X and Y characterized by a covariance �>EGH and standard deviations fBG
and fBG , respectively (Chatterjee & Hadi, 2013; Montgomery et al., 2012):

AGH =
�>EGH

fBG · fBH
=

∑=
8=1 (H8 − H̄) (G8 − Ḡ)√∑=

8=1 (H8 − H̄)2
∑=
8=1 (G8 − Ḡ)2

. (6.2)

By definition, AGH is scale invariant, i.e., it does not depend on the magnitude
of considered values. Also, AGH satisfies the following relation (Chatterjee & Hadi,
2013; Montgomery et al., 2012):

−1 ≤ AGH ≤ 1. (6.3)

For a pandas DataFrame, the covariance and the correlation can be readily com-
puted using the cov() and corr() functions. These functions calculate the covariance
and the correlation matrices for a DataFrame, respectively. A covariance matrix is
a table showing the covariances �>EGH between the variables in the DataFrame.
Each cell in the table shows the covariance between two variables. The correlation
matrix follows the same logic as the covariance matrix but reporting the correla-
tion coefficients. In the latter, the diagonal is characterized by values equal to one,
corresponding to the self-correlation coefficients.

The code listing 6.2 and Fig 6.2 report the computation and the subsequent rep-
resentation of the covariance and the correlation matrices for the elements reported
in Fig. 6.1, i.e., Ce, La, U, and Sc.

90 6 Descriptive Statistics 2: Bivariate Analysis

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 import seaborn as sns
4
5 myDataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
6
7 mySubDataset = myDataset[[’Ce’,’La’,’U’,’Sc’]]
8
9 cov = mySubDataset.cov()
10 cor = mySubDataset.corr()
11
12 fig = plt.figure(figsize=(11,5))
13
14 ax1 = fig.add_subplot(1,2,1)
15 ax1.set_title(’Covariance Matrix’)
16 sns.heatmap(cov, annot=True, cmap=’cividis’, ax=ax1)
17
18 ax2 = fig.add_subplot(1,2,2)
19 ax2.set_title(’Correlation Matrix’)
20 sns.heatmap(cor, annot=True, vmin= -1, vmax=1, cmap=’coolwarm

’, ax=ax2)
21
22 fig.tight_layout()

Listing 6.2 Estimating the covariance and the correlation matrix.

Fig. 6.2 The result of the code reported in the listing 6.2.

6.2 Simple Linear Regression 91

Please note that a value of AGH close to 0 only means that X and Y are not linearly
related, not excluding other relationships (Chatterjee & Hadi, 2013; Montgomery
et al., 2012).

To evaluate non-linear relationships, other parameters should be used. As an ex-
ample, the Spearman rank-order correlation coefficient is a non-parametric measure
of the monotonicity of the relationship between two data sets. As in the case of
the Pearson correlation coefficient, the Spearman rank-order correlation coefficient
varies between -1 and +1, with 0 implying no correlation. Correlations of -1 or +1
imply an exact monotonic relationship. A positive correlation implies that as X in-
creases, so does Y. On the contrary, negative correlations imply that as X increases, Y
decreases. In python, the scipy.stats.spearmanr() function calculates the Spearman
correlation coefficient together with the associated confidence (i.e., p-values).

6.2 Simple Linear Regression

Considering a response variable Y and a predictor X, we can define a linear model
using the Eq. 6.4 (Chatterjee & Hadi, 2013; Montgomery et al., 2012):

. = V0 + V1- + n (6.4)

where V0 and V1 are coefficients named intercept (i.e., the predicted value of Y
at X=0) and slope (i.e., the change in Y for unit variation in X), respectively. Also, n
is the residual error (Chatterjee & Hadi, 2013; Montgomery et al., 2012). Using the
least squares method, i.e., minimizing the sum of squares of the vertical distances
from each point to the Eq. 6.4, V1 and V0 are estimated using the Eq. 6.5 and 6.6,
respectively:

V1 =

∑=
8=1 (H8 − H̄) (G8 − Ḡ)∑=

8=1 (G8 − Ḡ)2
=
�>EGH

f2
BG

= AGH
fBH

fBG
(6.5)

V0 = H̄ − V1Ḡ (6.6)

The square of the correlation coefficient (A2
GH) with 0 ≤ A2

GH ≤ 1,is typically used
to provide a preliminary estimation of the goodness of the regression models.

A more exhaustive evaluation of the model requires a detailed analysis of the
errors, i.e., error analysis, a topic that we will discuss in the Chapter 10.

In Python, there are many implementations of the least squares method for first
order linear regression. Examples are the the linregress() function (code listing 6.3
and Fig. 6.3) in the statistical module of Scipy and the linear regression module in
statsmodels1.

1 https://www.statsmodels.org

92 6 Descriptive Statistics 2: Bivariate Analysis

1 import pandas as pd
2 import scipy.stats as st
3 import numpy as np
4 import matplotlib.pyplot as plt
5
6 myDataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
7
8 fig = plt.figure()
9 ax1= fig.add_subplot(2,1,1)
10 ax1.scatter(myDataset.La, myDataset.Ce, marker=’o’, edgecolor=

’k’, color=’#c7ddf4’, label=’CFC recent Activity’)
11 b1, b0, rho_value , p_value, std_err = st.linregress(myDataset.

La, myDataset.Ce)
12 x = np.linspace(myDataset.La.min(),myDataset.La.max())
13 y = b0 + b1*x
14 ax1.plot(x, y, linewidth=1, color=’#ff464a’, linestyle=’--’,

label = r"fit param.: β_0 = " + str(round(b0,1)) + r
" - β_1 = " + str(round(b1,1)) + r" - r_{xy}^{2}
= " + str(round(rho_value**2,2)))

15 ax1.set_xlabel(’La [ppm]’)
16 ax1.set_ylabel(’Ce [ppm]’)
17 ax1.legend(loc= ’upper left’)
18
19 ax2 = fig.add_subplot(2,1,2)
20 ax2.scatter(myDataset.Sc, myDataset.U, marker=’o’, edgecolor=’

k’, color=’#c7ddf4’, label=’CFC recent Activity’)
21 b1, b0, rho_value , p_value, std_err = st.linregress(myDataset.

Sc, myDataset.U)
22 x = np.linspace(myDataset.Sc.min(),myDataset.Sc.max())
23 y = b0 + b1*x
24 ax2.plot(x, y, linewidth=1, color=’#ff464a’, linestyle=’--’,

label = r"fit param.: β_0 = " + str(round(b0,1)) + r
" - β_1 = " + str(round(b1,1)) + r" - r_{xy}^{2}
= " + str(round(rho_value**2,2)))

25 ax2.set_xlabel(’Sc [ppm]’)
26 ax2.set_ylabel(’U [ppm]’)
27 ax2.legend(loc= ’upper left’)

Listing 6.3 Least square linear regression applied to the data of Fig. 6.1.

6.3 Polynomial Regression

The linear model defined in Eq. 6.4 can be easily generalized to a polynomial of
degree n (Eq. 6.7):

. = V0 + V1- + V2-
2 + V3-

3 + ... + V=-= + n (6.7)

6.3 Polynomial Regression 93

40 60 80 100 120 140 160
La [ppm]

100

150

200

250

300

Ce
 [p

pm
]

fit param.: 0 = 11.7 - 1 = 1.6 - r2
xy = 0.93

CFC recent Activity

0.1 0.0 0.1 0.2 0.3 0.4 0.5
Sc [ppm]

5

10

15

20

25

U
[p

pm
]

fit param.: 0 = 12.0 - 1 = -8.8 - r2
xy = 0.06

CFC recent Activity

Fig. 6.3 The result of the code reported in the listing 6.3.

94 6 Descriptive Statistics 2: Bivariate Analysis

If = > 1, the function Y(X) is not linear, but the regression model is still linear,
since the regression parameters V0, V1, V2, ...V=, enter in Eq. 6.7 as linear terms
(Chatterjee & Hadi, 2013; Montgomery et al., 2012).

Now, suppose having collected a geological quantity (e.g., the flow rate of a spring-
water) at selected time intervals and youwish to fit your data with polynomial models
of order 2, 3, and 4, respectively. The code listing 6.4 shows how to perform this
task in Python using the numpy.polyfit() function (code listing 6.4 and Fig. 6.4).

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 x = np.arange(1,6)
5 y = np.array([0,1,2,9,9])
6
7 fig, ax = plt.subplots()
8 ax.scatter(x, y, marker = ’o’, s = 100, color = ’#c7ddf4’,

edgecolor = ’k’)
9
10 orders = np.array([2,3,4])
11 colors =[’#ff464a’,’#342a77’,’#4881e9’]
12 linestiles = [’-’,’--’,’-.’]
13
14 for order, color, linestile in zip(orders, colors, linestiles):
15 betas = np.polyfit(x, y, order)
16 func = np.poly1d(betas)
17 x1 = np.linspace(0.5,5.5, 1000)
18 y1 = func(x1)
19 ax.plot(x1, y1, color = color, linestyle = linestile , label =

"Linear model of order " + str(order))
20
21 ax.legend()
22 ax.set_xlabel(’A quantity relevant in geology\n(e.g., time)’)
23 ax.set_ylabel(’A quantity relevant in geology\n(e.g., spring flow

rate)’)
24 fig.tight_layout()

Listing 6.4 Least square linear regression of n-order.

6.4 Non-Linear Regression

In regression analysis, the terms linear and non-linear does not describe the relation-
ship between Y and X. Instead they are related to regression parameters entering
the equation linearly or non-linearly (Chatterjee & Hadi, 2013; Montgomery et al.,
2012). As an example, equations 6.4 and 6.7 are both linear. Also, the regression
model for the Eq. 6.8 is linear. This is because they are linear natively (Eq. 6.4)

6.4 Non-Linear Regression 95

1 2 3 4 5
A quantity relevant in geology

(e.g., time)

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

A
qu

an
tit

y
re

le
va

nt
 in

 g
eo

lo
gy

(e
.g

.,
sp

rin
g

flo
w

ra
te

)

Linear model of order 2
Linear model of order 3
Linear model of order 4

Fig. 6.4 The result of the code reported in the listing 6.4.

or they can be reported to a linear form after a transformation (Chatterjee & Hadi,
2013).

. = V0 + V1;>6(-) + n (6.8)

As an example, we can set -2 = -2, -
3 = -3, ..., -

= = -= in Eq. 6.7 and
-1 = ;>6(-) in Eq. 6.8. The resulting Eq. 6.9 and Eq. 6.10 are both linear:

. = V0 + V1- + V2-2 + V3-3 + ... + V=-= + n, (6.9)

. = V0 + V1-1 + n (6.10)

As a general definition, in linear models all regression parameters enter the
equation linearly, possibly after transformation of the data (Chatterjee & Hadi,
2013). On the contrary, in non-linear models the relationship between Y and some
of the predictors is non-linear or some of the parameters appear non-linearly, but no
transformation is possible tomake the parameters appear linearly (Chatterjee&Hadi,
2013). Table 6.1 reports a checklist, modified from Motulsky and Christopoulos
(2004), to evaluate if the linear regression is an appropriate approach for your data
set.

An example of non-linear regression in petrology occurs during the application
of the the crystal lattice-strain model (Blundy & Wood, 1994) for the interpretation
of experimental data. In detail, the crystal lattice-strain model provides a conceptual

96 6 Descriptive Statistics 2: Bivariate Analysis

Table 6.1 Is the linear regression appropriate for your gelogical data set? Modified fromMotulsky
and Christopoulos (2004).

Question Discussion

Can the relationship between X
andYbe be described by a straight
line?

For many geological applications, the relationship between
X and Y is not linear, making linear regression inappro-
priate. The suggestion is to either transform the data, or
perform nonlinear curve fitting.

Is the scattering of data around the
line Normally distributed?

Please note that linear regression analysis assumes that the
scatter is Gaussian.

Is the variability the same every-
where?

Linear regression assumes that the scattering around the
best-fit line has the same standard deviation all along the
curve. The assumption is violated if the points with high or
low X values tend to be farther from the best-fit line (i.e.,
homoscedasticity).

Do you know the X values pre-
cisely?

The least square linear regression model assumes that X
values are exactly correct, i.e., X is very small compared to
the variability inY, and that experimental error or geological
variability only affects the Y values.

Are the data points independent? Whether one point is above or below the line is a matter
of chance, and does not influence whether another point is
above or below the line.

Are the X and Y values inter-
twined?

If the value of X is used to calculate Y (or the value of Y is
used to calculate X), then linear regression calculations are
invalid.

framework for quantifying partition coefficients (�8) in magmatic systems (Blundy
& Wood, 1994; Meltzer & Kessel, 2020):

�8 = �> · 4G?
{
−4 · c · � · #� ·

[
A>
2 (A8 − A>)

2 + 1
3 (A8 − A>)

3]
' ·)

}
(6.11)

where) is the temperature, A8 is the radius the a trace element i belonging to an
isovalent set of elements, A0 is the radius of the ideal element that minimally strains
the crystal lattice (i.e., characterized by the largest �8), �0 is the partition coefficient
for the ideal element characterized by a radius equal to A0, and � is the apparent
Young’s modulus of the site. Finally, #� and ' are the Avogadro’s number and the
gas constant, respectively (Blundy & Wood, 1994; Meltzer & Kessel, 2020).

The exponential equation 6.11 defines a parabolic behaviour in a diagram with A8
and log10 (�8) on the x and y axes, respectively.

Typically, the A0, �0, and � parameters are estimated by fitting the Eq. 6.11 to
experimentally determined �8 , by non-linear regression.

In Python, the function scipy.optimize.curve_fit() applies the non-linear least
squares approach to fit a function to data, and can be used to extract A0,�0, and � from
experimental �8 . In detail, curve_fit() bases on three algorithms: the Trust Region
Reflective algorithm (Branch et al., 1999), The Dogleg algorithm with rectangular

6.4 Non-Linear Regression 97

trust regions (Voglis & Lagaris, 2004), and the Levenberg-Marquardt algorithm
(Moré, 1978). A detailed description of the algorithms governing the non-linear
regression if beyond the scope of the present book and I invite you to read more
specialized books (e.g., Seber and Wild, 1989) for further details. To provide an
example, the code listing 6.5 replicates the results reported in Fig. 2 of Meltzer and
Kessel, 2020.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from scipy.optimize import curve_fit
4
5 def func(r, r0, D0, E):
6 R=8.314462618
7 scale = 1e-21 # r in Angstrom (r^3 -> 10^-30 m), E is GPa

(10^9 Pa)
8 T = 800 + 273.15
9 Na=6.02e23
10 return D0*np.exp((-4*np.pi*E*Na*((r0/2)*(r-r0)**2+(1/3)*(r-r0

)**3)*scale)/(R*T))
11
12 def add_elements(ax):
13 # to plot the name of the elements on the diagram
14 Names = [’La’, ’Ce’, ’Nd’, ’Sm’, ’Eu’, ’Gd’, ’Dy’, ’Er’, ’Yb’

, ’Lu’, ’Y’, ’Sc’]
15 Annotate_xs = np.array([1.172 + 0.01, 1.15 + 0.01, 1.123 +

0.01, 1.098 - 0.031, 1.087 - 0.028, 1.078 - 0.04, 1.052 +
0.005, 1.03 + 0.02, 1.008 + 0.01, 1.001 - 0.015, 1.04 -0.02,
0.885 - 0.03])

16 Annotate_ys = np.array([0.468 + 0.1, 1.050 + 0.2, 10.305 +
3, 31.283 - 13, 45.634 -17, 74.633- 30, 229.279 + 80,
485.500, 583.828 +200, 460.404 -220, 172.844 -70, 141.630])

17
18 for Name,Annotate_x ,Annotate_y in zip(Names,Annotate_xs ,

Annotate_ys):
19 ax.annotate(Name,(Annotate_x , Annotate_y))
20
21 Di = np.array([0.468, 1.050, 10.305, 31.283, 45.634, 74.633,

229.279, 485.500, 583.828, 460.404, 172.844, 141.630])
22 I_r = np.array([1.172, 1.15, 1.123, 1.098, 1.087, 1.078, 1.052,

1.03, 1.008, 1.001, 1.04, 0.885])
23
24 fig = plt.figure(figsize=(9,5))
25
26 # Trust Region Reflective algorithm
27 ax1 = fig.add_subplot(1,2,1)
28 ax1.set_title("Trust Region Reflective algorithm")
29 ax1.scatter(I_r, Di, s=80, color=’#c7ddf4’, edgecolors=’k’, label

=’4 GPa - 1073 K, Kessel et al., 2005’)
30
31 popt1, pcov1 = curve_fit(func, I_r, Di, method=’trf’, bounds

=([0.8,0,0],[1.3,1000,1000]))
32

98 6 Descriptive Statistics 2: Bivariate Analysis

33 x1 = np.linspace(0.85,1.2,1000)
34 y1 = func(x1,popt1[0],popt1[1], popt1[2])
35 ax1.plot(x1,y1, color=’#ff464a’, linewidth=2, linestyle =’--’,

label=r’r_0 = ’ + str(round(popt1[0],3)) + r’, D_0 = ’ +
str(round(popt1[1],0)) + ’, E = ’ + str(round(popt1[2],0)))

36 add_elements(ax = ax1)
37 ax1.set_yscale(’log’)
38 ax1.set_xlabel(r’Ionic Radius (\AA)’)
39 ax1.set_ylabel(r’D_i’)
40 ax1.set_ylim(0.005,3000)
41 ax1.legend()
42
43 # Levenberg -Marquardt algorithm
44 ax2 = fig.add_subplot(1,2,2)
45 ax2.set_title("Levenberg -Marquardt algorithm")
46 ax2.scatter(I_r, Di, s=80, color=’#c7ddf4’, edgecolors=’k’, label

=’4 GPa - 1073 K, Kessel et al., 2005’)
47
48 popt2, pcov2 = curve_fit(func, I_r, Di, method=’lm’, p0

=(1.1,100,100))
49
50 x2 = np.linspace(0.85,1.2,1000)
51 y2 = func(x2,popt2[0],popt2[1], popt2[2])
52 ax2.plot(x2,y2, color=’#4881e9’, linewidth=2, linestyle =’--’,

label=r’r_0 = ’ + str(round(popt2[0],3)) + r’, D_0 = ’ +
str(round(popt2[1],0)) + ’, E = ’ + str(round(popt2[2],0)))

53 add_elements(ax = ax2)
54 ax2.set_yscale(’log’)
55 ax2.set_xlabel(r’Ionic Radius (\AA)’)
56 ax2.set_ylabel(r’D_i’)
57 ax2.set_ylim(0.005,3000)
58 ax2.legend()
59
60 fig.tight_layout()

Listing 6.5 Least square non-linear regression to extract A0, �0, and � from an experimental set
of �8 in the framework of the crystal lattice-strain model (Blundy & Wood, 1994).

Figure 6.5 shows the best fitting of the Eq. 6.11 using two different algorithms.
They are the Trust Region Reflective algorithm (Branch et al., 1999) with bounds
for the A0, �0, and � parameters (line 31 of code listing 6.5) and the Levenberg-
Marquardt algorithm (Moré, 1978) provided with an initial guess of A0, �0, and �
(p0, line 48 of code listing 6.5), respectively. The two algorithms return the same
best fit parameters (Fig. 6.5).

6.4 Non-Linear Regression 99

0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20
Ionic Radius (Å)

10 2

10 1

100

101

102

103

D
i

La
Ce

NdSm
Eu

Gd

Dy
Er

Yb

Lu
YSc

Trust Region Reflective algorithm

r0 = 0.979, D0 = 601.0, E = 447.0
4 GPa - 1073 K, Kessel et al., 2005

0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20
Ionic Radius (Å)

10 2

10 1

100

101

102

103

D
i

La
Ce

NdSm
Eu

Gd

Dy
Er

Yb

Lu
YSc

Levenberg-Marquardt algorithm

r0 = 0.979, D0 = 601.0, E = 447.0
4 GPa - 1073 K, Kessel et al., 2005

Fig. 6.5 The result of the code reported in the listing 6.5.

Part III
Integrals and Differential Equations in

Geology

Chapter 7
Numerical Integration

7.1 Definite Integrals

From the operational point of view, the integration mainly involves problems of two
different classes (Priestley, 1997). The ones belonging to the first class, i.e., indefinite
integrals, are those in which we know the derivative of a function and we aim at
finding the function (Priestley, 1997). The problems of the second class, i.e, definite
integrals, consist of adding up a large amount of extremely small quantities to find
areas, volumes, centers of gravity, and many other applications (Priestley, 1997).

For most geological applications, the knowledge about integrals can be reduced
to definite integrals.

x

y = f(x)

y

a b

Fig. 7.1 Definite Integral.

103

104 7 Numerical Integration

Informal definition: Given a function 5 of a real variable G, the definite integral
(() of 5 (G) in an interval of real numbers [0, 1] can be expressed as the area that is
bounded by 5 (G), the x-axis, and the vertical lines at G equal to 0 and 1, respectively
(Fig. 7.1).

Please note that the regions above and below the x-axis add and subtract from the
total, respectively (Fig. 7.2).

x

y = f(x)
y

+

Fig. 7.2 Sign of definite integrals.

7.2 Basic Properties of Integrals

Definite integrals are subjected to some interesting properties, often useful during
the solution of complex problems, reducing them to simpler ones.

Additive properties ∫ 1

0

5 (G)3G +
∫ 2

1

5 (G)3G =
∫ 2

0

5 (G)3G (7.1)∫ 0

0

5 (G)3G = 0 (7.2)∫ 1

0

5 (G)3G = −
∫ 0

1

5 (G)3G (7.3)

Scaling by a constant ∫ 1

0

2 · 5 (G)3G = 2
∫ 1

0

5 (G)3G (7.4)

7.4 Fundamental Theorem of Calculus and Analytical Solutions 105

Integral of a sum∫ 1

0

[5 (G) + 6(G)]3G =
∫ 1

0

5 (G)3G +
∫ 1

0

6(G)3G (7.5)

7.3 Analytical and Numerical Solutions of Definite Integrals

As a general definition, analytical methods give exact solutions, but sometimes they
are impossible to achieve. On the contrary, numerical methods give approximate so-
lutions with allowable tolerances (i.e., an error characterized by a known confidence
limit). Also, the use of numerical methods is mandatory when the function is only
empirically estimated at discrete points, as in most cases dealing with geological
sampling (e.g., volatile fluxes at volcanic areas).

A detailed description of the analytical solutions of definite integrals is behind
the scope of this book and, in the following, I will provide a the definition for the
’Fundamental Theorem of Calculus’ and few simple examples based on the symbolic
approach in Python.

On the contrary, I will discuss the numerical methods in detail, mainly focusing
on the algorithms allowing the solution of definite integrals even when 5 (G) is not
mathematically defined (i.e., we know some given fixed occurrences only) as in the
case of the sampling in many geological fields.

7.4 Fundamental Theorem of Calculus and Analytical Solutions

Fundamental Theorem of Calculus

The ’Fundamental Theorem of Calculus’ formulates an analytical link between
differentiation and integration. The theorem is constituted of two parts. The first part
establishes the relationship between differentiation and integration (Priestley, 1997;
Strang et al., 2016).

Part 1: If � (G) is continuous over an interval [0, 1] and the function � (G) is
defined by:

� (G) =
∫ G

0

5 (C)3C (7.6)

then � ′(G) = 5 (G) over [0, 1], and we define � (G) as antiderivative of 5 (G).
The second part affirms that if we can determine an antiderivative for the inte-

grand, then we can assess the definite integral by evaluating the antiderivative at the
extreme points of the interval and subtracting.

Part 2: If 5 (G) is cpntinuous over the interval [0, 1] and � (G) is any antiderivative
of 5 (G), then

106 7 Numerical Integration∫ 1

0

5 (G)3G = � (1) − � (0) (7.7)

Analytical Solutions: the Symbolic Approach in Python

Symbolic computation deals with the manipulation and solution of mathematical
expressions symbolically (Meurer et al., 2017). In the symbolic computation, math-
ematical objects are represented exactly and not approximately as in the case of
numerical solutions (Meurer et al., 2017). Also, mathematical expressions with un-
evaluated variables are left in the symbolic form (Meurer et al., 2017). In detail,
the SymPy package uses the symbolic approach to simplify expressions, compute
derivatives, integrals, and limits, solve equations, work with matrices, etc (Meurer
et al., 2017).

As a simple example consider Fig. 7.3. It shows the use of SimPy to solve,
analytically, the two definite integrals reported in Eq. 7.8 and Eq. 7.9.

∫ 6

1
12G3 − 9G2 + 23G =

[
3G4 − 3G3 + 2G

]6
1 = (3252 − 2) = 3250 (7.8)

∫ 1

0
B8=(G)3G = [−2>B(G))]10 = 1 − 2>B(1) ' 0.46 (7.9)

Fig. 7.3 Symbolic integration using SimPy.

7.5 Numerical Solutions of Definite Integrals 107

7.5 Numerical Solutions of Definite Integrals

Rectangles method

The simplest method to numerically approximate the solution of a definite integral
is to divide the area of interest with many rectangles of equal width and variable
height, then summing up all the areas of rectangles (Fig 7.4):∫ 1

0

5 (G)3G ≈ ℎ
=−1∑
8=0

5 (G8) (7.10)

where = is the number of rectangles, G0 = 0, G= = 1, and ℎ is defined as:

ℎ =
1 − 0
=

(7.11)

x

y = f(x)
y

a b

f(a) = f(x0)

f(x1)
f(xi) f(xi+1)

h

f(b) = f(xn)

Fig. 7.4 The ’left-rectangles’ method to solve definite integrals.

The procedure reported in Eq. 7.10 and Fig. 7.4 is the so called ’left-rectangular’
approximation. Additional options are the ’right-’ (Eq. 7.12) and ’midpoint-
rectangular’ approximations (Eq. 7.13), respectively (Fig. 7.5).∫ 1

0

5 (G)3G ≈ ℎ
=∑
8=1

5 (G8) (7.12)

∫ 1

0

5 (G)3G ≈ ℎ
=−1∑
8=0

(5 (G8) + 5 (G8+1))
2

(7.13)

108 7 Numerical Integration

x

y = f(x)

y

a b

f(a) = f(x0)

f(x1)
f(xi) f(xi+1)

h

f(b) = f(xn)
midpoint

'midpoint-rectangular' approximation

x

y

a b

f(x1)
f(xi) f(xi+1)

h

f(b) = f(xn)

'right-rectangular' approximation

f(a) = f(x0)

Fig. 7.5 The ’right-’ and ’midpoint-rectangles’ approximations to solve definite integrals.

Filling 5 (G) using rectangles will roughly approximate the area of interest. How-
ever, the more rectangles you insert in between the boundaries (a and b), the more
accurate the approximation will be since the untouched regions becomemore sparse.

In python, we can write a simple function to implement the rectangle method
(code listing 7.1).

7.5 Numerical Solutions of Definite Integrals 109

1 import numpy as np
2
3 def integrate_rec(f, a, b, n):
4 # Implementation of the rectanlge method
5 h = (b-a)/n
6 x = np.linspace(a, b, n+1)
7 i=0
8 area=0
9 while i<n:
10 Sup_rect = f(x[i])*h
11 area += Sup_rect
12 i += 1
13 return area
14 ’’’
15 We test the Rectangle method on the sine funcion were the

definite integral in the interval [0, c/2] is equal to 1.
16 ’’’
17
18 S_5 = integrate_rec(np.sin, 0, np.pi/2, 5)
19 S_10 = integrate_rec(np.sin, 0, np.pi/2, 10)
20 S_100 = integrate_rec(np.sin, 0, np.pi/2, 100)
21
22 print(’Using n=5, the rectangle method returns a value of {:.2

f}’.format(S_5))
23 print(’Using n=10, the rectangle method returns a value of

{:.2f}’.format(S_10))
24 print(’Using n=100, the rectangle method returns a value of

{:.2f}’.format(S_100))
25
26 ’’’
27 Output:
28 Using n=5, the rectangle method returns a value of 0.83
29 Using n=10, the rectangle method returns a value of 0.92
30 Using n=100, the rectangle method returns a value of 0.99
31 ’’’

Listing 7.1 Rectangles rule to solve definite integrals.

Trapezoidal rule

The trapezoidal rule is a technique similar to the rectangles method. Instead of
rectangles, the trapezoidal rule uses trapezoids to fill the area under 5 (G) (Fig. 7.6).
The Eq. 7.14 and code listing 7.2 report the mathematical formulation of the
trapezoidal rule and its implementation in Python, respectively.

(=

∫ 1

0

5 (G)3G ≈ ℎ ·
[
5 (G0) + 5 (G=)

2

]
·
=−1∑
8=1

5 (G8) (7.14)

110 7 Numerical Integration

1 import numpy as np
2
3 def integrate_trap(f, a, b, n):
4 # Implementation of the trapezoidal rule
5 h = (b-a)/n
6 x = np.linspace(a, b, n+1)
7 i=1
8 area = h*(f(x[0]) + f(x[n]))/2
9 while i<n:
10 Sup_rect = f(x[i])*h
11 area += Sup_rect
12 i += 1
13 return area
14
15 ’’’
16 We test the trapezoidal rule on the known sine funcion were

the
17 definite integral in the interval [0, c/2] is equal to 1.
18 ’’’
19
20 S_5 = integrate_trap(np.sin, 0, np.pi/2, 5)
21 S_10 = integrate_trap(np.sin, 0, np.pi/2, 10)
22
23 print(’Using n=5, the trapezoidal rule returns a value of {:.2

f}’.format(S_5))
24 print(’Using n=10, the trapezoidal rule returns a value of

{:.2f}’.format(S_10))
25
26 ’’’
27 Output:
28 Using n=5, the trapezoidal rule returns a value of 0.99
29 Using n=10, the trapezoidal rule returns a value of 1.00
30 ’’’

Listing 7.2 Trapezoidal rule to solve definite integrals.

Trapezoidal and composite Simpson rules using scipy

The scipy.integrate sub-package implements many techniques for the solution of
definite integrals. Thesemethods include the trapezoidal rule reported in the previous
paragraph and the composite Simpson rule.

The composite Simpson rule consists of a technique that approximates the integral
over each pair of consecutive sub-intervals using quadratic functions (Fig. 7.7). The
resulting formula to calculate a definite integral is given in Eq. 7.15.

(=

∫ 1

0

5 (G)3G ≈ ℎ
3

=/2∑
8=1
[5 (G28−2) + 4 5 (G28−8) + 5 (G28)] (7.15)

7.5 Numerical Solutions of Definite Integrals 111

x

y = f(x)y

a b

f(a) = f(x0)

f(x1)

f(xi)
f(xi+1)

h
f(b) = f(xn)

Fig. 7.6 Trapezoidal rule to solve definite integrals.

x

y = f(x)

xi-1

h

xi+1xi

Trapezoidal rule
Simpson’s rule

y

f(xi)

f(xi+1)

f(xi-1)

Fig. 7.7 Exemplification of the composite Simpson’s rule, and comparison withe the Trapezoidal
rule.

Where n is an even number describing the number of sub-intervals of [0, 1], as
in the case of the rectangles method and the trapezoidal rule.

The code listing 7.3 describes the application of the trapezoidal and the composite
Simpson’s rules to the equation H = G2 using the scipy.integrate sub-package.

112 7 Numerical Integration

1 import numpy as np
2 from scipy import integrate
3
4
5 x = np.linspace(0,9, 3) # 3 divisions [G0, G1, G2], n=2
6 y = x**2
7
8 S_trapz = integrate.trapz(y,x)
9 S_simps = integrate.simps(y,x)
10
11
12 print(’Using n=2, the trapezoidal rule returns a value of {:.0

f}’.format(S_trapz))
13 print(’Using n=2, the composite Simpson rule returns a value

of {:.0f}’.format(S_simps))
14
15 ’’’
16 Output:
17 Using n=2, the trapezoidal rule returns a value of 273
18 Using n=2, the composite Simpson rule returns a value of 243
19 ’’’

Listing 7.3 Application of the trapezoidal and composite Simpson’s rules to the equation
H = G2.

2 4 6 8

20

40

60

80

y

x

S = 243
Strapz = 256
Ssimps = 243 } n=2

y = x2

Fig. 7.8 Application of the trapezoidal and composite Simpson’s rules to the equation H = G2 in
the interval [0, 9]. The analytical results is 243. Please note that being H = G2 a quadratic function,
it is perfectly fitted by the Simpson’s rules.

7.6 Computing the Volume of Geological Structures 113

7.6 Computing the Volume of Geological Structures

An example application in geology of definite integrals is the estimation of volume
of structures that cannot be approximated by simple geometries. For example, the es-
timation of volumes is one of the most basic and widely applied tasks in hydrocarbon
exploration and production (Slavinić & Cvetković Marko, 2016).

Qualitatively, to approximate the volume of a solid, we can slice it into many
portions. Then, we estimate the volume of each single portion using quantifiable ge-
ometries (e.g., trapezoidal prisms). Finally, we sum all the obtained volume estimates
(Slavinić & Cvetković Marko, 2016; Strang et al., 2016).

Quantitatively, if the distance between two successive slicing planes is infinites-
imal, we can mathematically express the procedure using a definite integral (Eq.
7.16):

+ =

∫ 1

0

�(G)3G (7.16)

where V is the volume of a solid extending form G = 0 to G = 1, and �(G) is the
area of its intersection with a plane passing through the point (x,0,0), and parallel to
HI (Fig. 7.9).

0 m

50 m

100 m
150 m

50

100

150
x [m]

500 m

y [m]

y [m]

z [m]

x [m]

z [m]

x0=a

A(x0)

xn=b

A(xn)

Fig. 7.9 Calculating the volume of geological structures.

114 7 Numerical Integration

The code listing 7.4 displays how to apply the Eq. 7.16 to the structure reported
in Fig. 7.9.

1 import numpy as np
2 from scipy import integrate
3
4 conturs_areas = np.array([194135, 136366, 79745, 38335, 18450,

9635, 3895])
5 x = np.array([0,25,50,75,100,125,150])
6
7 V_traps = integrate.trapz(conturs_areas , x)
8 V_simps = integrate.simps(conturs_areas , x)
9
10 print(’The trapezoidal rule returns a volume of {:.0f} cubic

meters’.format(V_traps))
11 print(’The composite Simpson rule returns a volume of {:.0f}

cubic meters’.format(V_simps))
12
13 ’’’
14 Output:
15 The trapezoidal rule returns a volume of 9538650 cubic meters
16 The composite Simpson rule returns a volume of 9431367 cubic

meters
17 ’’’

Listing 7.4 Application of the Eq. 7.16 to estimate the volume of the geological structure described
in Fig. 7.9.

7.7 Computing the Lithostatic Pressure

We define the lithostatic pressure as the vertical pressure due to the weight of a
column of rock at a specific depth. The pressure applied by a resting rock mass (this
includes the fluids within the rock’s pore space) under the acceleration of gravity is
related to the rock’s mass density by the formula (Eq 7.17:

?(I) = ?0 +
∫ I

>

d (I) 6(I) 3I (7.17)

where ?(I) is pressure at depth I, ?> is the pressure at the surface, d(I) is the
bulk density for the rock mass as a function of depth, and 6(I) is the acceleration
due to gravity.

As a zero-order approximation, we can assume ?> equal to 0 and both d(I) and
6(I) constant reducing the Eq. 7.17 to the Eq. 7.18. The code listing 7.5 reports the
implementation of a the 7.18 in Python.

?(I) = d 6 I (7.18)

7.7 Computing the Lithostatic Pressure 115

1 def simple_lithopress(z,ro=2900,g=9.8):
2 p_MPa = z*g*ro/1e6 # return the pressure in MPa
3 return p_MPa
4
5 my_pressure = simple_lithopress(z=2000)
6
7 print(’The pressure at 2000 meters is {0:.0f} MPa’.format(

my_pressure))
8
9 ’’’
10 Output:
11 The pressure at 2000 meters is 57 MPa
12 ’’’

Listing 7.5 Simple listing showing the implementation of the Eq. 7.18 in Python.

Table 7.1 Earth’s shells and relative densities.

Layer A From
[:<]

A to
[:<]

Thickness
[:<]

Bottom Density
[:6/<3]

Top Density
[:6/<3]

Inner Core 1 1220 1220 13100 12800
Outer Core 1221 3479 2259 12200 9900
Lower Mantle 3480 5650 2171 5600 4400
Upper Mantle 5651 6370 720 4130 3400
Crust 6371 6400 30 3100 2700

Now, we move to the full implementation of the Eq. 7.17. Using the data reported
by Dziewonski and Anderson (1981) and Anderson (1989), and assuming a linear
variations for d from the upper and lower limit of each shell (i.e. crust, upper mantle,
lower mantle, outer core and inner core) we can create an array defining a first-order
approximation of d(I) (Tab 7.1). To simplify data presentation, we start defining a
new variable A (i.e., the distance from the Earth centre, with the Earth approximated
to a sphere), as A = ' − I, where ' is the Earth radius (' ≈ 6400 km).

1 import numpy as np
2 from scipy.integrate import trapz
3 import matplotlib.pyplot as plt
4
5 r = np.linspace(1,6400,6400)
6
7 def density():
8 ro_inner_core = np.linspace(13100, 12800, 1220)
9 ro_outer_core = np.linspace(12200, 9900, 2259)
10 ro_lower_mantle = np.linspace(5600,4400,2171)
11 ro_upper_mantle = np.linspace(4130,3400,720)
12 ro_crust = np.linspace(3100,2700,30)
13

116 7 Numerical Integration

0 1000 2000 3000 4000 5000 6000
Distance from the Earth center r [km]

4000

6000

8000

10000

12000

De
ns

ity
 [K

g/
m

3]

Densities on the Earth's Interior

Fig. 7.10 The result of code listing 7.6.

14 ro_final = np.concatenate((ro_inner_core , ro_outer_core ,
ro_lower_mantle , ro_upper_mantle , ro_crust))

15
16 return ro_final
17
18 ro = density()
19
20 fig, ax = plt.subplots()
21 ax.plot(r,ro, label="Densities on the Earth’s Interior")
22 ax.set_ylabel(r"Density [Kg/m3]")
23 ax.set_xlabel("Distance from the Earth center r [km]")
24 ax.legend()
25 ax.grid()

Listing 7.6 Defining the density values on the Earth’s interior.

The acceleration 6(A), at a distance r from the Earth center can be estimated using
the following integral:

6(A) = 4c�
A2

∫ A

A1=0
d(A1)A2

13A1 (7.19)

where G is the "universal gravitational constant" with an accepted value of
6.67408 ± 0.0031 · 10−11<3 6−1B−2.

7.7 Computing the Lithostatic Pressure 117

1 def gravity(r):
2
3 g = np.zeros(len(r))
4
5 Gr = 6.67408e-11
6 r = r * 1000 # from Km to m
7
8 for i in range(1,len(r)):
9
10 r1 = r[0:i]
11 ro1 = ro[0:i]
12 r2 = r1[i-1]
13
14 y = ro1*r1**2
15 y_int = trapz(y,r1)
16
17 g1 = ((4 * np.pi*Gr)/(r2**2)) * y_int
18 g[i] = g1
19
20 return g
21
22 g = gravity(r)
23
24 fig, ax = plt.subplots()
25 ax.plot(r,g)
26 ax.grid()
27 ax.set_ylabel(r’g [m/s$^2]$’)
28 ax.set_xlabel(’Distance from the Earth center r [km]’)

Listing 7.7 Defining the acceleration due to gravity on the Earth’s interior.

and, finally, p(z)

118 7 Numerical Integration

0 1000 2000 3000 4000 5000 6000
Distance from the Earth center r [km]

0

2

4

6

8

10

g
[m

/s
2]

Acceleration due to gravity - g

Fig. 7.11 The result of code listing 7.7.

1 p = np.zeros(len(r))
2
3 def pressure(r,ro,g):
4
5 r = r *1000
6
7 for i in range(0,len(r)):
8 r1 = r[i:len(r)]
9 ro1 = ro[i:len(r)]
10 g1 = g[i:len(r)]
11 y = ro1*g1
12 p1 = trapz(y,r1)
13 p[i] = p1
14 return p
15
16 p = pressure(r,ro,g)/1e9 # expressed in GPa
17
18 z = np.linspace(6400, 1, 6400)
19
20 fig, ax = plt.subplots()
21 ax.plot(z,p)
22 ax.grid()
23 ax.set_ylabel(’P [GPa]’)
24 ax.set_xlabel(’Depth z from the Earth Surface [km]’)

Listing 7.8 Computing the pressure on the Earth’s interior.

7.7 Computing the Lithostatic Pressure 119

0 1000 2000 3000 4000 5000 6000
Depth z from the Earth Surface [km]

0

50

100

150

200

250

300

350

P
[G

Pa
]

Pressure on the Earth's Interior

Fig. 7.12 The result of code listing 7.8.

Chapter 8
Differential Equations

8.1 Introduction

Differential equations govern many problems in physics, engineering, biology, and
Earth Sciences.

Definition: A differential equation is an equation that relates one or more func-
tions and their derivatives. (Zill, 2012).

Qualitatively, they describe the rate at which one variable is changing with respect
to another. Examples are the rate of change in the number of atoms of a radioactive
material over time and the change in temperature of magmas during cooling (Burd,
2019). An equation is called ordinary differential equation (ODE) if it contains ordi-
nary derivatives only (Zill, 2012). In other words, an ode depends on one independent
variable only. To make the concept clearer, in ordinary differential equations you will
see one independent variable (e.g., C), one dependent variable (e.g., H = # (C)), and
it’s derivatives (e.g., 3#/3C). Everything else apart from the independent variable,
the dependent variable, and its derivatives will be constants (King et al., 2003). The
law of radioactive decay (i.e., the amount of radioactive material changes in time) is
an example of ODE:

3#

3C
= −_ · # (C) (8.1)

where # and _ are the number of radioactive nuclei and the probability of decay
per nucleus per unit of time, respectively.

On the contrary, a partial differential equation (PDE) also contain partial deriva-
tives. To better explain the concept, a PDE is a differential equation in which the
dependent variable depends on two or more independent variables (King et al.,
2003). The Fick’s second law of diffusion is an example of PDE:

m�

mC
= �

m2�

mG2 (8.2)

121

122 8 Differential Equations

where � and � are the concentration of the investigated chemical element and a
positive constant named ’diffusion coefficient’, respectively.

To solve a differential equation, we need finding an expression for the dependent
variable (e.g., # (C) in 8.1) in terms of the independent ones (e.g., C in 8.1), which
satisfies the investigated relation. By definition, a differential equation contains
derivatives, so the achievement of a solution requires an integration. The general
solution of an ODE is the one achieved by solving a differential equation in the
absence of any initial conditions. It is a combination of functions and one or more
constants. A Particular Solution of an ODE is the one obtained from the general
solution by assigning specific values to the arbitrary constants. ODEs and PDEs can
be solved using both analytical and numerical methods. In the present chapter, I will
focus on the numerical solutions of differential equations using Python, but taking
in mind that analytical solutions should be always explored, when possible (Burd,
2019).

8.2 Ordinary Differential Equation

As stated in the previous paragraph, ODEs contains ordinary derivatives only. The
order of an ODE is the order of the highest derivative that appears in the equation.
The explicit form of a n-order ode can be written as (Agarwal & O’Regan, 2008):

3=H

3G=
= H (=) = 5 (G, H, H′, H′′, ..., H (=−1)) (8.3)

where 5 id a known function.
An ODE is linear if the unknown function appears linearly in the equation,

otherwise it is nonlinear (Agarwal & O’Regan, 2008; Burd, 2019; King et al., 2003;
Zill, 2012).

Direction fields of first order ODEs

Direction fields provide an overview of first order ODE solutions without actually
solving the equation. Recall that first order ODEs are the ones that can be written in
the following form (Agarwal & O’Regan, 2008):

H′ = 5 (G, H) (8.4)

A direction field is a set of small line segments passing through various, typically
grid shaped, points having a slope that satisfy the investigated differential equation
at that point.

In my knowledge, there is not a straightforward method in Python to plot a simple
direction fields. However, we can easily develop a function for the scope (code listing

8.2 Ordinary Differential Equation 123

8.1). Figure 8.1 highlights the application of the code listing 8.1 to the following
ODE:

H′ =
G2

1 − G2 − H2 (8.5)

1 import numpy as np
2 from matplotlib import pyplot as plt
3
4 # Direction Field
5 def DirectionField(x_min, x_max, y_min, y_max, n_step, lenght,

fun, ax):
6
7 # this is to avoid RuntimeWarning: divide by zero
8 np.seterr(divide=’ignore’, invalid=’ignore’)
9
10 x = np.linspace(x_min, x_max, n_step)
11 y = np.linspace(y_min, y_max, n_step)
12 X, Y = np.meshgrid(x, y)
13 slope = fun(X,Y)
14 slope = np.where(slope == np.inf, 10**3, slope)
15 slope = np.where(slope == -np.inf, -10**3, slope)
16 delta = lenght * np.cos(np.arctan(slope))
17 X1 = X - delta
18 X2 = X + delta
19 Y1 = slope*(X1-X)+Y
20 Y2 = slope*(X2-X)+Y
21 ax.plot([X1.ravel(), X2.ravel()], [Y1.ravel(), Y2.ravel()], ’

k-’, linewidth=1)
22
23 # Differential equations
24 def myODE(x,y):
25 dy_dx = x**2 / (1 - x**2 - y**2)
26 return dy_dx
27
28 # Make the plot
29 fig, ax1 = plt.subplots()
30 DirectionField(x_min = -2, x_max= 2, y_min= -2, y_max= 2, n_step=

30,lenght=0.05,fun=myODE, ax=ax1)
31 ax1.set_xlabel(’x’)
32 ax1.set_ylabel(’y’)
33 ax1.axis(’square’)
34 ax1.set_title(r"$ {y}’ = - \frac{x^2}{1 - x^2 - y^2} $")

Listing 8.1 Defining a function to develop a Direction Field.

At this point, you should already know themeaning ofmost instructions in the code
listing 8.1. Exceptions are the statement at lines 8 and 12. In detail, the command
line 8 simply avoid to display a warning when divisions by 0 occurs during the
evaluation of the function at line 13. When a division by 0 occur, the returned value

124 8 Differential Equations

could be inf, − inf, or NaN (i.e., not a number). In the first two cases, the slope is then
’adjusted’ to a ’large’ number at lines 14 and 15 (i.e. 1000 and -1000, respectively)
to plot a vertical segment in the direction field. In the case of NAN, nothing is plotted
at the corresponding node of the grid. At line 12, the command np.meshgrid(x,y)
returns two coordinate matrices from two coordinate vectors. In detail, it creates two
rectangular arrays: one of x values and one of y values. Combining the resulting
matrices, we obtain a rectangular grid of coordinates. This approach is particularly
useful when dealing with spatial data.

2 1 0 1 2
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

y′ = x2

1 x2 y2

Fig. 8.1 Result of the code listing 8.1.

The quiver() method of the matplotlib provides an alternative method to investi-
gate the behaviour of first order ODEs. In deyail, it uses the formulation reported at
the Eq. 8.6 :

3G

3C
= �(G, H)

3H

3C
= �(G, H)

(8.6)

The advantage of Eq. 8.6 relies in the fact that the quiver() function can be used
directly to displays velocity vectors in the [x,y] space. Similarly, the streamplot()

8.2 Ordinary Differential Equation 125

function visualizes ODE solutions as streamlines. As an example, the code listing
8.2 implements the direction fields and the streamlines of the velocity field of the
Eq. 8.7. Fig. 8.2 shows the results of the quiver() and streamplot() functions on the
left and right panels, respectively.

3G

3C
= G + 2H,

3H

3C
= −2G (8.7)

The quiver() and streamplot() functions can be also used to investigate first order
ODEs in the canonical form H′ = 5 (G, H). This is because �(G, H) and �(G, H) simply
derive from the transformation reported in Eq 8.8.

3H

3G
=
�(G, H)
�(G, H) (8.8)

As a consequence, if we assume that �(G, H) = 5 (G, H) and �(G, H) = 1, the Eq. 8.8
reduces to the form H′ = 5 (G, H). As an example, the code listing 8.3 shows the
application of the quiver() and streamplot() functions to the Eq. 8.9:

3H

3G
= −H − 2 · G2 (8.9)

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 x = np.linspace(-3, 3, 10)
5 y = x
6 X, Y = np.meshgrid(x, y)
7
8 dx_dt = X + 2*Y
9 dy_dt = - 2*X
10
11 fig = plt.figure()
12 ax1 = fig.add_subplot(1, 2, 1)
13 ax1.quiver(X, Y, dx_dt, dy_dt)
14 ax1.set_title(’using quiver()’)
15 ax1.set_xlabel(’x’)
16 ax1.set_ylabel(’y’)
17 ax1.axis(’square’)
18
19 ax2 = fig.add_subplot(1, 2, 2)
20 ax2.streamplot(X, Y, dx_dt, dy_dt)
21 ax2.set_title(’using streamplot()’)
22 ax2.set_xlabel(’x’)
23 ax2.set_ylabel(’y’)
24 ax2.axis(’square’)
25
26 fig.tight_layout()

Listing 8.2 Working with the quiver() and streamplot() methods in first order ODEs.

126 8 Differential Equations

Fig. 8.2 Result of the code listing 8.2.

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 x = np.linspace(-1, 1, 10)
5 y = x
6
7 X, Y = np.meshgrid(x, y)
8
9 dx_dt = np.ones_like(X)
10 dy_dt = - Y - 2 * X**2
11
12 # Making plot
13 fig = plt.figure()
14 ax1 = fig.add_subplot(1, 2, 1)
15 ax1.quiver(X, Y, dx_dt, dy_dt)
16 ax1.set_title(’using quiver()’)
17 ax1.set_xlabel(’x’)
18 ax1.set_ylabel(’y’)
19 ax1.axis(’square’)
20
21 ax2 = fig.add_subplot(1, 2, 2)
22 ax2.streamplot(X, Y, dx_dt, dy_dt,linewidth=0.5)
23 ax2.set_title(’using streamplot()’)
24 ax2.set_xlabel(’x’)
25 ax2.set_ylabel(’y’)
26 ax2.axis(’square’)
27
28 fig.tight_layout()

Listing 8.3 Working with the quiver() and streamplot() functions.

8.3 Numerical Solutions of First Order ODEs 127

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

using quiver()

1.0 0.5 0.0 0.5 1.0
x

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

y

using streamplot()

Fig. 8.3 Result of the code listing 8.3.

8.3 Numerical Solutions of First Order ODEs

The equation of radioactive decay (8.1) has an analytical solution with the form:

(C) = #0 · 4−_C = #0 · 4−
C
g (8.10)

where # (C),#0, _, and g are the quantity N at time C, the quantity N at time t = 0,
the exponential decay constant, and the mean lifetime, respectively. The radioactive
decay represents a suitable example to illustrate some of the numerical techniques
utilized for the solution of both ordinary and partial differential equations.

The Euler’s method

The Euler’s Method consists of a finite difference approximation to numerically
solve differential equations by taking small finite steps ΔC in the parameter C and
approximating the function # (C) with the first two terms in its Taylor expansion:

3#

3C
≈ # (C + ΔC) − # (C)

ΔC
(8.11)

resulting in:

(C + ΔC) ≈ 3#
3C
· ΔC + # (C) = −_ · # (C) · ΔC + # (C) = # (C) · (1 − _ · ΔC) (8.12)

128 8 Differential Equations

1 import matplotlib.pyplot as plt
2 import numpy as np
3
4 # Euler Method
5 def EulerMethod(N0, decay_const , t_final, n_t_steps):
6 iterations = n_t_steps
7 delta_t = t_final/n_t_steps
8 t1 = np.linspace(0,iterations*delta_t, iterations)
9 N1 = np.zeros(t1.shape,np.float)
10 N1[0]=N0
11 for i in range(0,len(t1)-1):
12 N1[i+1] = N1[i] *(1 - decay_const * delta_t)
13 N1r=N1/N0
14 return N1,N1r,t1
15
16 Ne, Ner, te = EulerMethod(N0=10000, decay_const=1.54e-1,

t_final=20, n_t_steps=10)
17
18 #Analitical solution ...in the same points of the Euler method
19 def AnalyticalSolution(N0, decay_const , t_final, n_t_steps):
20
21 intermediate_points = n_t_steps
22 delta_t = t_final/n_t_steps
23 t2 = np.linspace(0,intermediate_points*delta_t,

intermediate_points)
24 N2 = N0 * np.exp(- decay_const * t2)
25 N2r = N2/N0
26 return N2,N2r,t2
27
28 Na, Nar, ta = AnalyticalSolution(N0=10000, decay_const=1.54e

-1, t_final=20, n_t_steps=10)
29
30 EulerRelError = 100*(Ne-Na)/Na
31
32 fig = plt.figure()
33 ax1 = fig.add_subplot(1, 2, 1)
34 ax1.plot(te,Ner, linestyle="-", linewidth=2, label=’Euler

method’)
35 ax1.plot(ta,Nar, linestyle="--", linewidth=2, label=’

Analytical Solution’)
36 ax1.set_ylabel(’Relative Number of 238U atoms’)
37 ax1.set_xlabel(’time in bilion years’)
38 ax1.legend()
39
40 ax2 = fig.add_subplot(1, 2, 2)
41 ax2.plot(te,EulerRelError , linestyle="-", linewidth=2, label=’

Deviation formthe \nexpected value’)
42 ax2.set_ylabel(’Relative Error, in %’)
43 ax2.set_xlabel(’time in bilion years’)
44 ax2.legend()

Listing 8.4 Implementing the Euler’s method in Python.

8.3 Numerical Solutions of First Order ODEs 129

Now, assuming a decay constant (_) of 1.54 · 10−1 per bilion-year (1.54 · 10−10

per year) as in the case of the uranium series from 238* to 206%1, we can define a
Python script to solve the Eq. 8.1 (code listing 8.4), and compare the results provided
by the analytical and numerical solutions (Fig. 8.4). The deviation of the Euler’s
method (i.e., the error) from the expected value is a function of ΔC.

Also, Euler’s method is affected by an intrinsic issue, potentially leading to
a progressive amplification of the error since it evaluates the derivatives at the
beginning of the investigated interval (e.g.,ΔC) only. If the derivative at the beginning
of the step is systematically incorrect, either too high or too low, then the numerical
solution will be similarly systematically incorrect (Fig. 8.4).

0 5 10 15 20
Time in bilion years

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Nu
m

be
r o

f 23
8 U

 a
to

m
s

Analytical Solution
Euler method

0 5 10 15 20
Time in bilion years

20

15

10

5

0

Re
la

tiv
e

Er
ro

r,
in

 %

Deviation form the
expected value

Fig. 8.4 Result of the code listing 8.4.

Note that, in this specific case, we leave the ΔC value quite large to highlight
the limits of the Euler’s method. A reduction of ΔC will improve the accuracy,
significantly. However, as a general case, to improve the accuracy we need to estimate
the derivative function at more than one point in the investigated step interval.

The scipy.integrate.ode class

The scipy.integrate.ode is generic interface class to numeric solution of ode. Avail-
able integrators are: Real-valued Variable-coefficient Ordinary Differential Equa-
tion solver (i.e., vode), Complex-valued Variable-coefficient Ordinary Differential
Equation solver with fixed-leading-coefficient implementation (i.e., zvode), Real-
valuedVariable-coefficient OrdinaryDifferential Equation solver with fixed-leading-
coefficient implementation (i.e., lsoda), an explicit Runge-Kuttamethod of order (4)5
(i.e., dopri5), and an explicit runge-kutta method of order 8(5,3) (i.e., dopri853).
Please refer to a more specialised books for a detailed description of these meth-
ods(Atkinson et al., 2009; Griffiths & Higham, 2010; Li et al., 2017).

130 8 Differential Equations

1 import matplotlib.pyplot as plt
2 import numpy as np
3 from scipy.integrate import ode
4
5 # using scipy.integrate.ode
6 def ode_sol(N0, decay_const , t_final, n_t_steps):
7 intermediate_points = n_t_steps
8 t3 = np.linspace(0,t_final, intermediate_points)
9 N3 = np.zeros(t3.shape,np.float)
10 def f(t, y, decay_const):
11 return - decay_const * y
12 solver = ode(f).set_integrator(’dopri5’) # runge-kutta of

order (4)5
13 y0 = N0
14 t0 = 0
15 solver.set_initial_value(y0, t0)
16 solver.set_f_params(decay_const)
17 k=1
18 N3[0] = N0
19 while solver.successful() and solver.t < t_final:
20 N3[k] = solver.integrate(t3[k])[0]
21 k += 1 # k = k + 1
22 N3r = N3 / N0
23 return N3,N3r,t3
24
25 # Analytical solution
26 Na, Nar, ta = AnalyticalSolution(N0=10000, decay_const=1.54e-1,

t_final=20, n_t_steps=10)
27 # Euler method
28 Ne, Ner, te = EulerMethod(N0=10000, decay_const=1.54e-1, t_final

=20, n_t_steps=10)
29 EulerRelError = 100*(Ne-Na)/Na
30 # runge-kutta of order (4)5
31 Node, Noder, tode = ode_sol(N0=10000, decay_const=1.54e-1,

t_final=20, n_t_steps=10)
32 odeRelError = 100*(Node-Na)/Na
33
34 # Make the plot
35 fig = plt.figure(figsize=(8,5))
36 ax1 = fig.add_subplot(1, 2, 1)
37 ax1.plot(ta,Nar, linestyle="-", linewidth=2, label=’Analytical

Solution’, c=’#ff464a’)
38 ax1.plot(te,Ner, linestyle="--", linewidth=2, label=’Euler method

’, c=’#4881e9’)
39 ax1.plot(tode,Noder, linestyle="--", linewidth=2, label=’Runge-

Kutta of order (4)5’, c=’#342a77’)
40 ax1.set_ylabel(’Relative Number of 238U atoms’)
41 ax1.set_xlabel(’Time in bilion years’)
42 ax1.legend()
43
44 ax2 = fig.add_subplot(1, 2, 2)
45 ax2.plot(te,EulerRelError , linestyle="-", linewidth=2, c=’#4881e9

’, label=’Euler method’)

8.4 The Fick’s law of diffusion, a Widely Used PDE 131

46 ax2.plot(tode,odeRelError , linestyle="-", linewidth=2, c=’#342a77
’, label=’Runge-Kutta of order (4)5’)

47 ax2.set_ylabel(’Relative Error, in %’)
48 ax2.set_xlabel(’Time in bilion years’)
49 ax2.legend()
50
51 fig.tight_layout()

Listing 8.5 Euler’s method vs. Runge-Kutta of order (4)5.

Here I will show how to apply the scipy.integrate.ode class to the real study case
of radiactive decay. In detail the code listing 8.5 concerns the application of the
explicit Runge-Kutta method of order (4)5 to the investigated equations comparing
the obtained results with the ones resulting from the Euler’s method (8.5).

0 5 10 15 20
Time in bilion years

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Nu
m

be
r o

f 23
8 U

 a
to

m
s

Analytical Solution
Euler method
Runge-Kutta of order (4)5

0 5 10 15 20
Time in bilion years

20

15

10

5

0

Re
la

tiv
e

Er
ro

r,
in

 %

Euler method
Runge-Kutta of order (4)5

Fig. 8.5 Result of the code listing 8.5.

8.4 The Fick’s law of diffusion, a Widely Used PDE

As originally reported by Fick (1855), the rate of transfer of diffusing substance
through unit area of a section is proportional to the concentration gradient measured
normal to the section, i.e.,

� = −� m�
mG

(8.13)

where � is the rate of transfer per unit area of section, � the concentration of the
diffusing substance, G the space coordinate measured normal to the section, and �
is called the diffusion coefficient. In some cases, e.g. diffusion in dilute solutions, �
can reasonably be considered as a constant, whereas in others, e.g. diffusion in high

132 8 Differential Equations

polymers, it depends very markedly on concentration (Crank, 1975). Equation 8.13
is universally known as the first Fick’s law or first law of diffusion (Crank, 1975).
The unit of �, �, G, and � is concentration (e.g., gram, gram moles or wt.%), a
concentration divided by time (e.g., 6/B, note that the concentration must have the
same unit of �), a length (e.g., meters), and a squared length divided by a time unit
(e.g., m2/B) respectively. In the case of one-dimensional processes characterized by a
constant �, the equation 8.13 can be written as follow (i.e., one-dimensional second
Fick’s law or second law of diffusion; Crank, 1975):

m�

mC
= �

m2�

mG2 (8.14)

For constant � and specific geometries, equation 8.2 can be solved analytically
Crank. In all the other cases the problem requires a numerical solution.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

C

t = 0
t = 1
t = 4
t = 7
t = 10
t = 13

Fig. 8.6 Result of the code listing 8.6.

Analytical solutions

Analytical solutions of the diffusion equation can be obtained for a variety of initial
and boundary conditions provided the diffusion coefficient is constant (Crank, 1975).
As an example, the solution for a diffusing substance initially confined in a finite
region

� = �0, G < 0, � = 0, G > 0, C = 0 (8.15)

8.4 The Fick’s law of diffusion, a Widely Used PDE 133

can be written written in the form (Crank, 1975):

� (G, C) = 0.5�04A 5 2
G

2
√
�C

(8.16)

where erfc() is the complementary error function defined as 1 - erf():

4A 5 2(G) = 1 − 4A 5 (G) = 2
√
c

∫ ∞

G

4−C
2
3C (8.17)

I will provide you more details about the error function at section 9.2
The code listing 8.6 implements the equation 8.16 in Python.

1 import numpy as np
2 from scipy import special
3 import matplotlib.pyplot as plt
4
5 def planeDiff_1D(t, D, x0=0, xmin=-1, xmax=1, Cleft=1, Cright=0,

num_points=200):
6
7 N = num_points
8 x=np.linspace(xmin, xmax, N)
9 deltaC = Cleft - Cright
10
11 C0 = np.piecewise(x, [x < x0, x >= x0], [Cleft, Cright])
12 C = 0.5 * deltaC * (special.erfc((x - x0)/(2 * np.sqrt(D * t

))))
13
14 return x,C,C0
15
16 D = 0.01 # Diffusion coefficient
17
18 fig, ax = plt.subplots()
19
20 for t in range(1, 14, 3):
21
22 x,C,C0 = planeDiff_1D(t=t, D=D)
23 if t==1:
24 leg = "t = " + str(t)
25 plt.plot(x,C0, label="t = 0")
26 leg = "t = " + str(t)
27 ax.plot(x, C, label=leg)
28
29 ax.grid()
30 ax.set_xlabel(’x’)
31 ax.set_ylabel(’C’)
32 ax.legend()

Listing 8.6 Analytical solution of plane diffusion.

134 8 Differential Equations

Numerical solution for constant D

The simplest way to discretize the equation 8.2 is by finite difference (Linge &
Langtangen, 2017):

�=+1
9
− �=

9

ΔC
= �

[
�=
9+1 − 2�=

9
+ �=

9−1

(ΔG)2

]
(8.18)

where = and 9 represent the time and space domain, respectively. This scheme,
called FTCS (Forward-Time Central-Space), uses the Euler’s method and a central
difference scheme to approximate the derivatives in time and in space, respectively.
Formore details about the theory behind numerical schemes for the solution of partial
differential equation please refer to more specialized books (Linge & Langtangen,
2017; Mazumder, 2015; Morton &Mayers, 2005). In Python, Eq. 8.18 can be easily
implemented using the code listing 8.7. The finite difference scheme reported in
equation 8.18 is stable under the following conditions:

2�ΔC(
ΔG2) ≤ 1 (8.19)

Figure 8.7 compares the results of the analytical and the numerical solutions.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

C

initial conditions
analytical solution
numerical solution

Fig. 8.7 Result of the code listing 8.7.

8.4 The Fick’s law of diffusion, a Widely Used PDE 135

1 def FTCS(u, D, h, dt):
2
3 d2u_dx2 = np.zeros(u.shape,np.float)
4 for i in range(1,len(u)-1):
5 # Central difference scheme in space
6 d2u_dx2[i] = (u[i+1] - 2*u[i] + u[i-1]) / h**2
7
8 # Neuman boundary conditions at i=0 and i=len(u)-1
9 i=0
10 d2u_dx2[i] = (u[i+1] - 2 * u[i] + u[i]) / h**2
11 i=len(u)-1
12 d2u_dx2[i] = (u[i] - 2 * u[i] + u[i-1]) / h**2
13
14 # Euler method for the time domain
15 u1 = u + dt * D * d2u_dx2
16 return u1
17
18 dt = 0.001 #step size of time
19 tf = 3
20
21 def dcomputeDconst(u, D, h, dt, tf):
22
23 nsteps=tf/dt
24 u1 = u
25 for i in range(int(nsteps)):
26 u1 = FTCS(u1, D, h, dt)
27 return u1
28
29 x, C, C0 = planeDiff_1D(t=tf, D=D)
30
31 h=x[1] - x[0] #step size of the 1D space
32 u = C0 # intial conditions
33 C1 = dcomputeDconst(u, D, h, dt, tf)
34
35 fig, ax = plt.subplots()
36 ax.plot(x,C0, label=’initial conditions’)
37 ax.plot(x,C,’y’, label=’analytical solution’)
38 ax.plot(x,C1,’r--’, label=’numerical solution’)
39 ax.set_xlabel(’x’)
40 ax.set_ylabel(’C’)
41 ax.legend()

Listing 8.7 Plane Diffusion by finite difference method.

The implementation of the FTCS scheme (i.e., lines 1-16 of the code listing 8.7
could be improved exploiting the potentialities of NumPy (Linge & Langtangen,
2017). In particular, the loop at lines 4-6 could be replaced by a single line of code
in the vectorial notation (line 4 of code listing 8.8; Linge and Langtangen, 2017).

136 8 Differential Equations

1 def numpyFTCS(u, D, h, dt):
2
3 d2u_dx2 = np.zeros(u.shape,np.float)
4 d2u_dx2[1:-1] = (u[2:] - 2 * u[1:-1] + u[:-2]) / h ** 2
5
6 # Neuman boundary conditions at i=0 and i=len(u)-1
7 i=0
8 d2u_dx2[i] = (u[i+1] - 2 * u[i] + u[i]) / h ** 2
9 i=len(u)-1
10 d2u_dx2[i] = (u[i] - 2 * u[i] + u[i-1]) / h ** 2
11
12 # Euler method for the time domain
13 u1 = u + dt * D * d2u_dx2
14 return u1

Listing 8.8 Using the vectorial notation for the FTCS scheme.

In petrology and volcanology, the process of chemical diffusion is often used to
constrain the residence times of crystals in a volcanic plumbing system before an
eruption (Costa et al., 2020). As an example, Costa et al., 2003 report a formulation
tomodel diffusion ofMg in plagioclase, also accounting for the influence of anorthite
absolute values and gradients on chemical potentials and diffusion coefficients (Costa
et al., 2020). The rationale behind the formulation provided by (Costa et al., 2020)
bases on the evidence that diffusive fluxes of trace elements may be strongly coupled
to major element concentration gradients (i.e., multi-component diffusion).

In the following, I provide a Python implementation for the problem reported
in (Costa et al., 2020). It consists of: 1) making the analytical determinations of
Mg and An content on zoned plagioclases; 2) constraining the boundary conditions
(e.g., equilibrium at the rims); 3) Defining the initial and equilibrium profiles; 4)
estimating the diffusion coefficient for Mg; 5) solving the time-dependent form of
the diffusion equation by finite differences. The analytical determinations for An are
typically performed by Electron Probe Mycro-Analyses (EPMA). Magnesium can
be determined either by EPMA or Laser Ablation Inductively Coupled Plasma Mass
Spectrometry (LA-ICP-MS).

As an example, Fig. 8.8, reports a rim to rim MgO profile, analyzed by EPMA,
on the plagioclase labelled 4202-1 Pl1 by (Moore et al., 2014).

Following the approach proposed by (Costa et al., 2003), the dependence of Mg
trace element partitioning between plagioclase and melt on the anorthite content is
approximated by Eq. 8.20 (Costa et al., 2003):

' ·) · ;=
�%;
"6

�;
"6

= �-�# + � (8.20)

where -�# , �%;"6, �
;
"6

,) , and ' are the anorthite molar fraction, the concen-
tration of Mg in plagioclase, the concentration of Mg in the liquid, the temperature,

8.4 The Fick’s law of diffusion, a Widely Used PDE 137

and the gas constant, respectively (Costa et al., 2003). For the � and � parameters,
(Moore et al., 2014) proposed values equal to -21882 and -26352, respectively.

To model the diffusive process, the initial and the equilibrium profiles have been
estimated starting form the Eq. 8.20.

In detail, the initial profile is defined by the melt concentration in equilibrium
with the crystal core (Moore et al., 2014). Both the initial and equilibrium profiles
are calculated using Eq. 8.20, i.e., MgO equal to 7.8 wt % and 8.4 wt %, respectively.
As boundary conditions, crystal rims that are in contact with the surrounding melt
are open, i.e., Mg values at the rims are those of the equilibrium profile. I used the
formulation for the diffusion coefficient reported by (Costa et al., 2003) (Eq. 8.21):

�"6 =

[
2.92 · 10−4.1·-�#−3.14G?

(
−266000
' ·)

)]
· 1012 (8.21)

The time-dependent form of the diffusion equation for Mg in a plagioclase devel-
oped by (Costa et al., 2003) is reported in Eq. 8.22:

m�"6

mC
=

(
�"6

m2�"6

mG2 +
m�"6

mG

m�"6

mG

)
+

− �

')

(
�"6

m�"6

mG

m-�#

mG
+ �"6

m�"6

mG

m-�#

mG
+ �"6�"6

m2-�#

mG2

)
(8.22)

The code listing 8.9 reports the finite difference approximation of the Eq. 8.22.
In accordance with (Moore et al., 2014), in the code listing 8.9 I used the FTCS
scheme reported in Eq. 8.18. For first order derivatives, the explicit central scheme
in space is

m�

mG
≈
�=
9+1 − �

=
9−1

2 · ΔG (8.23)

The notation is the same reported in the Eq. 8.7.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import pandas as pd
4
5 # Model parameters
6 T = 1200.0 # Temperature in Celsius
7 dx = 4.12 # average distance in micron among the analyses
8 dt = 0.9 * 1e4
9 RT = 8.3144 * (T + 273.15)
10 R = dt / dx ** 2
11
12 # Initial Conditions
13 Mydataset = pd.read_excel(’Moore_Phd.xlsx’)
14 my_Distance = Mydataset.Distance.values
15 mgc = Mydataset.MgO.values
16 An = Mydataset.An_mol_percent.values

138 8 Differential Equations

17 AN = An / 100
18 AN_unsmoothed = AN
19 AN_smoothed = np.full(len(AN),0.)
20
21 # Smooting the AN profile to avoid numerical artifacts
22 D_smoot = np.full(len(AN) ,0.0005)
23 for i in range(2):
24 AN_smoothed[1:-1] = AN_unsmoothed[1:-1] + R * D_smoot[1:-1]

* (AN_unsmoothed[2:] - 2 * AN_unsmoothed[1:-1] +
AN_unsmoothed[:-2])

25 AN_smoothed[0] = AN[0]
26 AN_smoothed[len(AN)-1] = AN[len(AN)-1]
27 AN_unsmoothed = AN_smoothed
28
29 D_Mg = 2.92 * 10**(-4.1 * AN_smoothed - 3.1)*np.exp(-266 * 1e3/RT

)*1e12 # Eq. 8 in Costa et al., 2003
30
31 fig, ax = plt.subplots(figsize=(7,5))
32
33 # Initial and Equilibrium Profiles
34 A = - 21882
35 B = - 26352
36 K = np.exp((A*AN_smoothed+B)/RT) # Eq. 8 in Moore et al., 2014
37 c_eq = 8.4 * K
38 c_init = 7.8 * K
39 ax.plot(my_Distance , c_eq, linewidth=2, color=’#ff464a’, label =’

Equilibrium Profile’)
40 ax.plot(my_Distance , c_init,linewidth=2, color=’#342a77’, label

= ’Initial Profile’)
41
42 # The numerical solution start here
43 colors = [’#4881e9’,’#e99648’,’#e9486e’]
44 t_final_weeks = np.array([4,10,21])
45
46 for t_w, color in zip(t_final_weeks ,colors):
47
48 C_Mg_new = np.full(len(c_eq),0.)
49 d2AN = np.full(len(c_eq),0.)
50 d2C_Mg = np.full(len(c_eq),0.)
51 dD_Mg = np.full(len(c_eq),0.)
52 dC_Mg = np.full(len(c_eq),0.)
53 dAN = np.full(len(c_eq),0.)
54
55 C_Mg = c_init
56 t_final = int(604800 * t_w/dt)
57 for i in range(t_final):
58 # boundary conditions: Rims are at equilibrium with melt
59 C_Mg_new[0] = c_eq[0]
60 C_Mg_new[len(c_eq)-1] = c_eq[len(c_eq)-1]
61
62 # Finite difference sol. of Eq. 7 in Costa et al., 2003
63 d2AN[1:-1] = (AN_smoothed[2:] - 2 * AN_smoothed[1:-1] +

AN_smoothed[:-2])
64 d2C_Mg[1:-1] = C_Mg[2:] - 2 * C_Mg[1:-1] + C_Mg[:-2]

8.4 The Fick’s law of diffusion, a Widely Used PDE 139

65 dD_Mg[1:-1] = (D_Mg[2:]-D_Mg[:-2])/2
66 dC_Mg[1:-1] = (C_Mg[2:]-C_Mg[:-2])/2
67 dAN[1:-1] = (AN_smoothed[2:]-AN_smoothed[:-2])/2
68
69 C_Mg_new[1:-1] = C_Mg[1:-1] + R * ((D_Mg[1:-1] * d2C_Mg

[1:-1] + dD_Mg[1:-1] * dC_Mg[1:-1]) - (A/RT) * (D_Mg[1:-1] *
dC_Mg[1:-1] * dAN[1:-1] + C_Mg[1:-1] * dD_Mg[1:-1] * dAN
[1:-1] + D_Mg[1:-1] * C_Mg[1:-1] * d2AN[1:-1]))

70 C_Mg = C_Mg_new
71 ax.plot(my_Distance , C_Mg_new , linestyle=’--’, linewidth=1,

label= str(t_w) + ’ weeks at 1200 Celsius deg.’)
72
73 ax.scatter(my_Distance , mgc, marker=’o’, c=’#c7ddf4’, edgecolors=

’k’, s=50, label=’Analytical Deteminations’, zorder=100,
alpha=0.7)

74 ax.set_ylim(0.19,0.27)
75
76 time_sec = t_final * dt
77 time_weeks = time_sec / 604800
78 ax.legend(title=r’$\bf{4202_1-Pl1}$ (Moore et al., 2014)’, ncol

=2, loc=’lower center’)
79 ax.set_xlabel(r’Distance [μm]’)
80 ax.set_ylabel(’MgO [wt %]’)
81 fig.tight_layout()

Listing 8.9 Implementation of the Eq. 8.22 in Python. Data are from Moore et al., 2014.

0 50 100 150 200
Distance (m)

0.19

0.20

0.21

0.22

0.23

0.24

0.25

0.26

0.27

M
gO

 w
t %

4202_1 Pl1 (Moore et al., 2014)
Equilibrium Profile
Initial Profile
4 weeks at 1200 Celsius deg.

10 weeks at 1200 Celsius deg.
21 weeks at 1200 Celsius deg.
Analytical Deteminations

Fig. 8.8 The result of the code listing 8.9.

Part IV
Probability Density Functions and Error

Analysis

Chapter 9
Probability Density Functions and Their Use in
Geology

9.1 Probability Distribution and Density Functions (PDF)

Everitt (2006) defines the probability distribution for discrete random variables as
the mathematical formula that gives the probability of each value of the variables.
For a continuous random variable, it is a function which is graphically described by
a curve in the plane (G, H). For a specific interval [G1, G2], the area under the curve
(i.e., the definite integral) provides the probability that the investigated variable falls
within [G1, G2] (Everitt, 2006). The term probability density, also refers to probability
distributions (Everitt, 2006).

Definition: a probability density function (PDF) is a function associated with a
continuous random variable whose value at any given point in the sample space (i.e.,
the set of possible values taken by the random variable) provides an estimation of
the likelihood of occurrence for that specific the value. All the probability density
functions share the following properties and indexes (Hughes & Hase, 2010):

• The PDF is normalized when:
∫ ∞
−∞ %�� (G)3G = 1;

• the probability that G lies between the values G1 6 G2, is: %(G) =
∫ G2
G1
%�� (G)3G

• mean: ` =
∫ ∞
−∞ G · %�� (G)3G;

• median:
∫ "4
−∞ %�� (G)3G = 1

2 ;
• variance: f2 =

∫ ∞
−∞ (G − `)

2 · %�� (G)3G;
• skewness: `3 =

∫ ∞
−∞ (G − `)

3 · %�� (G)3G;

The second point tells us that solving a definite integral in the interval [G1, G2] of a
variable G describing a geological process of known PDF, we define the probability
for the occurrence of that process between G1 and G2. As an example, knowing the
PDF of age estimates for a sequence of eruptive events by Zircon dating, we can
define the probability for the occurrence of an eruption between two specific ages.
We will see a specific example later in the chapter. However, the PDF is rarely known
a priori. Under specific conditions, our measurements could follow a known PDF.
As an example, the different formulations of central limit theorems provide us the

143

144 9 Probability Density Functions and Their Use in Geology

circumstances under which the estimations of a sample mean converge to a normal
distribution (Section 9.6)

9.2 The Normal Distribution

Normal probability density function

The normal distribution is a bell-shaped PDF that occurs naturally inmany situations.
As an example, it finds application when calibrating an analytical device, in error
propagation (section 10), and, generally speaking, during the interpretation of a data
set resulting from a field campaign, e.g., as consequence of the central limit theorem
(section 9.6). The normal probability density function (%��#) is defined as follow:

%��# (G, `, f) =
1

√
2cf2

4
− (G−`)

2

2f2 (9.1)

where ` and f are the mean and the standard deviation, respectively. The main
characteristics of the normal distribution are:

• normal distributions are bell-shaped with points of inflection at ` ± f;
• the mean, mode and median are all equal;
• the curve is symmetric at the center (i.e., around the mean, `);
• all normal curves are non-negative for all G values;
• exactly half of the values are to the left of center and exactly half the values are

to the right;
• the limit of %��# (G, `, f) as G goes to positive or negative infinity is 0;
• the height of any normal curve is maximized at G = `;
• the total area under the curve is 1;
• the shape of any normal curve depends on its mean ` and standard deviation f

(code listing 9.1 and Fig. 9.1);
• the standardized normal PDF has standard deviation equal to 1 and mean equal

to 0.

The ScyPy library provides the PDF for a normal, or gaussian, distribution with
the function scipy.stats.norm.pdf(), but we can also define it using the def statement
(i.e., our own function; code listing 9.1 and Fig. 9.1).

To get the probability of occurrence for a normal distributed G entity between G1
and G2, we need to solve the definite integral (Eq 9.2).

%(G1 ≤ G ≤ G2) =
∫ G2

G1

%��# (G, `, f)3G =
1

√
2cf2

∫ G2

G1

4
− (G−`)

2

2f2 3G (9.2)

Eq. 9.2 has no analytical solution, but due to its importance, mathematicians
developed a specific function to solve it: the error function.

9.2 The Normal Distribution 145

1 from scipy.stats import norm
2 import matplotlib.pyplot as plt
3 import numpy as np
4
5
6 # I’m going to define my normal PDF...
7 def normal_pdf(x, mean, std):
8 return 1/(np.sqrt(2*np.pi*std**2))*np.exp(-0.5*((x - mean)

2)/(std2))
9
10
11 x = np.arange(-12, 12, .001)
12
13 pdf1 = normal_pdf(x, mean = 0,std = 2)
14
15 #the built-in norm PDF in scipy.stats
16 pdf2 = norm.pdf(x, loc= 0, scale = 2)
17
18 fig = plt.figure(figsize=(7,9))
19 ax1 = fig.add_subplot(3, 1, 1)
20 ax1.plot(x,pdf1, color = ’#84b4e8’, linestyle = "-", linewidth

=6, label="My normal PDF")
21 ax1.plot(x,pdf2, color = ’#ff464a’, linestyle = "--", label="

norm.pdf() in scipy.stats ")
22 ax1.set_xlabel("x")
23 ax1.set_ylabel("PDF(x)")
24 ax1.legend(title = r"Normal PDF with μ=0 and 1σ=2")
25
26
27 ax2 = fig.add_subplot(3, 1, 2)
28 for i in [1,2,3]:
29 y = normal_pdf(x,0,i)
30 ax2.plot(x, y, label=r"μ = 0, 1σ = " + str(i))
31 ax2.set_xlabel("x")
32 ax2.set_ylabel("PDF(x)")
33 ax2.legend()
34
35 ax3 = fig.add_subplot(3, 1, 3)
36 for i in [-3,0,3]:
37 y = normal_pdf(x,i,1)
38 ax3.plot(x, y, label=r"μ = " + str(i) + ", 1σ

= 1")
39 ax3.set_xlabel("x")
40 ax3.set_ylabel("PDF(x)")
41 ax3.legend()
42
43 fig.tight_layout()

Listing 9.1 The normal PDF.

By definition, the error function 4A 5 (G) is equal to:

146 9 Probability Density Functions and Their Use in Geology

4A 5 (G) = 2
√
c

∫ G

0
4−C

2
3C (9.3)

As a consequence, the solution of the definite integral reported in Eq. 9.2, i.e., a
normal PDF in the interval [G1,G2] with G1 ≤ G2, has the form reported in Eq. 9.4.

%(G1 ≤ G ≤ G2) =
1

√
2cf2

[
4A 5

(
G2 − `√

2cf2

)
− 4A 5

(
G1 − `√

2cf2

)]
(9.4)

Also, Eq. 9.2 can be solved numerically using the techniques we reported in
Chapter 7. The code listing 9.2 reports the solution of the equation 9.2 using both
the Eq. 9.4 and the numerical methods trapz() (Eq. 7.14) and sims() (Eq. 7.15)
available in scipy.integrate.

10 5 0 5 10
x

0.00

0.05

0.10

0.15

0.20

PD
F(

x)

Normal PDF with =0 and 1 =2
My normal PDF
norm.pdf() in scipy.stats

10 5 0 5 10
x

0.0

0.1

0.2

0.3

0.4

PD
F(

x)

 = 0, 1 = 1
 = 0, 1 = 2
 = 0, 1 = 3

10 5 0 5 10
x

0.0

0.1

0.2

0.3

0.4

PD
F(

x)

 = -3, 1 = 1
 = 0, 1 = 1
 = 3, 1 = 1

Fig. 9.1 The result of the code reported in the listing 9.1.

9.2 The Normal Distribution 147

1 from scipy.stats import norm
2 import numpy as np
3 from scipy import special
4 from scipy import integrate
5
6 def integrate_normal(x1, x2, mu, sigma):
7 S = 0.5*((special.erf((x2-mu)/(sigma*np.sqrt(2))))-(

special.erf((x1-mu)/(sigma*np.sqrt(2)))))
8 return S
9
10 my_mu = 0
11 my_sigma = 1
12
13 my_x1 = 0
14 my_x2 = my_sigma
15
16 # The expected value is equal to 0.3413...
17 myS = integrate_normal(x1= my_x1, x2= my_x2, mu = my_mu, sigma

= my_sigma)
18
19 x = np.arange(my_x1, my_x2, 0.0001)
20 y = norm.pdf(x, loc = my_mu, scale = my_sigma) # normal_pdf(

x, mean = my_mu, std = my_sigma)
21
22 S_trapz = integrate.trapz(y,x)
23 S_simps = integrate.simps(y,x)
24
25 print("Solution Using erf: {:.9f}".format(myS))
26 print("Using the trapezoidal rule, trapz: {:.10f}".format(

S_trapz))
27 print("Using the composite Simpson rule, simps: {:.10f}".

format(S_simps))
28
29 ’’’
30 Output:
31 Solution Using erf: 0.341344746
32 Using the trapezoidal rule, trapz: 0.3413205476
33 Using the composite Simpson rule, simps: 0.3413205478
34 ’’’

Listing 9.2 Solving the Eq. 9.2 using the Eq. 9.4 and numerical methods.

Generating a normal sample distribution

The function numpy.random.normal(loc=0.0, scale=1.0, size=None) generates ran-
dom samples from a normal distribution (code listing, 9.3). Generating a random
sample with a specific distribution has many applications. In this chapter it is used
to familiarize with the properties of the different distributions. However, random

148 9 Probability Density Functions and Their Use in Geology

samples can be also used to perform modelling in Earth Sciences. For example, it is
at the foundations of error propagation of the Monte Carlo method (Section 10.4).

1 import numpy as np
2 from scipy.stats import norm
3 import matplotlib.pyplot as plt
4
5 mu = 0 # mean
6 sigma = 1 # standard deviation
7 normal_sample = np.random.normal(mu, sigma, 15000)
8
9 # plot the histogram of the sample distribution
10 fig, ax = plt.subplots()
11 ax.hist(normal_sample , bins=’auto’, density=True, color = ’#

c7ddf4’, edgecolor= ’#000000’, label="Random sample with
normal distribution ")

12
13 # probability density function
14 x = np.arange(-5,5, 0.01)
15 normal_pdf = norm.pdf(x, loc= mu, scale = sigma)
16 ax.plot(x, normal_pdf , color = ’#ff464a’, linewidth = 1.5,

linestyle=’--’, label=r"Normal PDF with μ=0 and 1σ
=1")

17 ax.legend(title=’Normal Distribution’)
18 ax.set_xlabel(’x’)
19 ax.set_ylabel(’Probability Density’)
20 ax.set_xlim(-5,5)
21 ax.set_ylim(0,0.6)
22
23 # Descriptive statistics
24 aritmetic_mean = normal_sample.mean()
25 standard_deviation = normal_sample.std()
26
27 print(’Sample mean equal to {:.4f}’.format(aritmetic_mean))
28 print(’Sample standard deviation equal to {:.4f}’.format(

standard_deviation))
29
30 ’’’
31 Output: (your results will be sighly different because of the

pseudo-random nature of the distribution)
32 Sample mean equal to -0.0014
33 Sample standard deviation equal to 1.0014
34 ’’’

Listing 9.3 Generating a random sample with normal distribution (`=0 and 1f=1) and a normal
PDF having the same ` and 1f of the random sample.

To note, the use of Monte Carlo simulations are ate the basis of many geological
studies involving the estimations of uncertainties in the field of mineral exploration
mapping (Wang et al., 2020), slope stability (Tobutt, 1982), and groundwater hy-
drology (Ballio & Guadagnini, 2004).

9.3 The Log-Normal Distribution 149

The code listing 9.3 shows how to generate a random sample of 15000 elements
characterized by a `=0 and f=1. Also, the code listing 9.3 develops a normal PDF
with the same ` and 1f of the random sample.

4 2 0 2 4
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Pr

ob
ab

ilit
y

De
ns

ity
Normal Distribution

Normal PDF with =0 and 1 =1
Random sample with normal distribution

Fig. 9.2 The result of the code listing 9.3.

9.3 The Log-Normal Distribution

The log-normal (or lognormal) distribution is a continuous probability distribution
of a random variable whose logarithm is normally distributed. The log-normal
distribution has been often invoked as a fundamental rule in Geology (Ahrens, 1953).
Currently, it is still widely utilized by geologists, but considering all its potentials
and pitfalls (Reimann & Filzmoser, 2000). The PDF for a log-normal distribution is
reported in Eq. 9.5.

;>6%��# (G, `=, f=) =
1
G

1√
2cf2

=

4
− (;>6 (G)−`=)

2

2f2
= (9.5)

where `= andf= are themean and the standard deviation of the normal distribution
obtained calculating the log (i.e., the natural logarithm) of the random variable. To
generate a log-normal distribution, the scipy.stats.lognorm() method require the
specification of s and scale parameters corresponding to f= and 4`= , respectively.

150 9 Probability Density Functions and Their Use in Geology

1 import matplotlib.pyplot as plt
2 import numpy as np
3 from scipy.stats import norm, lognorm
4
5 colors = [’#342a77’, ’#ff464a’, ’#4881e9’]
6 Normal_mu = [0,0.5,1]
7 Normal_sigma = [0.5,0.4,0.3]
8 x = np.arange(0.001, 7, .001) # for the log-normal PDF
9 x1 = np.arange(-2.5, 2.5, .001) # for the normal PDF
10
11 fig, (ax1, ax2) = plt.subplots(nrows = 2, ncols = 1, figsize =

(8,9))
12
13 for mu_n, sigma_n, color in zip(Normal_mu , Normal_sigma , colors):
14 lognorm_pdf = lognorm.pdf(x,s = sigma_n, scale=np.exp(mu_n))
15 r = lognorm.rvs(s = sigma_n, scale = np.exp(mu_n), size =

15000)
16 ax1.plot(x, lognorm_pdf , color=color, label=r"μ_n = " +

str(mu_n) + r" - σ_n = " + str(sigma_n))
17 ax1.hist(r, bins = ’auto’, density = True, color=color,

edgecolor=’#000000’, alpha=0.5)
18 logr= np.log(r)
19 normal_pdf = norm.pdf(x1, loc= mu_n, scale = sigma_n)
20 ax2.plot(x1, normal_pdf , color=color, label=r"μ_n = " +

str(mu_n) + r" - σ_n = " + str(sigma_n))
21 ax2.hist(logr, bins = ’auto’, density = True, color=color,

edgecolor=’#000000’, alpha=0.5)
22 my_mu = logr.mean()
23 ax2.axvline(x=my_mu, color=color, linestyle="--", label=r"

calculated μ_n = " + str(round(my_mu ,3)))
24 my_sigma = logr.std()
25 print("Expected mean: " + str(mu_n) + " - Calculated mean: "

+ str(round(my_mu ,3)))
26 print("Expected std.dev.: " + str(sigma_n) + " - Calculated

std.dev.: " + str(round(my_sigma ,3)))
27
28 ax1.legend(title="log-normal distributions")
29 ax1.set_xlabel(’x’)
30 ax1.set_ylabel(’Probability Density’)
31 ax2.legend(title="normal distributions")
32 ax2.set_xlabel(’ln(x)’)
33 ax2.set_ylabel(’Probability Density’)
34
35 fig.tight_layout()

Listing 9.4 Generating a random samples with log-normal distributions.

9.5 Density Estimation 151

0 1 2 3 4 5 6 7
x

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
De

ns
ity

log-normal distributions
n = 0 - n = 0.5
n = 0.5 - n = 0.4
n = 1 - n = 0.3

2 1 0 1 2
ln(x)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Pr
ob

ab
ilit

y
De

ns
ity

normal distributions
n = 0 - n = 0.5

calculated n = -0.004
n = 0.5 - n = 0.4

calculated n = 0.493
n = 1 - n = 0.3

calculated n = 0.997

Fig. 9.3 The result of the code listing 9.4.

9.4 Other Useful PDFs for Geological Applications

The scipy.stats module allows the management of many probability distributions,
useful in geological applications. Examples are the Poisson, Pareto, and Student’s t
distributions that find applications, among other fields, in geochemical determina-
tions (Ulianov et al., 2015), metal exploration (Agterberg, 2018), and geophysical
investigations (Troyan & Kiselev, 2010). The table 9.1 reports some probability
distributions that are present in the scipy.stats module.

9.5 Density Estimation

The process of density estimation consists of reconstructing probability density
functions from the observed data (Gramacki, 2018; Silverman, 1998). I will describe

152 9 Probability Density Functions and Their Use in Geology

Table 9.1 Selected statistical functions in the scipy.stats module.

Function Distribution Function Distribution

alpha() Alpha cont. random var. arcsine() Arcsine cont. random var.
beta() Beta cont. random var. bradford() Bradford cont. random var.
cauchy() Cauchy cont. random var. chi() Chi cont. random var.
chi2() Chi-squared cont. random var. cosine() Cosine cont. random var.
dgamma() Double gamma cont. random var. dweibull() Double Weibul cont. random var.
erlang() Erlang cont. random var. expon() Exponential cont. random var.
halfcauchy() Half-Cauchy cont. random var. halfnorm() Half-normal cont. random var.
laplace() Laplace cont. random var. levy() Levy cont. random var.
logistic() Logistic cont. random var. loggamma() Log gamma cont. random var.
loglaplace() Log-Laplace cont. random var. loguniform() Loguniform cont. random var.
maxwell() Maxwell cont. random var. pareto() Pareto cont. random var.
pearson3() Pearson type III cont. random var. powerlaw() Power-function cont. random var.
rayleigh() Rayleigh cont. random var. skewnorm() Skew-normal cont. random var.
t() Student’s t cont. random var. uniform() Uniform cont. random var.
bernoulli() Bernoulli discr. random var. binom() Binomial discr. random var.
boltzmann() Boltzmann discr. random var. dlaplace() Laplacian discr. random var.
geom() Geometric discr. random var. poisson() Poisson discr. random var.

two main approaches to achieve this goal. The first one is parametric. It consists
of selecting a known probability density function and fit the observed data with its
governing parameters (Gramacki, 2018; Silverman, 1998). As an example, if we
would like to fit a bell-shaped distribution with a normal PDF, we start estimating
its mean (`) and standard deviation (f). Then, the obtained ` and f values are
used to reconstruct a normal PDF and fit the observed distribution. The processes of
fitting described in code listing 9.3 and 9.4 are all examples of parametric density
estimations.

Although intriguing for its simplicity, the parametric approach is not always
the best choice (Gramacki, 2018; Silverman, 1998). As an example, popular PDF
are mostly unimodal, but many practical examples in Geology involve multimodal
distributions. Also, the choice of a specific known PDF is not always straightforward
when working with practical Geological applications. As a consequence, the so-
called non-parametric approach is often the best choice (Gramacki, 2018; Silverman,
1998). It relies the attempting of an estimation for the density directly from the
data, without making any parametric assumptions about the underlying distribution
(Gramacki, 2018; Silverman, 1998).

A density histogram is the simplest form of non-parametric density estimation
(Gramacki, 2018; Silverman, 1998). We encountered density histograms earlier in
the book at Section 4.2. The development of a density histogram is quite easy. In
detail, It consist in dividing the the sample space into intervals called bins (Gramacki,
2018; Silverman, 1998). Then, the density for each bin is estimated using the equation
9.6 (Gramacki, 2018; Silverman, 1998).

5̂ (G8 − ℎ/2 ≤ G < G8 + ℎ/2) =
:8

= · ℎ (9.6)

9.5 Density Estimation 153

where G8 :8 , =, and ℎ are the G values at the centre of each bin, i.e, the interval
[G8−ℎ/2, G8+ℎ/2]), the number of observation in the interval G8−ℎ/2 ≤ G8 < G8+ℎ/2,
the number of bins, and the bin width, i.e., ℎ = G8 − G8+1 = (G<0G − G<8=)/=,
respectively. Please note that the symbol 5̂ refers to the empirical estimation of the
PDF.

A more evolved method than density histograms to guess a PDF starting from
experimental data is the kernel density estimation (KDE). AKDE is a non-parametric
way to estimate the probability density function of a random variable. To understand,
let (G1, G2, G8 , . . . , G=) be a univariate independent and identically distributed (i.e.,
they have the same probability distribution) sample belonging to a distribution with
an unknown PDF. We are interested in estimating the shape (5̂) of this PDF. The
equation that define a KDE is:

5̂ (G) = 1
=ℎ

=∑
8=1

(
G − G(8)

ℎ

)
(9.7)

where is the kernel, a non-negative function that integrates to one, i.e.,∫ ∞
−∞ (G)3G = 1, and h (with h > 0) is a smoothing parameter called the band-
width. A range of kernel functions are commonly used: normal, uniform, triangular,
biweight, triweight, Epanechnikov, and others (code listing 9.5 and Fig. 9.4).

In Python, there are many different implementations allowing the development
of a KDE (Table 9.2).

1 from statsmodels.nonparametric.kde import KDEUnivariate
2 import matplotlib.pyplot as plt
3 import numpy as np
4
5 kernels = [’gau’, ’epa’, ’uni’, ’tri’, ’biw’, ’triw’]
6 kernels_names = [’Gaussian’, ’Epanechnikov’, ’Uniform’, ’

Triangular’, ’Biweight’, ’Triweight’]
7 positions = np.arange(1,9,1)
8
9 fig, ax = plt.subplots()
10
11 for kernel, kernel_name , pos in zip(kernels, kernels_names ,

positions):
12
13 # kernels
14 kde = KDEUnivariate([0])
15 kde.fit(kernel= kernel, bw=1, fft=False, gridsize=2**10)
16 ax.plot(kde.support, kde.density, label = kernel_name ,

linewidth=1.5, alpha=0.8)
17
18 ax.set_xlim(-2,2)
19 ax.grid()
20 ax.legend(title=’kernel functions’)

Listing 9.5 Kernel functions available in KDEUnivariate().

154 9 Probability Density Functions and Their Use in Geology

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

kernel functions
Gaussian
Epanechnikov
Uniform
Triangular
Biweight
Triweight

Fig. 9.4 The result of the code listing 9.5.

Table 9.2 Selection of kernel density estimators in Python.

Package Function Description

Scipy gaussian_kde() kernel-density estimate using Gaussian kernels
Statsmodels KDEUnivariate() Univariate kernel density estimator
Statsmodels KDEMultivariate() Multivariate kernel density estimator
Scikit-Learn KernelDensity() Multivariate kernel density estimator
Seaborn kdeplot() Plot univariate or bivariate distributions using kernel

density estimation

The code listing 9.6 and Fig. 9.5 shows the application of the KDEUnivariate()
function to geochemical data. Also, they show the effect of bandwidth selection on
the resulting KDE estimate.

As example application of density histograms and KDE for unravelling PDFs in
geological applications, the code listing 9.7 and Fig. 9.6 show the reconstruction of
238*/206%1 Zircon ages for the last 1500 My. Data are from (Puetz, 2018). Due to
the recent re-rising linking between magmatism and Mass extinction (Davies et al.,
2017; Liu et al., 2017; Tegner et al., 2020), the largest extinction events are also
reported.

9.5 Density Estimation 155

1 from statsmodels.nonparametric.kde import KDEUnivariate
2 import pandas as pd
3 import numpy as np
4 import matplotlib.pyplot as plt
5
6 myDataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
7
8 x = myDataset.Zr
9 x_eval = np.arange(0,1100,1)
10
11 fig = plt.figure()
12
13 ax1 = fig.add_subplot(2, 1, 1)
14 # Density Histogram
15 ax1.hist(x, bins= "auto", density = True, label="Density

Histogram", color=’#c7ddf4’, edgecolor=’#000000’)
16 kde = KDEUnivariate(x)
17 kde.fit()
18 My_kde = kde.evaluate(x_eval)
19 ax1.plot(x_eval, My_kde, linewidth = 1.5, color=’#ff464a’, label=

"gaussian KDE - auto bandwidth selection")
20 ax1.set_xlabel(’Zr [ppm]’)
21 ax1.set_ylabel(’Probability density’)
22 ax1.legend()
23
24 ax2 = fig.add_subplot(212)
25 # Density Histogram
26 ax2.hist(x, bins= "auto", density = True, label="Density

Histogram", color=’#c7ddf4’, edgecolor=’#000000’)
27
28 # KDE
29 # Effect of bandwidth
30 for my_bw in [10,50,100]:
31
32 kde = KDEUnivariate(x)
33 kde.fit(bw = my_bw)
34
35 My_kde = kde.evaluate(x_eval)
36 ax2.plot(x_eval, My_kde, linewidth = 1.5, label="gaussian KDE

- bw: " + str(my_bw))
37
38 ax2.set_xlabel(’Zr [ppm]’)
39 ax2.set_ylabel(’Probability density’)
40 ax2.legend()
41
42 fig.tight_layout()

Listing 9.6 Example application of KDE in Geology.

156 9 Probability Density Functions and Their Use in Geology

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 import numpy as np
4 from statsmodels.nonparametric.kde import KDEUnivariate
5
6 # import Zircon data from Puetz (2010)
7 mydata = pd.read_excel(’1-s2.0-S1674987117302141 -mmc1.xlsx’,

sheet_name=’Data’)
8 mydata = mydata[(mydata.age206Pb_238U >0)&(mydata.age206Pb_238U

<1500)]
9 d = mydata.age206Pb_238U
10
11 # Plot the Density Histogram
12 fig, ax = plt.subplots(figsize=(8,5))
13 bins = np.arange(0,1500,20)
14 ax.hist(d, bins, color=’#c7ddf4’, edgecolor=’k’, density=True,

label=’Density Histogram - bins = 20 My’)
15
16 # Compute and plot the KDE
17 age_eval = np.arange(0,1500,10)
18 kde = KDEUnivariate(d)
19 kde.fit(bw=20)
20 pdf = kde.evaluate(age_eval)
21 ax.plot(age_eval , pdf, label = ’Gaussian KDE - bw = 20 Ma’,

linewidth=2, alpha=0.7, color=’#ff464a’)
22
23 # Adjust diagram parameters
24 ax.set_ylim(0,0.0018)
25 ax.set_xlabel(’Age (My)’)
26 ax.set_ylabel(’Probability Densisty’)
27 ax.legend()
28 ax.grid(axis=’y’)
29
30 # Plot mass extinction annotations
31 mass_extinction_age = [444, 359, 252, 66, 0]
32 pdf_mass_extinction_age = kde.evaluate(mass_extinction_age)
33 mass_extincyion_name = ["Ordovician -Silurian", "Late Devonian"

, "Permian-Triassic", "Cretaceous -Paleogene", "Men’s
Triggered?"]

34 y_offsets = [0.0001, 0.0001, 0.0002, 0.0002, 0.0004]
35 y_texts = [30, 105, 15, 62, 160]
36 x_texts = [30, 30, 30, 30, 30]
37
38 for x, y, name, x_text, y_text, y_offset in zip(

mass_extinction_age , pdf_mass_extinction_age ,
mass_extincyion_name , x_texts, y_texts, y_offsets):

39 ax.annotate(name, xy=(x, y + y_offset), xycoords=’data’,
40 xytext=(x_text, y_text), textcoords=’offset points’,
41 arrowprops=dict(arrowstyle="->",
42 connectionstyle="angle, angleA=0, angleB=90, rad=10"))
43
44 fig.tight_layout()

Listing 9.7 Example application of KDE in Geology.

9.5 Density Estimation 157

0 200 400 600 800 1000
Zr [ppm]

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Pr
ob

ab
ilit

y
de

ns
ity

gaussian KDE - auto bandwidth selection
Density Histogram

0 200 400 600 800 1000
Zr [ppm]

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Pr
ob

ab
ilit

y
de

ns
ity

gaussian KDE - bw: 10
gaussian KDE - bw: 50
gaussian KDE - bw: 100
Density Histogram

Fig. 9.5 The result of the code listing 9.6.

Fig. 9.6 The result of the code listing 9.7.

158 9 Probability Density Functions and Their Use in Geology

9.6 The Central Limit Theorem and Normal Distributed Means

There are different ways to report the central limit theorem. The easiest is the one
adopted by Hughes and Hase (2010): "the sum of a large number of independent
random variables, each with finite mean and variance, will tend to be normally
distributed, irrespective of the distribution function of the random variable."

To familiarize with the central limit theorem, the code linting 9.8 and Fig. 9.7,
replicate the part of the experiment reported by Hughes and Hase (2010) in Fig 3.7.

0 1 2 3
Variable, x

0.0

0.5

1.0

1.5

Pr
ob

. D
en

s. Uniform PDF

0 1 2 3
Variable, x

0

200

400

Oc
cu

rre
nc

es

0 1 2 3
Mean

0.0

0.5

1.0

1.5

Pr
ob

. D
en

s.

0 1 2 3
Variable, x

0.0

0.5

1.0

1.5

Pr
ob

. D
en

s. Normal PDF

0 1 2 3
Variable, x

0

200

400

Oc
cu

rre
nc

es

0 1 2 3
Mean

0.0

0.5

1.0

1.5

Pr
ob

. D
en

s.

0 1 2 3
Variable, x

0.0

0.5

1.0

1.5

Pr
ob

. D
en

s. Laplace PDF

0 1 2 3
Variable, x

0

200

400

Oc
cu

rre
nc

es

0 1 2 3
Mean

0.0

0.5

1.0

1.5
Pr

ob
. D

en
s.

Fig. 9.7 The result of the code listing 9.8.

In detail, the code listing 9.8 starts from three different distribution of the
random variable (i.e., unifrom, normal and laplace; Tab. 9.1) to create: 1) the
relative probability density function (first column of Fig. 9.7), 2) 1000 randomly
generated occurrences of the random variable (second column of Fig. 9.7), and 3)
the estimation of mean value of the distribution based on 1000 attempts using 3
randomly selected occurrences of random variable (third column of Fig. 9.7).

In accordance with the central limit theorem, the histograms of the estimated
means assumes normal distribution (third column of Fig. 9.7) with a mean peaked
at 1.5. Also, distribution of the means (third column of Fig. 9.7) is narrower than
the width of the original distributions (second column of Fig. 9.7) by a factor

√
.

Further details and some geological implications of the central limit theorem will be
provided and discussed in Chapter 10.

9.6 The Central Limit Theorem and Normal Distributed Means 159

1 import numpy as np
2 import scipy.stats as stats
3 import matplotlib.pyplot as plt
4
5 fig = plt.figure(figsize=(8,6))
6
7 dists = [stats.uniform(loc=0.5, scale=2), stats.norm(loc=1.5,

scale=0.5), stats.laplace(loc=1.5, scale=0.6)]
8 names = [’Uniform’, ’Normal’, ’Laplace’]
9 x = np.linspace(0,3,1000)
10
11 for i, (dist, name) in enumerate(zip(dists, names)):
12
13 # Probability Density Function (pdf)
14 pdf = dist.pdf(x)
15 ax1 = fig.add_subplot(3, 3, 3*i+1)
16 ax1.plot(x, pdf, color=’#4881e9’, label= name + ’ PDF’)
17 ax1.set_xlim(0,3)
18 ax1.set_ylim(0,1.5)
19 ax1.set_xlabel(’Variable, x’)
20 ax1.set_ylabel(’Prob. Dens.’)
21 ax1.legend()
22
23 #Distribution (rnd) of the Random Variable based on the

selected pdf
24 rnd = dist.rvs(size=5000)
25 ax2 = fig.add_subplot(3,3,3*i+2)
26 ax2.hist(rnd, bins=’auto’, color=’#84b4e8’, edgecolor=’

#000000’)
27 ax2.set_xlim(0,3)
28 ax2.set_ylim(0,400)
29 ax2.set_xlabel(’Variable, x’)
30 ax2.set_ylabel(’Occurrences’)
31
32 ax3 = fig.add_subplot(3,3,3*i+3)
33 mean_dist = []
34 for _ in range(1000):
35 mean_dist.append(dist.rvs(size=3).mean())
36 mean_dist = np.array(mean_dist)
37 ax3.hist(mean_dist , density=True, bins=’auto’, color=’#84

b4e8’, edgecolor=’#000000’)
38 normal = stats.norm(loc= mean_dist.mean(), scale=

mean_dist.std())
39 ax3.plot(x, normal.pdf(x), color=’#ff464a’)
40 ax3.set_xlim(0,3)
41 ax3.set_ylim(0,1.5)
42 ax3.set_xlabel(’Mean’)
43 ax3.set_ylabel(’Prob. Dens.’)
44
45 fig.tight_layout()

Listing 9.8 The central limit theorem (Hughes & Hase, 2010).

Chapter 10
Error Analysis

10.1 Dealing with Errors in Geological Measurements

As reported by Hughes and Hase (2010), the aim of error analysis is to quantify
and record the errors associated with the inevitable spread in a set of measurements.
This is also true for geological estimations. The following definitions are taken
from the book "Measurements and their Uncertainties" by Hughes and Hase (2010).
There are two fundamental terms to describe the uncertainties associated to a set of
measurements: precision and accuracy. An accurate measurement is one in which
the results of the experiments are in agreement with the accepted value. A precise
result is one where the spread of measurements is ’small’ either relative to to the
average results or in absolute magnitude. In this chapter, I will also discuss about the
meaning of the standard error (i.e., the uncertainty in mean estimations) and how to
propagate the uncertainties using two different strategies: the linear methods and the
Monte Carlo approach.

Precision and accuracy

To introduce the concepts of precision and accuracy, I am going to use a practical
example: the estimation of the figure of merits of an instrumentation used to perform
the chemical characterization of geological samples. The definition of the precision
and the accuracy of an analytical device is typically performed using a reference
material, i.e., a chemical homogeneous sample of known composition (better if
certified), analyzed as an unknown. In the following, I report the results obtained
during repeated analyses of the USGS BCR2G reference material at the LA-ICP-MS
facility of Perugia University over about five years. These results are obtained in
very comfortable operating conditions using a large beam diameter (i.e, 80 `m),
10 Hz and laser fluence of 3.5 J/cm2. The chemical element reported here is the
Lanthanum (La), present at a concentration of 25.6± 0.5 ppm (Rocholl, 1998). Data
are stored in the USGS_BCR2G.xls file.

161

162 10 Error Analysis

1 import pandas as pd
2 import scipy.stats as stats
3 import matplotlib.pyplot as plt
4 import numpy as np
5
6 myDataset = pd.read_excel(’USGS_BCR2G.xls’, sheet_name=’Sheet1’)
7
8 fig, ax = plt.subplots()
9 ax.hist(myDataset.La, bins=’auto’, density=True, edgecolor=’

#000000’, color =’#c7ddf4’, label= "USGS BCR2G")
10 ax.set_xlabel("La [ppm]")
11 ax.set_ylabel("Probability Density")
12
13 x = np.linspace(23,27.5,500)
14 pdf = stats.norm(loc=myDataset.La.mean(), scale=myDataset.La.std

()).pdf(x)
15
16 ax.plot(x,pdf, linewidth=2, color=’#ff464a’, label = ’Normal

Distribution’)
17
18 ax.legend()

Listing 10.1 LA-ICP-MS determinations of La in the USGS BCR2G reference material.

23 24 25 26 27
La [ppm]

0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

y
De

ns
ity

Normal Distribution
USGS BCR2G

Fig. 10.1 The result of the code listing 10.1.

10.1 Dealing with Errors in Geological Measurements 163

In detail, the accuracy measure the agreement of our estimates with real values
in the unknowns. Typically, the accuracy of an analytical device (LA-ICP-MS in our
case) is estimated evaluating the agreement of the estimates to the accepted values
of a reverence material. The deviation of the mean ` of the measurements from the
accepted value ' is an estimation of accuracy:

�22DA02H = 100 · ` − '
'

(10.1)

The precision of a set of measurements is the spread of the obtained distribution,
and it can be estimated using an index of dispersion (Chapter 5). Typically, the
utilized index is the standard deviation, often expressed in percent:

%A428B8>= = 100 · f
'

(10.2)

1 MyMean = myDataset.La.mean()
2 R = 25.6
3 Accuracy = 100 * (MyMean - R) / R
4 MyStd = myDataset.La.std()
5 Precision = 100 * MyStd / R
6
7 fig, ax = plt.subplots(figsize=(6,5))
8 ax.hist(myDataset.La, bins = ’auto’, density = True, edgecolor =

’#000000’, color = ’#c7ddf4’, label = ’USGS BCR2G’)
9 ax.set_xlabel(’La [ppm]’)
10 ax.set_ylabel(’Probability Density’)
11
12 ax.axvline(x=myDataset.La.mean(), color=’#ff464a’, linewidth=3,

label=’Mean of the Measurements:’ + str(round(MyMean, 1)) + ’
[ppm]’)

13 ax.axvline(x = R, color=’#342a77’, linewidth=3, label=’Accepded
Value’)

14
15 ax.axvline(x = MyMean - MyStd, color = ’#4881e9’, linewidth = 1)
16 ax.axvline(x = MyMean + MyStd, color = ’#4881e9’, linewidth = 1)
17 ax.axvspan(MyMean - MyStd, MyMean + MyStd, alpha = 0.2, color =

’#342a77’, label = r’1σ’)
18 ax.legend(loc=’upper center’, bbox_to_anchor=(0.5, -0.15),

fancybox=False, shadow=False, ncol=2, title = ’Accuracy = ’ +
str(round(Accuracy, 1)) + ’% - Precision = ’ + str(round(
Precision , 1)) + ’%’)

19
20 fig.tight_layout()

Listing 10.2 Accuracy an Precision.

164 10 Error Analysis

23.5 24.0 24.5 25.0 25.5 26.0 26.5
La [ppm]

0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

y
De

ns
ity

Accuracy = -1.5 % - Precision = 1.9 %
Mean of the Measurements:25.2[ppm]
Accepded Value

USGS BCR2G
1

Fig. 10.2 The result of the code listing 10.2.

Confidence intervals

As a consequence of the Central Limit Theorem, a large enough set of measurements
on the same target resulting from many random sources of (small) uncertainty will
approach to a normal distribution (Fig. 10.1; see Section 9.6 for further details).

The normal distribution enable us to verify the probability of La measurements
to lie within one- (68.27%), two- (95.45%), and three-standard deviations (99.27%)
interval around the obtained mean value using the Eq. 9.4 (code listing 10.3 and Fig.
10.3). Therefore, to provide a complete picture of our estimations for a quantity G, the
results should be provided using the mean value (`G), and the confidence intervals
(Hughes & Hase, 2010; Taylor, 1997):

` ± =fG (10.3)

with = = 1, 2, 3, ... corresponding to confidence intervals of 68.27%, 95.45%,
99.27%, ... , respectively.

10.1 Dealing with Errors in Geological Measurements 165

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4
5 def normalPDF(x, mu, sigma):
6 PDF = 1/(sigma * np.sqrt(2 * np.pi)) * np.exp(- (x - mu)

2 / (2 * sigma2))
7 return PDF
8
9 signa_levels = [1, 2, 3]
10 confidences = [68.27, 95.45, 99.73]
11
12 fig = plt.figure(figsize=(7,8))
13
14 MyMean = myDataset.La.mean()
15 MyStd = myDataset.La.std()
16
17 x_pdf = np.linspace(MyMean - 4 * MyStd, MyMean + 4 * MyStd,

1000)
18 my_PDF = normalPDF(x_pdf, MyMean, MyStd)
19
20 for signa_level , confidence in zip(signa_levels ,confidences):
21 ax = fig.add_subplot(3, 1, signa_level)
22 ax.hist(myDataset.La, bins = ’auto’, density = True,

edgecolor = ’#000000’, color = ’#c7ddf4’, label = ’USGS
BCR2G’, zorder=0)

23 x_confidence = np.linspace(MyMean - signa_level * MyStd,
MyMean + signa_level * MyStd, 1000)

24 ax.plot(x_pdf, my_PDF, linewidth=2, color=’#ff464a’, label
= ’Normal Distribution’, zorder=1)

25 ax.fill_between(x_confidence , normalPDF(x_confidence ,
MyMean, MyStd), y2=0, color = ’#ff464a’, alpha=0.2, label
= ’prob. = {}’.format(confidence) + ’ %’, zorder=1)

26 ax.legend(ncol=3, loc=’upper center’, title = r’$\mu~ \pm
~$’ + str(signa_level) + r’$ ~ \sigma ~ $ = ’ + ’{:.1f}’.
format(MyMean) + r’$~ \pm ~$’ + ’{:.1f}’.format(
signa_level * MyStd))

27 ax.set_ylim(0,1.6)
28 ax.set_xlabel(’La [ppm]’)
29 ax.set_ylabel(’prob. dens.’)
30
31 fig.tight_layout()

Listing 10.3 Confidence intervals.

166 10 Error Analysis

23 24 25 26 27
La [ppm]

0.0

0.5

1.0

1.5

Pr
ob

ab
ilit

y
De

ns
ity ± 1- = 25.2 ± 0.5

Normal Distribution USGS BCR2G prob. = 68.27%

23 24 25 26 27
La [ppm]

0.0

0.5

1.0

1.5

Pr
ob

ab
ilit

y
De

ns
ity ± 2- = 25.2 ± 1.0

Normal Distribution USGS BCR2G prob. = 95.45%

23 24 25 26 27
La [ppm]

0.0

0.5

1.0

1.5

Pr
ob

ab
ilit

y
De

ns
ity ± 3- = 25.2 ± 1.5

Normal Distribution USGS BCR2G prob. = 99.73%

Fig. 10.3 The result of the code listing 10.3.

Uncertainties of mean estimates: the standard error

The standard deviations of the means or standard error ((�) is a measure of the
uncertainty in the location of the mean of a set of measurements (Hughes & Hase,
2010):

(� =
fB√
=

(10.4)

As a consequence, mean estimates `B should be reported as follow (Hughes &
Hase, 2010; Taylor, 1997):

`B ± (� = `B ±
fB√
=

(10.5)

The significance of Eq. 10.4 can be evaluated in light of the central limit theorem.
Assume you are sampling an homogeneous material (e.g., a geological reference
material like the USGS BCR2G) characterized by a perfectly known target value of
1.5 (the unit is not important here) using a well calibrated analytical device (i.e., no
accuracy biases).

10.1 Dealing with Errors in Geological Measurements 167

1 import numpy as np
2 import scipy.stats as stats
3 import matplotlib.pyplot as plt
4
5 mean_value = 1.5
6 std_dev = 0.5
7 dist = stats.norm(loc = mean_value , scale = std_dev)
8 x = np.linspace(0,3,1000)
9 fig = plt.figure(figsize=(6,8))
10
11 # Distribution of the Random Variable based on the normal PDF
12 pdf = dist.pdf(x)
13 ax1 = fig.add_subplot(3, 1, 1)
14 ax1.plot(x, pdf, color = ’#84b4e8’, label = r’μ_p = 1.5 -

1σ_p = 0.5’)
15 ax1.set_xlim(0,3)
16 ax1.set_ylim(0,1)
17 ax1.set_xlabel(’Variable, x’)
18 ax1.set_ylabel(’Prob. Dens.’)
19 ax1.legend(title = ’Parent Distribution’)
20
21 # Dependence of the SE on the Central Limit Theorem
22 ax2 = fig.add_subplot(3, 1, 2)
23 std_of_the_mean = []
24 Ns = [2,10,100,500]
25
26 for N in Ns:
27 # Mean Estimation Based on 1000 attempts using N values
28 mean_dist = []
29 for _ in range(1000):
30 mean_dist.append(dist.rvs(size=N).mean())
31 mean_dist = np.array(mean_dist)
32 std_of_the_mean.append(mean_dist.std())
33 normal = stats.norm(loc= mean_dist.mean(), scale =

mean_dist.std())
34 ax2.plot(x, normal.pdf(x), label=’N = ’ + str(N))
35 ax2.set_xlim(0,3)
36 ax2.set_xlabel(’Mean’)
37 ax2.set_ylabel(’Prob. Dens.’)
38 ax2.legend(title=’Standard Deviation of the Means’, ncol=2)
39
40 # SE estimates and the empirically derived std of the Means
41 ax3 = fig.add_subplot(3,1,3)
42 ax3.scatter(Ns,std_of_the_mean , color = ’#ff464a’, edgecolor =

’#000000’, label = "Standard Deviation of the Means",
zorder = 1)

43 N1 = np.linspace(1,600,600)
44 SE = std_dev / np.sqrt(N1)
45 ax3.plot(N1 , SE, c = ’#4881e9’, label= ’Standard Error (SE)’,

zorder = 0)
46 ax3.set_xlabel(’N’)
47 ax3.set_ylabel(’Standard Error, SE’)
48 ax3.legend()
49 fig.tight_layout()

Listing 10.4 Standard error estimate.

168 10 Error Analysis

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Variable, x

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

. D
en

s.

Parent Distribution
p = 1.5 - 1 p = 0.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Mean

0

5

10

15

Pr
ob

. D
en

s.

Standard Deviation of the Means
N = 2
N = 10

N = 100
N = 500

0 100 200 300 400 500 600
N

0.0

0.1

0.2

0.3

0.4

0.5

St
an

da
rd

 E
rro

r,
SE

Standard Error (SE)
Standard Deviation of the Means

Fig. 10.4 The result of the code listing 10.4.

Because of the many random uncertainties associated to the analytical device, the
target population (i.e., the set of all possible measurements) will assume a normal
distribution in agreement with the central limit theorem (upper panel of Fig. 10.4).
Making the analyses, we will start sampling the target population. What is the
uncertainty associated to the mean estimate using n estimates? The standard error
is a measure of this uncertainty and can be measured either using the Eq. 10.4, or
repeating many times (1000 in the case of code listing 10.4 the mean estimation with
N measurements and estimating the standard deviation of the obtained set of means
(middle panel of Fig. 10.4). As we are geologists and we trust on the evidence only,
in the bottom panel of Fig. 10.4 I report a comparison of the SE obtained using
the Eq. 10.4 and the standard deviation values of the means distributions obtained
in the above experiment. The code listing 10.4 reports the procedure to unravel the
meaning of the SE and create Fig. 10.4).

10.2 Reporting Uncertainties in Binary Diagrams 169

But what are the information provided by the SE? To answer, please look at
code listing 10.4 and Fig. 10.4, where we are sampling (e.g., making the analyses
of an unknown geological material, or sampling a geological quantity like a deep
or strike) the same normal population of 10.4) characterized by a mean and a
standard deviation of 1.5 and 0.5, respectively. Performing few estimates (e.g., 3),
we obtain a mean and a standard deviation estimates of 1.56 and 0.51, respectively.
In this case, the SE is equal to 0.23. As a consequence we should write the `B
= 1.56 ± 0.23 and fB = 0.51. To note, three parameters are needed to define our
measurements. Increasing n, the SE decreases progressively, with `B becoming a
more robust estimate of the mean value of the parent distribution (Fig. 10.4).
Always remember that the standard deviation is a measure of the spread of the
sampled distribution. It highlights how accurately the mean represents the sampled
distribution. On the contrary, the standard error measures how far the sample mean
(`B) of the measurements is likely to be from the true population mean (`?). Finally
note that the SE is always smaller than the fB .

10.2 Reporting Uncertainties in Binary Diagrams

Errors are always present in empirical estimation (e.g., geological samplings and
analytical determinations). As a consequence, uncertainties should be always ac-
counted during data visualization and modelling. Under the assumption of a normal
distribution of our estimates (cfc. the central limit theorem described in Section.
9.6), we can set confidence levels at 68, 95, and 99.7 % using 1f, 2f, and 3f,
respectively.

1 import pandas as pd
2 import matplotlib.pyplot as plt
3
4 myDataset1 = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
5
6 x = myDataset1.Zr
7 y = myDataset1.Th
8 dx = myDataset1.Zr * 0.1
9 dy = myDataset1.Th * 0.1
10
11 fig, ax = plt.subplots()
12 ax.errorbar(x, y, xerr=dx, yerr=dy, marker=’o’, markersize=4,

linestyle = ’’, color=’#c7ddf4’, markeredgecolor=’k’, ecolor=
’0.7’, label=’Recent CFC activity’)

13 ax.set_xlabel(’Zr [ppm]’)
14 ax.set_ylabel(’Th [ppm]’)
15 ax.legend(loc=’upper left’)

Listing 10.5 Reporting errors in binary diagrams.

170 10 Error Analysis

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 x = np.array([250,300,360,480,570,770,870,950])
5 y = np.array([20,25,30,40,50,70,80,100])
6
7
8 fig = plt.figure(figsize=(6,8))
9
10 # xerr and yerr reported as single value
11 dx = 50
12 dy = 10
13 ax1 = fig.add_subplot(3,1,1)
14 ax1.errorbar(x, y, xerr=dx, yerr=dy, marker=’o’, markersize=6,

linestyle = ’’, color=’#c7ddf4’, markeredgecolor=’k’, ecolor=
’0.7’, label=’single value for xerr and yerr’)

15 ax1.legend(loc=’upper left’)
16
17 # xerr and yerr reported as 1D array
18 dx = np.array([25,35,40,120,150,30,30,25])
19 dy = np.array([8,8,6,7,7,35,40,40])
20
21 ax2 = fig.add_subplot(3,1,2)
22 ax2.errorbar(x, y, xerr=dx, yerr=dy, marker=’o’, markersize=6,

linestyle = ’’, color=’#c7ddf4’, markeredgecolor=’k’, ecolor=
’0.7’, label=’xerr and yerr as 1D array’)

23 ax2.set_ylabel(’Th [ppm]’)
24 ax2.legend(loc=’upper left’)
25
26 # xerr and yerr reported as 2D array
27 dx = np.array

([[80,60,70,100,150,150,20,100],[20,25,30,30,30,30,90,30]])
28 dy = np.array([[10,4,10,15,15,20,5,5],[2,8,4,4,6,7,10,20]])
29
30 ax3 = fig.add_subplot(3,1,3)
31 ax3.errorbar(x, y, xerr=dx, yerr=dy, marker=’o’, markersize=6,

linestyle = ’’, color=’#c7ddf4’, markeredgecolor=’k’, ecolor=
’0.7’, label=’xerr and yerr as 2D array’)

32 ax3.set_xlabel(’Zr [ppm]’)
33 ax3.legend(loc=’upper left’)
34
35 fig.tight_layout()

Listing 10.6 Reporting errors in binary diagrams.

In binary diagrams, errors can be easily reported using the errorbar() function of
the matplotlib.pyplot sub-package (code listing 10.5 and Fig. 10.5).

The errorbar() function accepts all the arguments available for plot(), plus xerr,
yerr, and the related arguments. In detail, xerr and yerr refer to the error on the x
and y axis, respectively. They can be a float, i.e., a number defining the same error
for all the measurements.

10.2 Reporting Uncertainties in Binary Diagrams 171

200 400 600 800 1000
Zr [ppm]

20

40

60

80

100
Th

 [p
pm

]

Recent CFC activity

Fig. 10.5 The result of the code listing 10.5.

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 x = np.array([200,300,360,480,570,770,870,950])
5 y = np.array([10,15,30,40,50,70,80,100])
6 dx = 40
7 dy = 10
8
9 fig = plt.figure()
10 ax1 = fig.add_subplot(2,1,1)
11 ax1.errorbar(x, y, xerr=dx, yerr=dy, marker=’o’, markersize=4,

linestyle = ’’, color=’k’, ecolor=’0.7’, elinewidth=3,
capsize=0, label=’Recent activity of the CFC’)

12 ax1.legend(loc=’upper left’)
13 ax1.set_xlabel(’Zr [ppm]’)
14 ax1.set_ylabel(’Th [ppm]’)
15
16 ax2 = fig.add_subplot(2,1,2)
17 ax2.errorbar(x, y, xerr=dx, yerr=dy, marker=’o’, markersize=6,

linestyle = ’’, color=’#c7ddf4’, markeredgecolor=’k’,
ecolor=’k’, elinewidth = 0.8, capthick=0.8, capsize=3,
label=’Recent activity of the CFC’)

18 ax2.legend(loc=’upper left’)
19 ax2.set_xlabel(’Zr [ppm]’)
20 ax2.set_ylabel(’Th [ppm]’)

Listing 10.7 Reporting errors in binary diagrams.

172 10 Error Analysis

200 300 400 500 600 700 800 900 1000

20

40

60

80

100 single value for xerr and yerr

200 300 400 500 600 700 800 900 1000

25

50

75

100

125

Th
 [p

pm
]

xerr and yerr as 1D array

200 300 400 500 600 700 800 900 1000
Zr [ppm]

25

50

75

100

125
xerr and yerr as 2D array

Fig. 10.6 The result of the code listing 10.6.

Also, they can be a 1D or 2D arrays. Using 1D arrays (e.g. Fig. 10.5), a symmet-
rical error (i.e., G ± G4AA) is defined for each single point. Finally, reporting xerr and
yerr as 2D array, we report non-symmetrical errors (Fig. 10.6)

10.3 The Linearized Approach in Error Propagation 173

1 import pandas as pd
2 import matplotlib.pyplot as plt
3
4
5 def plot_errorbar(x,y, dx, dy, xoffset, yoffset, text, ax):
6 ax.errorbar(x,y, xerr=dx, yerr=dy, marker=’’, linestyle =

’’, elinewidth = .5, capthick=0.5, ecolor=’k’, capsize=3)
7 ax.text(x + xoffset, y + yoffset, text)
8
9 myDataset1 = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
10
11 x = myDataset1.Zr
12 y = myDataset1.Th
13
14 dx = 60
15 dy = 7
16
17 errorbar_x = x.max() - x.max() * 0.1
18 errorbar_y = y.min() + y.max() * 0.1
19
20 fig, ax1 = plt.subplots()
21 ax1.scatter(x, y, marker=’o’, color=’#4881e9’, edgecolor=’k’,

alpha=0.8, label=’Recent activity of the CFC’)
22
23 plot_errorbar(errorbar_x , errorbar_y , dx, dy, dx/4, dy/4, r’2$

\sigma$’, ax1)
24
25 ax1.legend(loc=’upper left’)
26 ax1.set_xlabel(’Zr [ppm]’)
27 ax1.set_ylabel(’Th [ppm]’)

Listing 10.8 Reporting errors in binary diagrams.

10.3 The Linearized Approach in Error Propagation

Using a linearized approximation (i.e., to a first-order Taylor series expansion) and
assuming uncorrelated and statistically independent variables (i.e., the independent
variables are not correlatedwith either themagnitude or error of any other parameter),
the general formula for the error propagation assumes the form reported in Eq. 10.6
(Hughes & Hase, 2010; Taylor, 1997):

fI =

√(
mI

m0

)2
(f0)2 +

(
mI

m1

)2
(f1)2 +

(
mI

m2

)2
(f2)2 + ... (10.6)

174 10 Error Analysis

200 400 600 800 1000
Zr [ppm]

0

20

40

60

80

100

Th
 [p

pm
]

Recent activity of the CFC

200 400 600 800 1000
Zr [ppm]

0

20

40

60

80

100

Th
 [p

pm
]

Recent activity of the CFC

Fig. 10.7 The result of the code listing 10.7.

where I is a multi-variable function I = 5 (0, 1, 2, ...) depending on the measured
variables 0±f0, 1±f1 , 2±f2 , etc. Table 10.1 report the application of the Eq. 10.6
to some simple equations of common use that are often useful to solve geological
problems. If correlations among the involved variables cannot be neglected (i.e., they
are not independent), additional terms should be added. As an example, considering
the function I = 5 (G, H) that depends on measured quantities G ± fG and H ± fH ,
with covariance fGH between x and y, the uncertainty in z is given by:

fI =

√(
mI

mG

)2
(fG)2 +

(
mI

mH

)2 (
fH

)2 + 2
mI

mG

mI

mH
fGH (10.7)

10.3 The Linearized Approach in Error Propagation 175

200 300 400 500 600 700 800 900
Zr [ppm]

20

30

40

50

60

70

80

90

Th
 [p

pm
]

2

Recent activity of the CFC

Fig. 10.8 The result of the code listing 10.8.

Table 10.1 Error propagation of some equations of common use that are often useful to solve
geological problems, modified from Hughes and Hase, 2010.

Function, / Error Function, / Error

I = 1/0 fI = I
2f0 I = 4G? (0) fI = I · f0

I = ;=(0) fI = f0/0 I = 100 fI = f0/[;=(10) · 0]

I = 0= fI =
��= · 0=−1

�� · f0 I = ;>610 (0) fI = 100 · ;=(10) · f0

I = B8=(0) fI = |2>B (0) | · f0 I = 2>B (0) fI = |B8=(0) | · f0

I = 0 + 1 fI =
√
(f0)2 + (f1)2 I = 0 − 1 fI =

√
(f0)2 + (f1)2

I = 0 · 1 fI = I ·
√
(f0
0
)2 + (f1

1
)2 I = 0/1 fI = I ·

√
(f0
0
)2 + (f1

1
)2

176 10 Error Analysis

Take in mind that the reported linearized approach, based on the first order
truncation of Taylor series expansion, assumes that the magnitude of the error is
small (Hughes & Hase, 2010; Taylor, 1997). As a consequence, it is only valid when
the involved uncertainties are small enough (e.g., less than 10%, to provide a rough
estimation, Hughes and Hase, 2010; Taylor, 1997).

In the simplest cases, you could develop and run python functions to propagate
errors. The code listing 10.9 shows two practical examples (i.e., sum and division)
based on the rules reported in Table 10.1.

1 import numpy as np
2
3 def sum_ab(a, b, sigma_a, sigma_b):
4 z = a + b
5 sigma_z = np.sqrt(sigma_a**2 + sigma_b**2)
6 return z, sigma_z
7
8 def division_ab(a, b, sigma_a, sigma_b):
9 z = a / b
10 sigma_z = z * np.sqrt((sigma_a/a)**2 + (sigma_b/b)**2)
11 return z, sigma_z

Listing 10.9 Example application of the rules reported in 10.1 for the sum and division.

Also, you could use the symbolic approach to solve the Eq. 10.6 or the Eq. 10.7.
As an example, the code listing 10.10 uses SymPy to propagate errors solving the
Eq. 10.6.

1 import sympy as sym
2
3 a, b, sigma_a, sigma_b = sym.symbols("a b sigma_a sigma_b")
4
5 def symbolic_error_prop(func, val_a, val_sigma_a , val_b=0,

val_sigma_b=0):
6
7 z = sym.lambdify([a,b],func, ’numpy’)
8 sigma_z = sym.lambdify([a,b,sigma_a, sigma_b], sym.sqrt((sym.

diff(func,a)**2*sigma_a**2)+(sym.diff(func,b)**2*sigma_b**2))
, ’numpy’)

9 val_z = z(a = val_a, b = val_b)
10 val_sigma_z = sigma_z(a = val_a, b = val_b, sigma_a =

val_sigma_a , sigma_b = val_sigma_b)
11
12 return val_z, val_sigma_z

Listing 10.10 Example application of the symbolyc approach to solve the Eq. 10.6.

10.3 The Linearized Approach in Error Propagation 177

1 my_a = np.array([2,3,5,7,10])
2 my_sigma_a = np.array([0.2,0.3,0.4,0.7,0.9])
3 my_b = np.array([2,3,6,4,8])
4 my_sigma_b = np.array([0.3,0.3,0.5,0.5,0.5])
5
6 # errors propagated using custom functions
7 my_sum_ab_l , my_sigma_sum_ab_l = sum_ab(a = my_a, b = my_b,

sigma_a = my_sigma_a , sigma_b = my_sigma_b)
8 my_division_ab_l , my_sigma_division_ab_l = division_ab(a=my_a,

b = my_b, sigma_a = my_sigma_a , sigma_b = my_sigma_b)
9
10 # errors propagated using the symbolic approach
11 my_sum_ab_s , my_sigma_sum_ab_s = symbolic_error_prop(func=a+b,

val_a= my_a, val_sigma_a = my_sigma_a , val_b= my_b,
val_sigma_b = my_sigma_b)

12 my_division_ab_s , my_sigma_division_ab_s = symbolic_error_prop
(func=a/b, val_a= my_a, val_sigma_a = my_sigma_a , val_b=
my_b, val_sigma_b = my_sigma_b)

13
14 fig = plt.figure(figsize=(8,8))
15 ax1 = fig.add_subplot(2,2,1)
16 ax1.errorbar(x = my_a, y= my_sum_ab_l , xerr=my_sigma_a , yerr=

my_sigma_sum_ab_l , linestyle=’’, marker =’o’, ecolor=’k’,
elinewidth=0.5, capsize=1, label=’Errors by the custom
functions’)

17 ax1.set_xlabel(’a’)
18 ax1.set_ylabel(’a + b’)
19 ax1.legend()
20 ax2 = fig.add_subplot(2,2,2)
21 ax2.errorbar(x = my_a, y= my_sum_ab_s , xerr=my_sigma_a , yerr=

my_sigma_sum_ab_s , linestyle=’’, marker =’o’, ecolor=’k’,
elinewidth=0.5, capsize=1, label=’Errors by the symbolic
approach’)

22 ax2.set_xlabel(’a’)
23 ax2.set_ylabel(’a + b’)
24 ax2.legend()
25 ax3 = fig.add_subplot(2,2,3)
26 ax3.errorbar(x = my_a, y= my_division_ab_l , xerr=my_sigma_a ,

yerr=my_sigma_division_ab_l , linestyle=’’, marker =’o’,
ecolor=’k’, elinewidth=0.5, capsize=1, label=’Errors by
custom function’)

27 ax3.set_xlabel(’a’)
28 ax3.set_ylabel(’a / b’)
29 ax3.legend()
30 ax4 = fig.add_subplot(2,2,4)
31 ax4.errorbar(x = my_a, y= my_division_ab_s , xerr=my_sigma_a ,

yerr=my_sigma_division_ab_s , linestyle=’’, marker =’o’,
ecolor=’k’, elinewidth=0.5, capsize=1, label=’Errors by
the symbolic approach’)

32 ax4.set_xlabel(’a’)
33 ax4.set_ylabel(’a / b’)
34 ax4.legend()
35 fig.tight_layout()

Listing 10.11 Error propagation by custom functions reported in the code listing 10.9 and by
solving the Eq. 10.6 by the symbolic approach (code listing 10.10).

178 10 Error Analysis

Finally, the the code listing 10.11 and the Fig. 10.9 compare the results obtained
by propagating errors by custom functions based on the rules reported in Tab. 10.1
and by the symbolic approach. As expected, the obtained results reported in Fig.
10.9 are identical.

0 2 4 6 8 10 12
a

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

a
+

b
Errors by custom functions

0 2 4 6 8 10 12
a

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

a
+

b

Errors by the symbolic approach

0 2 4 6 8 10 12
a

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

a
/ b

Errors by custom functions

0 2 4 6 8 10 12
a

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2
a

/ b
Errors by the symbolic approach

Fig. 10.9 The result of the code listing 10.11.

To provide a geological example, please consider plotting a Rb/Th ratio Vs. La for
tephras belonging to the recent volcanic activity of the Campi Flegrei Caldera using
the linearized approach for error propagation (code listing 10.12 and Fig. 10.10).

10.3 The Linearized Approach in Error Propagation 179

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 import sympy as sym
4
5 a, b, sigma_a, sigma_b = sym.symbols("a b sigma_a sigma_b")
6
7 def symbolic_error_prop(func, val_a, val_sigma_a , val_b=0,

val_sigma_b=0):
8
9 z = sym.lambdify([a,b],func, ’numpy’)
10 sigma_z = sym.lambdify([a,b,sigma_a, sigma_b], sym.sqrt((

sym.diff(func,a)**2*sigma_a**2)+(sym.diff(func,b)**2*
sigma_b**2)), ’numpy’)

11 val_z = z(a = val_a, b = val_b)
12 val_sigma_z = sigma_z(a = val_a, b = val_b, sigma_a =

val_sigma_a , sigma_b = val_sigma_b)
13
14 return val_z, val_sigma_z
15
16 myDataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
17
18 ratio_y, sigma_ratio_y = symbolic_error_prop(a/b, val_a =

myDataset.Rb, val_sigma_a=myDataset.Rb * 0.1, val_b=
myDataset.Th, val_sigma_b=myDataset.Th*0.1)

19
20 myDataset[’Rb_Th’] = ratio_y
21 myDataset[’Rb_Th_1s’] = sigma_ratio_y
22
23 epochs = [’one’,’two’,’three’,’three-b’]
24 colors = [’#afbbb5’, ’#f10e4a’, ’#27449c’, ’#f9a20e’]
25
26 fig, ax = plt.subplots()
27 for epoch, color in zip(epochs, colors):
28 myData = myDataset[(myDataset.Epoch == epoch)]
29 ax.errorbar(x = myData.La, y= myData.Rb_Th, xerr=myData.La

* 0.1, yerr= myData.Rb_Th_1s, linestyle=’’,
markerfacecolor= color, markersize=6, marker=’o’,
markeredgecolor=’k’, ecolor=color, elinewidth=0.5, capsize
=0, label="Epoch " + epoch)

30
31 ax.legend(title=’CFC Recent Activity’)
32 ax.set_ylabel(’Rb/Th’)
33 ax.set_xlabel(’La [ppm]’)

Listing 10.12 Rb/Th ratio Vs. La for tephras belonging to the recent volcanic activity of the
Campi Flegrei Caldera. Error propagated using the linearized approach.

180 10 Error Analysis

40 60 80 100 120 140 160 180
La [ppm]

4

6

8

10

12

14

16

18

Rb
/T

h

CFC Recent Activity
Epoch one
Epoch two
Epoch three
Epoch three-b

Fig. 10.10 The result of the code listing 10.12.

10.4 The Mote Carlo Approach in Error Propagation

Monte Carlo (MC) numerical modelling, named after the casino tradition in the
Principality of Monaco, simulates complex probabilistic events using simple ran-
dom events (Barbu & Zhu, 2020). In detail, MC methods rely on true-random
(TRNG) or pseudo-random number generators (PRNG) to produce sample distribu-
tions simulating a target probability density function (Barbu & Zhu, 2020; Johnston,
2018).

What’s the difference between TRNGs and PRNGs? TRNGs refer to devices,
generally harware based, producing real (i.e., non-deterministic) random numbers
(Johnston, 2018). On the contrary, PRNGs are deterministic algorithms that generate
a "random looking" sequence of numbers (Johnston, 2018). However, given the same
starting conditions (i.e., same seeding), a PRNGwill always return the same sequence
of numbers (Johnston, 2018).

In NumPy 1.19, the default PRNG that provide the random sampling of a wide
range of distributions (e.g., uniform, normal, etc...) is the PCG641. It is a 128-bit
implementation of O’Neill’s permutation congruential generator (O’Neill, 2014).

1 https://www.pcg-random.org

10.4 The Mote Carlo Approach in Error Propagation 181

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 def normalPDF(x, mu, sigma):
5 PDF = 1/(sigma * np.sqrt(2 * np.pi)) * np.exp(- (x - mu)

2 / (2 * sigma2))
6 return PDF
7
8 def unifromPDF(x, a, b):
9 PDF = np.piecewise(x, [(x>=a) & (x<=b), (x<a) & (x>b)],

[1/(b-a), 0])
10 return PDF
11
12 # Random sampling of a normal distribution
13 my_mu, my_sigma = 0, 0.1 # mean and standard deviation
14 sn = np.random.default_rng().normal(loc = my_mu, scale =

my_sigma , size = 10000)
15 fig = plt.figure()
16 ax1 = fig.add_subplot(2,1,1)
17 ax1.hist(sn, density = True, bins=’auto’, edgecolor = ’k’,

color = ’#c7ddf4’, label = ’Random Sampling of the Normal
Distribution’)

18 my_xn = np.linspace(my_mu - 4 * my_sigma, my_mu + 4 * my_sigma
, 1000)

19 my_yn = normalPDF(x= my_xn, mu = my_mu, sigma = my_sigma)
20 ax1.plot(my_xn,my_yn,linewidth=2,linestyle=’--’,color=’#ff464a

’,label=’Target Normal Probability Density Function’)
21 ax1.set_ylim(0.0, 7.0)
22 ax1.set_xlabel(’x’)
23 ax1.set_ylabel(’Prob. Density’)
24 ax1.legend()
25
26 # Random sampling of a uniform distribution
27 my_a, my_b = -1, 1 # lower and upper bound of the uniform

distribution
28 su = np.random.default_rng().uniform(low = my_a, high = my_b,

size = 10000)
29 ax2 = fig.add_subplot(2,1,2)
30 ax2.hist(su, density = True, bins=’auto’, edgecolor = ’k’,

color = ’#c7ddf4’, label = ’Random Sampling of the Uniform
Distribution’)

31 my_xu = np.linspace(-2, 2, 1000)
32 my_yu = unifromPDF(x = my_xu, a = my_a, b = my_b)
33 ax2.plot(my_xu, my_yu, linewidth=2, linestyle=’--’, color=’#

ff464a’, label = ’Target Uniform Probability Density
Function’)

34 ax2.set_ylim(0, 1)
35 ax2.set_xlabel(’x’)
36 ax2.set_ylabel(’Prob. Density’)
37 ax2.legend()
38
39 fig.tight_layout()

Listing 10.13 Random Sampling of a Normal and a Uniform distribution.

182 10 Error Analysis

The PCG-64 has a period of 2128 and supports advancing an arbitrary number of
steps as well as 2127 streams2.

To provide an example on how to perform a random sampling of specific PDFs,
the code listing 10.13, shows how to generate a random sequence of numbers (i.e.,
a random sample distribution) simulating a normal and uniform PDFs, respectively.
In detail, the code listing 10.13 uses the np.random.default_rng() statement (i.e.,
line 17), based on the PCG64 PRNG (O’Neill, 2014).

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
x

0

1

2

3

4

5

6

7

Pr
ob

. D
en

sit
y

Target Normal Probability Density Function
Random Sampling of the Normal Distribution

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

. D
en

sit
y

Target Uniform Probability Density Function
Random Sampling of the Uniform Distribution

Fig. 10.11 The result of the code listing 10.13.

The other PRNGs currently available in Numpy are reported in Table 10.2.
The code listing 10.14 show how to use a different PRNG than the PCG64 to

define the same normal distribution of Fig. 10.11 characterized by a mean (`) and a
standard deviation (f) of 0 amd 0.1, respectively. The results of code listing 10.14
is reported in Fig. 10.12.

2 https://numpy.org/doc/stable/reference/random/bit_generators/

10.4 The Mote Carlo Approach in Error Propagation 183

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4
5 def normalPDF(x, mu, sigma):
6 PDF = 1/(sigma * np.sqrt(2 * np.pi)) * np.exp(- (x - mu)

2 / (2 * sigma2))
7 return PDF
8
9 fig = plt.figure(figsize=(6,9))
10
11 # Random sampling of a normal distribution
12 my_mu, my_sigma = 0, 0.1 # mean and standard deviation
13
14 BitGenerators = [np.random.MT19937(), np.random.Philox(), np.

random.SFC64()]
15 Names = [’Mersenne Twister PRNG (MT19937)’, ’Philox (4x64)

PRNG (Philox)’, ’Chris Doty-Humphrey\’s SFC PRNG (SFC64)’]
16 Indexes = [1,2,3]
17
18 for bit_generator , name, index in zip(BitGenerators ,Names,

Indexes):
19 sn = np.random.Generator(bit_generator).normal(loc = my_mu

, scale = my_sigma, size = 10000)
20 ax = fig.add_subplot(3, 1, index)
21 ax.hist(sn, density = True, bins=’auto’, edgecolor = ’k’,

color = ’#c7ddf4’, label = name)
22 my_xn = np.linspace(my_mu - 4 * my_sigma, my_mu + 4 *

my_sigma , 1000)
23 my_yn = normalPDF(x= my_xn, mu = my_mu, sigma = my_sigma)
24 ax.plot(my_xn, my_yn, linewidth=2, linestyle=’--’, color=’

#ff464a’, label = ’Target Normal PDF’)
25 ax.set_ylim(0.0, 7.0)
26 ax.set_xlim(my_mu - 6 * my_sigma , my_mu + 6 * my_sigma)
27 ax.set_xlabel(’x’)
28 ax.set_ylabel(’Probability Density’)
29 ax.legend()
30
31 fig.tight_layout()

Listing 10.14 Random Sampling of a Normal distribution using different PRNGs.

Please note that for most of the basic everyday tasks in geological modelling (e.g.,
basic error propagation), all the PRNGs reported if Table 10.2 work satisfactory, so
I suggest to use the default one for simplicity of use.

In error propagation, the MC approach is a proficient technique to be considered
when the Eq. 10.6 or its corrected forms (e.g., Eq. 10.7) are inconvenient (Schwartz,
1975).

184 10 Error Analysis

Table 10.2 Pseudo Random Number Generators (PRNG) currently (ver. 1.19) available in Numpy.

PRNG Reference Description

PCG64 (O’Neill, 2014) 128-bit implementation of O’Neill’s permutation con-
gruential generator

MT19937 (Haramoto et al., 2008) Mersenne Twister pseudo-random number generator

Philox (Salmon et al., 2011) A 64-bit counter-based PRNGusingweaker (and faster)
versions of cryptographic functions

SFC64 http://pracrand.
sourceforge.net

Implementation of Chris Doty-Humphrey’s Small Fast
Chaotic PRNG

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 def gaussian(x, mean, std):
5 return 1/(np.sqrt(2*np.pi*std**2))*np.exp(-0.5*(((x - mean

)**2)/(std**2)))
6
7 my_a, my_sigma_a = 40, 8
8 my_b, my_sigma_b = 20, 2
9
10 N = 10000
11 a_normal = np.random.default_rng().normal(my_a, my_sigma_a , N)
12 b_normal = np.random.default_rng().normal(my_b, my_sigma_b , N)
13
14 # Linearized Method
15 my_sum_ab_l , my_sigma_sum_ab_l = sum_ab(a = my_a, b = my_b,

sigma_a = my_sigma_a , sigma_b = my_sigma_b)
16 my_x = np.linspace(20,100,1000)
17 my_sum_ab_PDF = gaussian(x = my_x, mean= my_sum_ab_l , std =

my_sigma_sum_ab_l)
18
19 # Monte Carlo estimation
20 my_sum_ab_mc = a_normal + b_normal
21 my_sum_ab_mc_mean = my_sum_ab_mc.mean()
22 my_sigma_sum_ab_mc_std = my_sum_ab_mc.std()
23
24 fig, ax = plt.subplots()
25 ax.hist(my_sum_ab_mc , bins=’auto’, color=’#c7ddf4’, edgecolor=

’k’, density=True, label= r’a+b sample distribution by MC
($\mu_{a+b} = $’ + "{:.0f}".format(my_sum_ab_mc_mean) + r’
- 1σ_{a+b}’ + "{:.0f}".format(

my_sigma_sum_ab_mc_std) + ’)’)
26 ax.plot(my_x, my_sum_ab_PDF , color=’#ff464a’, linestyle=’--’,

label=r’a+b PDF by linearized error propagation’)
27 ax.set_xlabel(’a + b’)
28 ax.set_ylabel(’Probability Density’)
29 ax.legend(title=’Error Propagation’)
30 ax.set_ylim(0,0.07)

Listing 10.15 Error propagation by MC.

10.4 The Mote Carlo Approach in Error Propagation 185

0.6 0.4 0.2 0.0 0.2 0.4 0.6
x

0

2

4

6
Pr

ob
ab

ilit
y

De
ns

ity
Target Normal PDF
Mersenne Twister PRNG (MT19937)

0.6 0.4 0.2 0.0 0.2 0.4 0.6
x

0

2

4

6

Pr
ob

ab
ilit

y
De

ns
ity

Target Normal PDF
Philox (4x64) PRNG (Philox)

0.6 0.4 0.2 0.0 0.2 0.4 0.6
x

0

2

4

6

Pr
ob

ab
ilit

y
De

ns
ity

Target Normal PDF
Chris Doty-Humphrey's SFC PRNG (SFC64)

Fig. 10.12 The result of the code listing 10.14.

Please remember that the application of the Eq. 10.6 bases on these strong
assumptions (Schwartz, 1975): (a) the involved errors are statistically uncorrelated;
(b) the involved variables are independent; and (c), the errors must be sufficiently
small relative to the corresponding mean values. A more difficult problem arises
when the derivative elements in Eq. 10.6 or Eq. 10.7 can be solved only with a
great effort or perhaps not at all (Schwartz, 1975). This problem, however, could be
attacked by numerical methods, e.g., by Monte Carlo error propagation (Schwartz,
1975). To provide a detailed description of the MC method is far beyond the scopes
of the present introductory book. Here I limit the discussion to a very simple case,
i.e., the sum of two variables affected by errors with a normal distribution (code

186 10 Error Analysis

listing 10.15 and Fig. 10.13). The reported example highlights the power and the
simplicity of the MC approach in error propagation. In detail the code listing 10.15
show that, after defining a sample distribution for each parameter (i.e., lines 14 and
15), the error propagation by MC can be easily performed in one line of code (i.e.,
line 25) without applying any additional equation than the one of interest, the sum
in our case.

20 30 40 50 60 70 80 90 100
a + b

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Pr
ob

ab
ilit

y
De

ns
ity

Error Propagation
a+b PDF by linearized error propagation (a + b = 60 - 1 a + b = 8.0)
a+b sample distribution by MC (a + b = 60.0 - 1 a + b = 8.0)

Fig. 10.13 The result of the code listing 10.15.

Part V
Robust Statistics and Machine Learning

Chapter 11
Introduction to Robust Statistics

11.1 Classical and Robust Approaches to Statistics

All statistical methods and techniques bases explicitly or implicitly on some as-
sumptions (Huber & Ronchetti, 2009; Maronna et al., 2006). Among these, the
assumption that the observed (i.e., sampled) data follow a normal (Gaussian) dis-
tribution is widely adopted (Huber & Ronchetti, 2009; Maronna et al., 2006). This
assumption is the basis for all the classical methods in regression, analysis of vari-
ance, and multivariate analysis. However, it often happens, and this is true for many
geological cases, that a sample of data mostly follows a normal distribution, but some
observations are not normally distributed, defining a different pattern. Such atypical
data are called outliers. Please note that a single outlier can strongly distort statistical
method based non the assumption of normality (e.g. the king-kong effect in linear
regression). Also, if the data are assumed to be normally distributed but their actual
distribution starts diverging from a Gaussian shape, then classical tests may return
unreliable results (Huber & Ronchetti, 2009; Maronna et al., 2006). Definition: "The
robust approach to statistical modeling and data analysis aims at deriving methods
that produce reliable parameter estimates and associated tests and confidence in-
tervals, not only when the data follow a given distribution exactly, but also when
this happens only approximately in the sense just described" (Maronna et al., 2006).
Please note that a ’robust’ model should converge to the results of classical methods
in the case of the assumption behind them (e.g., normal distribution) are satisfied. A
complete treatment of robust statistics is far beyond the scope of the present chapter,
and I suggest more specific sources for the interested reader. In the following, I will
focus on 1) how t0 check if a sample is normally distributed (i.e., normality tests; 2)
robust descriptive statistics and 3) robust linear regression; 4) application of robust
statistics in geochemistry.

189

190 11 Introduction to Robust Statistics

11.2 Normality Tests

There is not a standard procedure to affirm that a sample follows (or not follows) a
normal distribution. However, a reasonable procedure consists of: 1) a preliminary
qualitative inspection of the histogram plot then fitted by normal PDF (see section
9.5); 2) a subsequent inspection of a Quantile-Quantile plot, 3) the application of
selected statistical tests of normality (Thode, 2002).

Please note that a reasonably large number of observations is needed to detect
deviations from normality (Huber & Ronchetti, 2009; Maronna et al., 2006).

Histogram plots and parametric fitting

As reported in section 9.5, reporting the probability density histogram is an easy and
efficient way to qualitatively inspect the shape of a sample distribution. In the case
of a normal distribution, we expect a symmetric, bell-shaped aspect of the resulting
histogram plot. Then, performing a parametric fitting by a normal PDF, we can
better evaluate the similarities and the discrepancies between the studied sample,
and a normal distribution characterized by the same mean and standard deviation.

0.0 0.1 0.2 0.3 0.4
MnO [wt %]

0

2

4

6

8

Pr
ob

ab
ilit

y
de

ns
ity

Normal PDF
MnO

0 200 400 600 800
Pb [ppm]

0.00

0.01

0.02

0.03

Pr
ob

ab
ilit

y
de

ns
ity

Normal PDF
Pb

Fig. 11.1 The result of the code listing 11.1.

11.2 Normality Tests 191

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 from scipy.stats import norm
4 import numpy as np
5
6 myDataset_majors = pd.read_excel(’Smith_glass_post_NYT_data.

xlsx’, sheet_name=’Supp_majors’, engine=’openpyxl’)
7 myDataset_traces = pd.read_excel(’Smith_glass_post_NYT_data.

xlsx’, sheet_name=’Supp_traces’, engine=’openpyxl’)
8
9 fig = plt.figure()
10
11 # MnO
12 MnO = myDataset_majors.MNO
13
14 ax1 = fig.add_subplot(2, 1, 1)
15 ax1.hist(MnO, bins= ’auto’, density = True, color=’#4881e9’,

edgecolor=’k’, label=’MnO’, alpha=0.8)
16 a_mean = MnO.mean()
17 std_dev = MnO.std()
18 x = np.linspace(a_mean -4*std_dev, a_mean+4*std_dev ,1000)
19 pdf = norm.pdf(x, loc=a_mean, scale=std_dev)
20 ax1.plot(x, pdf, linewidth=1.5, color=’#ff464a’,label=’Normal

PDF’)
21 ax1.set_xlabel(’MnO [wt %]’)
22 ax1.set_ylabel(’Probability density’)
23 ax1.legend()
24
25 #Pb
26 Pb = myDataset_traces.Pb
27 Pb = Pb.dropna(how=’any’)
28 ax2 = fig.add_subplot(2, 1, 2)
29 ax2.hist(Pb, bins= ’auto’, density = True, color=’#4881e9’,

edgecolor=’k’, label=’Pb’, alpha=0.8)
30 a_mean = Pb.mean()
31 std_dev = Pb.std()
32 x = np.linspace(a_mean -4*std_dev, a_mean+4*std_dev ,1000)
33 pdf = norm.pdf(x, loc=a_mean, scale=std_dev)
34 ax2.plot(x, pdf, linewidth=1.5, color=’#ff464a’, label=’Normal

PDF’)
35 ax2.set_xlabel(’Pb [ppm]’)
36 ax2.set_ylabel(’Probability density’)
37 ax2.legend()
38
39 fig.align_ylabels()
40 fig.tight_layout()

Listing 11.1 Plotting the histogram distribution and making a parametric fitting to start
assessing the normality of a sample distribution.

As an example, looking a the MnO and Pb distributions of the data set reported
in (Smith et al., 2011), we can easily observe a strong departure from a normal

192 11 Introduction to Robust Statistics

distribution for Pb that is characterized by a right tail (i.e., positive skewness) and a
strong outlier at about 790 ppm (code listing 11.1 and figure 11.1). On the contrary,
the MnO probability density histogram is almost symmetric with no evidence for the
presence of outliers with the exception of a single observation a about 0.39 wt %.

The parametric fitting of the two distributions with a gaussian PDF (code listing
11.1 and figure 11.1), confirms a strong departure from the normality for Pb, and
quite good fit for MnO.

Being a qualitative inspection, the plotting of a density histogram and the para-
metric fitting by a normal distribution allow the recognition of strong departures
from the normality. As a consequence, we can certain exclude the normality for the
Pb sample. On the contrary, we cannot affirm that MnO is normally distributed, yet
(Thode, 2002).

Quantile-quantile plots

A successive step in the investigation for the normality of a sample distribution could
consist in the fulfilment of a Quantile-quantile plot (Palettas, 1992). The Quantile-
quantile (Q-Q) plot is a graphical representation used to decide if two data sets
come from populations characterized by the same distribution. When used to test for
the normality of a sample distribution, one of the two data sets is the investigated
sample, the second data set is derived by a normal PDF. In detail, we develop a
binary diagram where the quantiles of the investigated data set are plotted against
the quantiles of a normal distribution.

2 0 2 4
Theoretical Quantiles

2

0

2

4

Sa
m

pl
e

Qu
an

til
es

MnO

0 5 10
Theoretical Quantiles

2.5

0.0

2.5

5.0

7.5

10.0

12.5

Sa
m

pl
e

Qu
an

til
es

Pb

Fig. 11.2 The result of the code listing 11.2.

11.2 Normality Tests 193

1 import statsmodels.api as sm
2
3 fig = plt.figure()
4
5 ax1 = fig.add_subplot(1, 2, 1)
6 sm.qqplot(data= MnO, fit = True, line="45", ax=ax1,

markerfacecolor=’#4881e9’, markeredgewidth=’0.5’,
markeredgecolor=’k’, label=’MnO’)

7 ax1.set_aspect(’equal’, ’box’)
8 ax1.legend(loc=’lower right’)
9
10 ax2 = fig.add_subplot(1, 2, 2)
11 sm.qqplot(data= Pb, fit = True, line="45", ax=ax2,

markerfacecolor=’#4881e9’, markeredgewidth=’0.5’,
markeredgecolor=’k’, label=’Pb’)

12 ax2.set_aspect(’equal’, ’box’)
13 ax2.legend(loc=’lower right’)
14
15 fig.tight_layout()

Listing 11.2 Q-Q diagrams for MnO and Pb.

If the investigated data set come from a population with a normal distribution,
the standardized quantiles (i.e., derived after subtracting mean and dividing by the
standard deviation) should fall approximately along a 1:1 reference line.

The larger is the departure from this reference line, the greater is the evidence that
the investigated data set does not come from a normal population. As an example,
Fig. 11.2 (code listing 11.2) reports two Q-Q plots, evaluating the MnO and Pb
samples, respectively. As expected, the Q-Q plot for Pb departs strongly form the
accordance with the reference line, demonstrating further the non-normality of the
sample. Inspecting the Q-Q plot for MnO, it emerges that the sample quantiles are
mostly in agreement with the theoretical ones. However, at least one observation in
the Q-Q plot departs from linearity. It correspond to the extreme right size of the
distribution (i.e., the outliers above o.29 wt % observed in Fig. 11.1). Can we assume
that MnO follows a normal distribution? To answer, we are going to perform further
statistical tests.

Statistical tests

Typically, a statistical test for normality initially assumes that the sample derives
from a normal (Gaussian) population (Thode, 2002). This initial assumption is the
so-called null hypothesis (�0). Then, the test elaborates data and returns one or more
statistical parameters and one or more threshold values to evaluate the if it is possible
to accept or not �0 (Thode, 2002).

The Shapiro-Wilk (S-W) test is a statistical procedure for testing sample data
set for normality (Shapiro & Wilk, 1965). In detail, the S-W test relies on the

194 11 Introduction to Robust Statistics

determination of the W parameter that is obtained by dividing the square of an
appropriate linear combination of the sample order statistics by the usual symmetric
estimate of variance (Shapiro & Wilk, 1965). The maximum value of W is 1,
corresponding to a normal distribution. Hence, the closer W is to one, the more
your sample approach to a normal distribution. Small values for W indicate that
your sample is not normally distributed. In the practice, you can reject the null
hypothesis that your population is normally distributed if the W-value is under a
certain threshold.

The D’Agostino and Pearson’s (DA-P) test evaluates two descriptive statistics, i.e.,
the skewness and kurtosis, to produce a test of normality (R. D’Agostino & Pearson,
1973; R. B. D’Agostino, 1971). In detail, it estimates a statistical parameter, i.e.,
the p-value, combining the two metrics to quantify the divergence from a Gaussian
distribution (R. D’Agostino& Pearson, 1973; R. B. D’Agostino, 1971). As in the case
of the S-W test, you can reject the null hypothesis that your population is normally
distributed if the p-value is under a certain threshold.

The Anderson-Darling (A-D) test is a modification of the Kolmogorov-Smirnov
(K-S) test (Stephens, 1974). It returns a statistics, i.e., a series of computed values,
and a list of critical values rather than a single p-value as in the case of the DA-
P test. If the returned statistic is larger than reference critical values, then for the
corresponding significance level, the null hypothesis that the data come from the
chosen distribution, i.e, normal in our case, can be rejected (Stephens, 1974).

The code listing 11.3 highlights how to perform S-W, DA-P, and A-D tests in
Python for a geological data set.

1 def returns_NormalTests(my_data):
2
3 from scipy.stats import shapiro, anderson , normaltest
4
5 print(’---’)
6 print(’’)
7 stat, p = shapiro(my_data)
8 alpha = 0.05
9 if p > alpha:
10 print(’Shapiro test fails to reject H0: looks normal :)’)
11 else:
12 print(’Shapiro test rejects H0: not normal :(’)
13 print(’’)
14 stat, p = normaltest(my_data)
15 alpha = 0.05
16 if p > alpha:
17 print("D′Agostino and Pearson′s test fails to reject H0:

looks normal :)")
18 else:
19 print("D′Agostino and Pearson′s test rejects H0: not normal

:(")
20 print(’’)
21 result = anderson(my_data)
22 print(’Anderson-Darling test:’)

11.2 Normality Tests 195

23 for sl, cv in zip(result.significance_level , result.
critical_values):

24 if result.statistic < cv:
25 print(’%.3f: fails to reject H0: Sample looks normal :)’

% (sl))
26 else:
27 print(’%.3f: rejects H0: Sample does not look normal :(’

% (sl))
28 print(’---’)
29 print(’’)
30
31 # Original MnO sample
32 print(’Original MnO sample’)
33 returns_NormalTests(MnO)
34
35 # Removing the outliers above 0.27 wt %
36 print(’MnO sample without observations above 0.27 wt %’)
37 MnO_no_outliers = MnO[MnO < 0.27]
38 returns_NormalTests(MnO_no_outliers)
39
40 ’’’ Results:
41 Original MnO sample
42 ---
43
44 Shapiro test rejects H0: not normal :(
45
46 D′Agostino and Pearson′s test rejects H0: not normal :(
47
48 Anderson -Darling test:
49 15.000: rejects H0: Sample does not look normal :(
50 10.000: rejects H0: Sample does not look normal :(
51 5.000: rejects H0: Sample does not look normal :(
52 2.500: rejects H0: Sample does not look normal :(
53 1.000: rejects H0: Sample does not look normal :(
54 ---
55
56 MnO sample without observations above 0.27 wt %
57 ---
58
59 Shapiro test fails to reject H0: looks normal :)
60
61 D′Agostino and Pearson′s test fails to reject H0: looks normal :)
62
63 Anderson -Darling test:
64 15.000: fails to reject H0: Sample looks normal :)
65 10.000: fails to reject H0: Sample looks normal :)
66 5.000: fails to reject H0: Sample looks normal :)
67 2.500: fails to reject H0: Sample looks normal :)
68 1.000: fails to reject H0: Sample looks normal :)
69 ---
70 ’’’

Listing 11.3 Performing Statistical Tests of Normality for the MnO sample.

196 11 Introduction to Robust Statistics

11.3 Robust Estimators for Location and Scale

In chapter 5, we reviewed the classical estimators of location and scale (or spread) for
a sample distribution. They are the building blocks of descriptive statistics. Examples
are the sample mean and standard deviation as estimators for the location and scale,
respectively. However, they may fail in the presence of outliers. In these cases, robust
estimators are a better choice (Huber & Ronchetti, 2009; Maronna et al., 2006). In
the following I provide a light introduction to robust estimators for the location and
the scale of univariate sample distributions with their implementation in Python. I
suggest the reading of more specialized book for the readers interested in a deeper
treatment of the topic (Huber & Ronchetti, 2009; Maronna et al., 2006).

Robust and weak estimators for the location

Among the classical estimators for the location, the arithmetic mean is the most used
and widely recognized (cf. Chapter 5). However, the arithmetic mean is strongly
affected by the presence of outliers (Huber & Ronchetti, 2009; Maronna et al.,
2006). As an example, looking a the Pb distribution in the data set reported in (Smith
et al., 2011), we see a positive tail and a strong outlier at 790 ppm (Fig. 11.3).
The artithmetic means for Pb is 81 ppm, and it falls at an higher value than most
observations, ranging between 50 an 80 ppm (Fig. 11.3). This evidence is the result
of the strong influence of positive ouliers on the arithmetic mean. As a consequence,
we can say that the arithmetic mean is a weak estimator for the location in the
presence of outliers. On the contrary, the median value is located at 67 ppm)Fig.
11.3), centered on the interval containing most observations (i.e. 50-80 ppm) and
corresponding to the modal bin in Fig. 11.3. This is because, the median is less
affected by outliers than the arithmetic mean, resulting a robust estimators for the
location in the presence of outliers.

Another approach to provide a robust estimation for the location of a sample
distribution is by the Trimmed mean. It consists in defining a criterion to discard a
proportion of the largest and smallest values as follow (Huber & Ronchetti, 2009;
Maronna et al., 2006): let U ∈ [0, 1/2] and < = [=U] were [.] stands for the integer
part and n for the total number of observations. We define the U-trimmed mean as
(Huber & Ronchetti, 2009; Maronna et al., 2006):

`U = ¯IU =
1

= − 2<

=−<∑
8=<+1

I (8) (11.1)

where I (8) denotes the ordered observations. The limit cases U = 0 and U → 0.5
correspond to the sample mean and median, respectively.

The U-Winsorized mean is similar to the U-trimmed mean but, instead of deleting
extreme values as in the trimmed mean, it shifts them towards the bulk of the data
(Eq. 11.2).

11.3 Robust Estimators for Location and Scale 197

1 import pandas as pd
2 import numpy as np
3 from scipy.stats.mstats import winsorize
4 from scipy.stats import trim_mean
5 import matplotlib.pyplot as plt
6
7 myDataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=1, engine=’openpyxl’)
8
9 el = ’Pb’
10 mySubDataset = myDataset[myDataset.Epoch == ’three-b’]
11 mySubDataset = mySubDataset.dropna(subset=[el])
12
13 fig, ax = plt.subplots()
14 a_mean = mySubDataset[el].mean()
15 median = mySubDataset[el].median()
16 trimmed_mean = trim_mean(mySubDataset[el], proportiontocut

=0.1)
17 winsorized_mean = np.mean(winsorize(mySubDataset[el], limits

=0.1))
18
19 delta = 100 * (a_mean - median) / median
20
21 bins = np.arange(50,240,5)
22 ax.hist(mySubDataset[el], density = True, edgecolor=’k’,

color=’#4881e9’, bins=bins, label = ’Lead (Pb), Epoch
Three’)

23 ax.axvline(a_mean, color = ’#ff464a’, linewidth = 2, label = ’
Arithmetic Mean: {:.0f} [ppm]’.format(a_mean))

24 ax.axvline(median, color = ’#ebb60d’, linewidth = 2, label = ’
Median: {:.0f} [ppm]’.format(median))

25 ax.axvline(trimmed_mean , color = ’#8f10b3’, linewidth = 2,
label = r’Trimmed Mean ($\alpha = 0.1$):’ + ’{:.0f} [ppm]’
.format(trimmed_mean))

26 ax.axvline(winsorized_mean , color = ’#07851e’, linewidth = 2,
label = r’Winsored Mean ($\alpha = 0.1$):’ + ’{:.0f} [ppm]
’.format(winsorized_mean))

27
28 ax.set_xlabel(el + " [ppm]")
29 ax.set_ylabel(’probability density’)
30 ax.legend()
31 ax.annotate(’Large oulier at about 800 ppm’, (240, 0.02),

(220, 0.02), ha="right", va="center", size=9, arrowprops=
dict(arrowstyle=’fancy’))

32 ax.annotate(’Deviation of the arithmetic\nmean from the median
: {:.1f} %’.format(delta), (a_mean + 3, 0.03), (a_mean +
25, 0.03), ha="left", va="center", size=9, arrowprops=dict
(arrowstyle=’fancy’))

Listing 11.4 Weak and robust estimates for the location.

198 11 Introduction to Robust Statistics

50 75 100 125 150 175 200 225
Pb [ppm]

0.00

0.01

0.02

0.03

0.04

0.05
pr

ob
ab

ilit
y

de
ns

ity

Large oulier at about 800 ppm

Deviation of the arithmetic
mean from the median: 21.2 %

Arithmetic Mean: 81 [ppm]
Median: 67 [ppm]
Trimmed Mean (= 0.1):70 [ppm]
Winsored Mean (= 0.1):71 [ppm]
Lead (Pb), Epoch Three

Fig. 11.3 The result of the code listing 11.4.

`F8=B =
1
=

(
<I (<) + <I (=−<+1) +

=−<∑
8=<+1

I (8)

)
(11.2)

where < and I (8) are defined as for the trimmed mean (Eq. 11.1). In Python
the trimmed and Winsorized can be estimated easily using the trim_mean() and
winsorize() methods in scipy.stats and scipy.stats.mstats, respectively (code listing
11.4 and Fig. 11.3).

Robust and weak estimators for the scale

As for the location, in the Chapter 5 we reviewed the main estimators for the scale of
a distribution. Among them, the weaker is the range (Fig. 11.4). Also, the standard
deviation is strongly affected by the presence of ouliers (Fig. 11.4). Among the
estimators for the scale reported in the Chapter 5 is the Inter Quartile Range (IQR;
Fig. 11.4). Here, I am going to introduce an additional robust estimator for the scale
of a sample distribution named the median absolute deviation about the median
(MAD), and defined as (Eq. 11.3):

"�� (z) = "�� (I1, I2, ..., I=) = "4 {|z − "4(z) |}. (11.3)

11.3 Robust Estimators for Location and Scale 199

1 import pandas as pd
2 import numpy as np
3 from scipy import stats
4 import matplotlib.pyplot as plt
5
6 myDataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=1, engine=’openpyxl’)
7 el = ’Pb’
8 mySubDataset = myDataset[myDataset.Epoch == ’three-b’]
9 mySubDataset = mySubDataset.dropna(subset=[el])
10
11 a_mean = mySubDataset[el].mean()
12 median = mySubDataset[el].median()
13 range_values = [mySubDataset[el].min(), mySubDataset[el].max()]
14 std_dev_values = [a_mean - mySubDataset[el].std(), a_mean +

mySubDataset[el].std()]
15 IQR_values = [np.percentile(mySubDataset[el], 25, interpolation =

’midpoint’), np.percentile(mySubDataset[el], 75,
interpolation = ’midpoint’)]

16 MADn_values = [median - stats.median_abs_deviation(mySubDataset[
el], scale=’normal’), median + stats.median_abs_deviation(
mySubDataset[el], scale=’normal’)]

17
18 scales_values = [range_values , std_dev_values , IQR_values ,

MADn_values]
19 scale_labels = [’Range’, ’Standard Deviation’, ’Inter Quartile

Range’, ’Median Absolute Deviation’]
20 locations = [a_mean, a_mean, median, median]
21 location_labels = [’Arithmetic Mean’, ’Arithmetic Mean’, ’Median’

, ’Median’]
22 binnings = [’auto’, np.arange(0,300,5),np.arange(50,150,5),np.

arange(50,150,5)]
23 indexes = [1,2,3,4]
24
25 fig = plt.figure(figsize=(8,6))
26 for scale_values , location, scale_label , location_label , bins,

index in zip(scales_values , locations , scale_labels ,
location_labels , binnings , indexes):

27 ax = fig.add_subplot(2, 2, index)
28 ax.hist(mySubDataset[el], density = True, edgecolor=’k’,

color=’#4881e9’, bins=bins)
29 ax.axvline(location , color = ’#ff464a’, linewidth = 1, label

= location_label)
30 ax.axvline(scale_values[0], color=’#ebb60d’)
31 ax.axvline(scale_values[1], color=’#ebb60d’)
32 ax.axvspan(scale_values[0], scale_values[1], alpha=0.1, color

=’orange’, label=scale_label)
33 ax.set_xlabel(el + " [ppm]")
34 ax.set_ylabel(’probability density’)
35 ax.set_ylim(0, 0.1)
36 ax.legend(loc = ’upper right’)
37 fig.tight_layout()

Listing 11.5 Weak and robust estimates for the scale.

200 11 Introduction to Robust Statistics

200 400 600 800
Pb [ppm]

0.00

0.02

0.04

0.06

0.08

0.10

pr
ob

ab
ilit

y
de

ns
ity

Arithmetic Mean
Range

0 100 200 300
Pb [ppm]

0.00

0.02

0.04

0.06

0.08

0.10

pr
ob

ab
ilit

y
de

ns
ity

Arithmetic Mean
Standard Deviation

60 80 100 120 140
Pb [ppm]

0.00

0.02

0.04

0.06

0.08

0.10

pr
ob

ab
ilit

y
de

ns
ity

Median
Inter Quartile Range

60 80 100 120 140
Pb [ppm]

0.00

0.02

0.04

0.06

0.08

0.10

pr
ob

ab
ilit

y
de

ns
ity

Median
Median Absolute Deviation

Fig. 11.4 The result of the code listing 11.5.

The MAD uses the sample median twice, first to get an estimate of the location
of the data set (i.e., "4(z), and then to compute the sample median of the abso-
lute residuals from the estimated location, i.e., {|z − "4(z) |}. To make the MAD
comparable to the f, the normalized "�� ("��=) is defined as:

"��= (z) =
"�� (z)
0.6745

(11.4)

The rationale behind this choice is that 0.6745 is the "�� of a standard normal
random variable, and hence a # (`, f) variable has"��= =f. In Python, the"��
can be computed easily by using the scipy.stats.median_abs_deviation() function. To
calculate the "��= as defined by the Eq. 11.4, we need to set the ’scale’ parameter
to ’normal’ explicitly when calling the median_abs_deviation() function.

M-estimators of location and scale

The jointly robust estimation of location and scale proposed by Huber (1966), i.e.,
"Huber’s proposal 2", consist in the solution of a location–dispersion model with
two unknown parameters (i.e., ˆ̀ and f̂; Eq. 11.5).

11.3 Robust Estimators for Location and Scale 201

1 import pandas as pd
2 import numpy as np
3 import statsmodels as st
4 import matplotlib.pyplot as plt
5
6 myDataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=1, engine=’openpyxl’)
7
8 el = ’Pb’
9
10 mySubDataset = myDataset[myDataset.Epoch == ’three-b’]
11 mySubDataset = mySubDataset.dropna(subset=[el])
12
13 norms = [st.robust.norms.HuberT(t=1.345), st.robust.norms.

Hampel(a=2.0, b=4.0, c=8.0)]
14 loc_labels = [r"Huber’s T function", r"Hampel function"]
15
16 indexes = [1,2]
17
18 fig = plt.figure(figsize=(6,6))
19
20 for norm, loc_label , index in zip(norms, loc_labels , indexes):
21
22 huber_proposal_2 = st.robust.Huber(c= 1.5, norm = norm)
23 H_loc, H_scale = huber_proposal_2(mySubDataset[el])
24 ax = fig.add_subplot(2, 1, index)
25 bins = np.arange(50,250,5)
26 ax.hist(mySubDataset[el], density = True, edgecolor=’k’,

color=’#4881e9’, bins=bins)
27 ax.axvline(H_loc, color = ’#ff464a’, linewidth = 2, label=

loc_label + " as ψ: location at {:.1f} [ppm]".format
(H_loc))

28 ax.axvline(H_loc + H_scale, color = ’#ebb60d’)
29 ax.axvline(H_loc - H_scale, color = ’#ebb60d’)
30 ax.axvspan(H_loc + H_scale, H_loc - H_scale, alpha=0.1,

color=’orange’, label="Huber’s estimation for the scale:
{:.1f} [ppm]".format(H_scale))

31 ax.set_xlabel(el + " [ppm]")
32 ax.set_ylabel(’probability density’)
33 ax.set_ylim(0, 0.1)
34 ax.legend(loc = ’upper right’)
35 ax.annotate(’Large oulier at about 800 ppm’, (253, 0.04),

(230,0.04), ha="right", va="center", size=9, arrowprops=
dict(arrowstyle=’fancy’))

36 fig.tight_layout()
Listing 11.6 M-estimators for the location and the scale: "Huber’s proposal 2".

∑=
8=1 k

(
G1− ˆ̀
f̂

)
= 0∑=

8=1 k
2
(
G1− ˆ̀
f̂

)
= (= − 1)V

(11.5)

202 11 Introduction to Robust Statistics

where ˆ̀ and f̂ are the maximum likelihood estimators of ` and f, respec-
tively. In Python, the "Huber’s proposal 2" is implemented by the statsmod-
els.robust.scale.Huber() function. By default, it uses the Huber’s T as k, but other
k can be selected (e.g., Hampel 17A, Ramsay’s Ea, etc).

50 75 100 125 150 175 200 225 250
Pb [ppm]

0.00

0.02

0.04

0.06

0.08

0.10
pr

ob
ab

ilit
y

de
ns

ity

Large oulier at about 800 ppm

Huber s T function as : location at 69.0 [ppm]
Huber's estimation for the scale: 11.0 [ppm]

50 75 100 125 150 175 200 225 250
Pb [ppm]

0.00

0.02

0.04

0.06

0.08

0.10

pr
ob

ab
ilit

y
de

ns
ity

Large oulier at about 800 ppm

Hampel function as : location at 68.6 [ppm]
Huber's estimation for the scale: 10.8 [ppm]

Fig. 11.5 The result of the code listing 11.6.

11.4 Robust Statistics in Geochemistry

In the present section, I review the main conclusions reported by (Reimann &
Filzmoser, 2000) on the use of robust statistics in geochemistry. As an example,
Reimann and Filzmoser (2000) issued that most of the variables belonging to large
data sets from regional geochemical and environmental surveys show neither a
normal or lognormal data distribution.

11.4 Robust Statistics in Geochemistry 203

Table 11.1 Application of robust statistics in geochemistry. Developed on the basis of Tab. 3 in
Reimann and Filzmoser, 2000.

Location Recommendation Here

Arithmetric mean Should only be used in special cases Yes

Geometric mean Can be used, but may be problematic in some cases Yes

Median Should be the first choice as location estimator Yes

Hampel or Huber means Can be used Yes

Dispersion Recommendation Here

Standard deviation Should not be used if data outliers exist Yes

Mad (medmed) Can be used Yes

Hinge spread Can be used No

Robust spread Can be used Yes

Tests for means and variances Recommendation Here

t-test Should not be used No

F-test Should not be used No

Notches in boxplot Can be used, very easy and fast Yes

Non-parametric tests Can be used Yes

Robust tests Can be used No

Multivariate methods Recommendation Here

Correlation analysis Should not be used with the original (untrans-
formed) data

Yes

Regression analysis Should not be used with the original (untrans-
formed) data

Yes

Robust regression analysis Can be used, preferably on log-transformed data No

Non-parametric regression Can be used, preferably on log-transformed data Yes

PCA Very sensible to outlying observations, Should not
be used

No

Robust PCA Can be used, preferably with log-transformed data No

204 11 Introduction to Robust Statistics

Even after a transformation devoted to reporting the data set to a normal shape,
many of these data sets do not approach a Gaussian distribution (Reimann & Filz-
moser, 2000). Typically, the distributions investigated by Reimann and Filzmoser
(2000) are skewed, and they contain outliers. Reimann and Filzmoser (2000) con-
cluded that when dealing with regional geochemical or environmental data, normal
or lognormal distributions are an exception and not the rule. The conclusions reported
by Reimann and Filzmoser (2000) have significant consequences for the further sta-
tistical treatment of geochemical and environmental data, mostly requiring a robust
approach.

Why geochemical and environmental data are not normally distributed? Reimann
and Filzmoser (2000) started arguing that geochemical and environmental data reg-
ister spatial dependence and spatially dependent data are not, usually, normally dis-
tributed. Also, trace element data approaching the detection limit are often truncated,
i.e., a significant number of observations are not characterized by a true measured
value (Reimann & Filzmoser, 2000). Also, the precision of the analytical determi-
nations degrades with the reduction of element concentration, i.e., values are less
precise when approaching detection limits (Reimann & Filzmoser, 2000). Finally,
these data sets often reveal outliers, possibly due to analytical issues or derived by
another population than the main body of data (Reimann & Filzmoser, 2000).

Table 11.1, is a modification of Tab. 3 in Reimann and Filzmoser, 2000 and
it reports frequently used statistical parameters, tests and multivariate methods and
their suitability for regional geochemical and environmental data which neither show
a normal or lognormal distribution.

Chapter 12
Machine Learning

12.1 Introduction to Machine Learning in Geology

Machine learning (ML) is a sub-field of Artificial Intelligence (AI) concerning the
use of algorithms and methods to detect patterns from large data sets and to use
the uncovered patterns to predict future trends, classify, or perform other kinds of
strategic decisions (Murphy, 2012).

The field of ML has grown significantly over the past two decades, evolving from
a “niche approach” to a robust technology with broad scientific and commercial use
(Jordan&Mitchell, 2015). For example,ML is now successfully employed in several
fields like speech recognition, computer vision, robot control and natural language
processing (Jordan & Mitchell, 2015). In principle, any complex problem described
by a large enough number of input samples and features well fit ML applications
(Jordan &Mitchell, 2015). Notably, in the last decade, many researchers have started
investigating the application ofMLmethods in the Earth Sciences (Abedi et al., 2012;
Cannata et al., 2011; Goldstein & Coco, 2014; Huang et al., 2002; Masotti et al.,
2006; Petrelli et al., 2017; Petrelli et al., 2020; Petrelli & Perugini, 2016; Petrelli
et al., 2003; Zuo & Carranza, 2011). In the following, I am going to introduce the
basics of ML in Python highlighting a case study in the field of Earth Sciences.

A common characteristic of ML applications is that they are not developed to
process an a priori defined conceptual model but they attempt to disclose the com-
plexities in large data sets through a so-called learning process (Bishop, 2006; Shai
& Shai, 2013). It consists in the effort of converting the experience into “expertise”
or “knowledge” (Shai & Shai, 2013). To understand, please consider that humans
use past experiences to implement their learning processes.

As an example, kids begin learning the alphabet by observing the world around
them where they find sounds, written letters, words or phrases. Then, at school,
they learn the significance of the alphabet and how to combine the different letters.
Similarly, the experience for a ML algorithm is the training data and the output is the
learned expertise, e.g., a model that can perform a specific task (Shai & Shai, 2013).

205

206 12 Machine Learning

Do you have
enough samples?
Ideally more than

50

START

yes

no

are you predicting a
CATEGORY?

DIMENSIONALITY
REDUCTION

yes no

are your data
LABELED?

are your predicting a
QUANTITY?

REGRESSIONCLUSTERINGCLASSIFICATION

yes yesno no

find
more

samples

POTENTIAL APPLICATIONS IN MINERALOGY AND PETROLOGY

PETROTECTONIC
CLASSIFICATION

DISCOVER HIDDEN
PETROLOGIC FEATURES

GEO-THERMOMETERS
& -BAROMETERS

PETROLOGIC
MODELLING

VISUALIZATION

OF HIGH

DIMENSIONAL

GEOCHEMICAL DATA
CRYSTAL TEXTURAL

ANALYSIS
CRYSTAL

CLASSIFICATION

Fig. 12.1 Workflow for the application of ML techniques in petrology and mineralogy (Petrelli &
Perugini, 2016).

Broadly, the learning process in ML can be divided into two main fields: (a)
unsupervised and (b) supervised learning. In the unsupervised learning, the training
data set consists of several input vectors or arrays, without any corresponding target
values. On the contrary, in supervised applications, the training data set is labelled,
meaning that the algorithm learns through examples (Bishop, 2006).

Figure 12.1 shows a flowchart, modified from Petrelli and Perugini (2016) depict-
ing the main areas of ML (classification, clustering, regression and dimensionality
reduction) and their possible use to solve typical mineralogical and petrological prob-
lems. As reported in Fig. 12.1, a requirement for the use of an ML technique is the

12.2 Machine Learning in Python 207

availability of a proper number of data (indicatively more than 501). The main aim
of Fig 12.1 is to determine the ML field (i.e., classification, clustering, regression or
dimensionality reduction) to approach the problem. The procedure entails a range of
choices about the nature of the investigated issue. If the problem involves categories,
the first step is to select between labelled and unlabeled data. If the learning data set
is labelled, the training process is supervised and it will involve a “classification”
problem (Kotsiantis, 2007). An example of a classification problem in petrology is
the petro-tectonic identification using geochemical data (Petrelli & Perugini, 2016).
If the training data set is unlabeled, the problem is about “clustering” (Jain et al.,
1999). The field of clustering as been investigated in petrology since the ’80 (e.g.,
LeMaitre, 1982). As an example, LeMaitre (1982) discussed the basics of clustering
in petrology. If the problem does not include a categorization, the subsequent step
is to establish whether a quantity must be predicted. If the answer is yes, we are
in the field of “regression” (Smola & Schölkopf, 2004). An example application in
petrology of ML regression has been provided by Petrelli et al. (2020). Finally, if we
are not predicting a quantity, we are in the field of “dimensionality reduction” (Lee
& Verleysen, 2009). Dimensionality reduction is particularly useful, for example, in
the context of visualization of high-dimensional geological data.

12.2 Machine Learning in Python

To introduce the reader in the use of machine learning techniques to Earth Sciences
I will use Scikit-learn2. Scikit-learn is a Python library integrating a wide range of
state-of-the-art machine learning algorithms (Pedregosa et al., 2011). This package
focuses on bringing machine learning to non-specialists using a general-purpose
high-level language like Python (Pedregosa et al., 2011).

Scikit-learn represents a robust framework for the solution of Earth Sciences
problems in fields of clustering, regression, dimensionality reduction, and classifica-
tion (Fig. 12.1). Additional examples of Python libraries allowing the development
of ML applications are TensorFlow 3, Keras4, and PyTorch5.

1 https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
2 https://scikit-learn.org
3 https://www.tensorflow.org
4 https://keras.io
5 https://pytorch.org

208 12 Machine Learning

12.3 A Study Case of Machine Learning in Geology

Pyroxene thermo-barometry

Disclosing pre-eruptive temperatures and storage depths in volcanic plumbing sys-
tems is a fundamental issue in petrology and volcanology (e.g., Devine et al., 1998;
Putirka, 2008; Putirka et al., 2003). To date, the development of geo-thermometers
and barometers bases on the thermodynamic characterization of the magmatic sys-
tem and this approach provides a robust framework, widely applied in the estimation
of pre-eruptive magma temperature and storage depths (Masotta et al., 2013; Neave
et al., 2019; Nimis, 1995; Nimis & Ulmer, 1998; Putirka, 2008; Putirka et al., 2003).
As reported by Petrelli et al. (2020), the conventional calibration procedure for
cpx thermometers and barometers consists of five main steps: a) recognize chemi-
cal equilibria associated with large variations of entropy and volume, respectively
(Putirka, 2008); b) retrieving a statistically robust experimental data set with known
T and P (e.g., the LEPR data set; Hirschmann et al., 2008); c) determine the cpx
components from chemical analyses; d) define a regression procedure; e) validate
the model (Putirka, 2008).

In 2020, Petrelli et al. (2020) proposed a newMLmethod to retrieve magma tem-
perature and storage depths on the basis of melt-clinopyroxenes and clinopyroxenes
only chemistry. In detail, the ML approach proposed by Petrelli et al. (2020) starts
from the same basis of the classical approach but it is not based on an ’a priori’
defined model, allowing the algorithm to retrieve the elements that are involved in
variations of entropy and volume. But what’s the main difference between classical
approaches and ML ones? In few word, classical approaches base on a simplified
thermodynamic framework providing equations to be fitted using experimental data
(typically using linear regression). On the contrary ML methods base on the statisti-
cal relationships linking variations in the chemistry of CPXs (or CPX-melt couples)
and the target variables (i.e., P and T), without necessary providing a thermodynamic
framework. In agreement with the workflow reported in Fig. 12.1, the investigations
reported in Petrelli et al. (2020) fall in the ML field of regression.

The experimental data set for the training

The experimental data set utilized by Petrelli et al. (2020) to train themodel consisted
of 1403 experimentally produced clinopyroxenes in equilibriumwith a wide range of
silicate melt compositions at pressures and temperatures in the range 0.001-40 kbar
and 952-1883 K, respectively. As input parameters, Petrelli et al. (2020) used the
major element compositions of melt (SiO2, TiO2, Al2O3, FeOC , MnO, MgO, CaO,
Na2O,K2O, Cr2O3, P2O5, H2O) and clinopyroxene (SiO2, TiO2, Al2O3, FeOC , MnO,
MgO, CaO, Na2O, K2O, Cr2O3) phases. Now, we start importing and visualizing
the data set shared by Petrelli et al. (2020) using the code listing 11.6 and Figs. 12.2
and 12.3.

12.3 A Study Case of Machine Learning in Geology 209

1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 import seaborn as sns
5 from sklearn.preprocessing import StandardScaler
6 from sklearn.ensemble import ExtraTreesRegressor
7 from sklearn.metrics import mean_squared_error
8 from sklearn.metrics import r2_score
9
10 # Import The Training Data Set
11 my_training_dataset = pd.read_excel(’

GlobalDataset_Final_rev9_TrainValidation.xlsx’, usecols = "A:
M,O:X,Z:AA", skiprows=1, engine=’openpyxl’)

12 my_training_dataset.columns = [c.replace(’.1’, ’cpx’) for c in
my_training_dataset.columns]

13 my_training_dataset = my_training_dataset.fillna(0)
14
15 Train_Labels = np.array([my_training_dataset.Sample_ID]).T
16 X0_train = my_training_dataset.iloc[:, 1:23]
17 Y_train = np.array([my_training_dataset.T_K]).T
18
19 fig = plt.figure(figsize=(8,8))
20 x_labels_melt = [r’SiO$_2$’, r’TiO$_2$’, r’Al$_2$O$_3$’, r’

FeO$_t$’, r’MnO’, r’MgO’, r’CaO’, r’Na$_2O$’, r’K$_2$O’, r’
Cr$_2$O$_3$’, r’P$_2$O$_5$’, r’H$_2$O’]

21 for i in range(0,12):
22 ax1 = fig.add_subplot(4, 3, i+1)
23 sns.kdeplot(X0_train.iloc[:, i],fill=True, color=’k’,

facecolor=’#c7ddf4’, ax = ax1)
24 ax1.set_xlabel(x_labels_melt[i] + ’ [wt. %] the melt’)
25 fig.align_ylabels()
26 fig.tight_layout()
27
28 fig1 = plt.figure(figsize=(6,8))
29 x_labels_cpx = [r’SiO$_2$’, r’TiO$_2$’, r’Al$_2$O$_3$’, r’FeO$_t$

’, r’MnO’, r’MgO’, r’CaO’, r’Na$_2O$’, r’K$_2$O’, r’
Cr$_2$O$_3$’]

30 for i in range(0,10):
31 ax2 = fig1.add_subplot(5, 2, i+1)
32 sns.kdeplot(X0_train.iloc[:, i+12],fill=True, color=’k’,

facecolor=’#c7ddf4’, ax = ax2)
33 ax2.set_xlabel(x_labels_cpx[i] + ’ [wt. %] in cpx’)
34 fig1.align_ylabels()
35 fig1.tight_layout()

Listing 12.1 Importing an visualizing the training data set in Petrelli et al., 2020.

210 12 Machine Learning

40 60 80
SiO2 [wt. %] the melt

0.000

0.025

0.050

0.075

De
ns

ity

0 5 10
TiO2 [wt. %] the melt

0.0

0.2

0.4

De
ns

ity

0 10 20
Al2O3 [wt. %] the melt

0.00

0.05

0.10

0.15

De
ns

ity

0 10 20 30
FeOt [wt. %] the melt

0.00

0.05

0.10
De

ns
ity

0.00 0.25 0.50 0.75
MnO [wt. %] the melt

0

2

4

De
ns

ity

0 10 20
MgO [wt. %] the melt

0.00

0.05

0.10

De
ns

ity

0 10 20
CaO [wt. %] the melt

0.00

0.05

0.10

De
ns

ity

0 5 10
Na2O [wt. %] the melt

0.0

0.1

0.2

0.3

De
ns

ity

0 5 10
K2O [wt. %] the melt

0.0

0.1

0.2

0.3

De
ns

ity
0.0 0.5 1.0
Cr2O3 [wt. %] the melt

0.0

2.5

5.0

7.5

De
ns

ity

0 1 2 3
P2O5 [wt. %] the melt

0

1

2

De
ns

ity

0 10 20
H2O [wt. %] the melt

0.0

0.2

0.4

De
ns

ity

Fig. 12.2 Chemical composition of the melt phase in the training data sety by Petrelli et al. , 2020.

Standardization

Standardization of the data set is a common requirement for many machine-learning
estimators.

For instance, many ML algorithms assume that all features are centered around
zero and have variance in the same order. If a feature has a variance that is orders of
magnitude larger than others, it might play a dominant role and make the algorithm
unable to learn from other features correctly as expected.

The easiest way to preform the normalization of a data set is removing the mean
and scaling to unit variance (Eq. 12.1):

G̃84 =
G84 − `4
f4?

(12.1)

where G̃84, G84 are the transformed and the original value of each component
belonging to the sample distribution of chemical analyses of the element e (i.e.,
SiO2, TiO2, etc...), characterized by an average `4 and a standard deviation f4? .

12.3 A Study Case of Machine Learning in Geology 211

40 45 50 55 60
SiO2 [wt. %] in cpx

0.0

0.1

0.2

De
ns

ity
0 2 4

TiO2 [wt. %] in cpx

0.0

0.5

1.0

De
ns

ity

0 10 20 30
Al2O3 [wt. %] in cpx

0.00

0.05

0.10

De
ns

ity

0 10 20 30
FeOt [wt. %] in cpx

0.00

0.05

0.10

De
ns

ity
0.0 0.5 1.0 1.5 2.0

MnO [wt. %] in cpx

0

2

De
ns

ity

0 10 20 30
MgO [wt. %] in cpx

0.00

0.05

0.10

De
ns

ity

0 10 20
CaO [wt. %] in cpx

0.00

0.05

0.10

De
ns

ity

0 5 10
Na2O [wt. %] in cpx

0.0

0.5

De
ns

ity

0.0 0.2 0.4 0.6
K2O [wt. %] in cpx

0

10

De
ns

ity

0 1 2
Cr2O3 [wt. %] in cpx

0

1

2

De
ns

ity

Fig. 12.3 Chemical composition of the clinopyroxene phase in the training data sety by Petrelli
et al., 2020.

Scikit-learn implements theEq. 12.1 in the sklearn.preprocessing.StandardScaler()
class, a set of methosds (i.e., functions) allowing the scaling of both the training data
set and unknown samples.

Also, scikit-learn implements implements additional scalers and transformers. In
scikit-learn, scaler and transformers perform linear and non-linear transformations,
respectively.

As an example, MinMaxScaler() scales all feature belonging to the data set
between 0 and 1. Table 12.1 summarizes the main scalers and the transformers
available in scikit-learn.

212 12 Machine Learning

The QuantileTransformer() provides non-linear transformations in which dis-
tances between marginal outliers and inliers are shrunk. Finally, the PowerTrans-
former() provides non-linear transformations in which data is mapped to a normal
distribution to stabilize variance and minimize skewness.

Table 12.1 Scalers and Trasformers in Scikit-learn. Descriptions are taken from the official docu-
mentation of Scikit-learn.

Scaler Description

sklearn.preprocessing.StandardScaler() Standardize features by removing the mean and
scaling to unit variance (Eq. 12.1)

sklearn.preprocessing.MinMaxScaler() Transform features by scaling each feature to a
given range. The default rannge is [0,1]

sklearn.preprocessing.RobustScaler() Scale features using statistics that are robust to out-
liers. This Scaler removes themedian and scales the
data according to the quantile range. The default
quantile range is the IQR (Inter-Quartile Range).

Tranformer Description

sklearn.preprocessing.PowerTransformer() Apply a power transform featurewise to make data
more Gaussian-like. Power transforms are a fam-
ily of parametric, monotonic transformations that
are applied to make data more Gaussian-like. Dur-
ing the writing of the rpesent book, PowerTrans-
former supported the Box-Cox transform and the
Yeo-Johnson transform.

sklearn.preprocessing.QuantileTransformer() Transform features using quantiles information.
This method transforms the features to follow a
uniform or a normal distribution. Therefore, for a
given feature, this transformation tends to spread
out the most frequent values. It also reduces the
impact of (marginal) outliers: this is therefore a
robust preprocessing scheme.

In Petrelli et al. (2020), the data set has been processed by the StandardScaler().
To better understands, the lines 1 and 2 of the code listing 12.2 show how to apply
the StandardScaler() to the data displayed in Fig. 12.2 and Fig. 12.3.

Also, Fig. 12.4 and Fig. 12.5 report the result of the StandardScaler() operated
in the code listing 12.2 for the melt and clinopyroxene data, respectively. Now, all
the features (i.e., each chemical element oxide) are characterized by zero mean and
unit variance. To note, the tree based methods described in the following section
and utilized here as application proxy in Geology of ML do not strictly require
standardization. However, performing the standardization helps in data visualization,
and it is useful when you are applying different methods to the same problem to

12.3 A Study Case of Machine Learning in Geology 213

compare performances with scale sensitive algorithms like Support VectorMachines
(SVM; Hearst et al., 1998). Generally speaking, the algorithms which depends on
distance measures among the predictors are the ones requiring standardization.

1 scaler = StandardScaler().fit(X0_train)
2 X_train = scaler.transform(X0_train)
3
4 fig2 = plt.figure(figsize=(8,8))
5 for i in range(0,12):
6 ax3 = fig2.add_subplot(4, 3, i+1)
7 sns.kdeplot(X_train[:, i],fill=True, color=’k’, facecolor=’#

ffdfab’, ax = ax3)
8 ax3.set_xlabel(’scaled ’ + x_labels_melt[i] + ’ the melt’)
9 fig2.align_ylabels()
10 fig2.tight_layout()
11
12 fig3 = plt.figure(figsize=(6,8))
13 for i in range(0,10):
14 ax4 = fig3.add_subplot(5, 2, i+1)
15 sns.kdeplot(X_train[:, i+12],fill=True, color=’k’, facecolor=

’#ffdfab’, ax = ax4)
16 ax4.set_xlabel(’scaled ’ + x_labels_cpx[i] + ’ in cpx’)
17 fig3.align_ylabels()
18 fig3.tight_layout()

Listing 12.2 Application of the StandardScaler() to the data reported in Fig. 12.2 and Fig. 12.3.

Training and testing the model

As humans learn form the experience, ML algorithms learn form data. The role of
the scaled training data set is to provide the learning experience for a ML algorithm.

In Petrelli et al. (2020), many ML methods have been evaluated to find the best
regressor for the investigated problem. They are: Single Decision Trees (Breiman
et al., 2017), Random Forests (Breiman, 2001), Stochastic Gradient Boosting (Fried-
man, 2002), Extremely Randomized Trees (ERT, Geurts et al., 2006), and k-nearest
neighbors (Bentley, 1975). How does they work?

Single Decision Trees: a single decision tree model (Breiman et al., 2017) par-
titions the features space into a set of regions. Then it fits a simple model for each
region (Zhang & Haghani, 2015). To understand how does the decision tree model
work for a regression problem, I am going to provide you the example reported by
Zhang and Haghani (2015). Consider a continuous response variable Y and two
independent variables X1 and X2. To make a regression, the first step consists of
splitting the space defined by X1 and X2 into two regions and model the response
Y (mean of Y) individually in each region. Then, the process continues with the
splitting of each region into two more regions and proceed until some stopping rule
is met. During each partition process, the best fit is achieved through the selection of

214 12 Machine Learning

2 0 2 4
scaled SiO2 the melt

0.0

0.2

0.4

0.6

De
ns

ity

0 5
scaled TiO2 the melt

0.0

0.2

0.4

0.6

De
ns

ity

5 0
scaled Al2O3 the melt

0.0

0.2

0.4

De
ns

ity

2.5 0.0 2.5 5.0
scaled FeOt the melt

0.0

0.2

0.4
De

ns
ity

2.5 0.0 2.5 5.0
scaled MnO the melt

0.0

0.2

0.4

De
ns

ity

2 0 2 4
scaled MgO the melt

0.0

0.2

0.4

De
ns

ity

2 0 2
scaled CaO the melt

0.0

0.2

0.4

De
ns

ity

0 5
scaled Na2O the melt

0.0

0.2

0.4

De
ns

ity
0 2 4

scaled K2O the melt

0.0
0.2
0.4
0.6

De
ns

ity

0 5 10
scaled Cr2O3 the melt

0.0

0.5

1.0

De
ns

ity

0.0 2.5 5.0
scaled P2O5 the melt

0.00
0.25
0.50
0.75

De
ns

ity

0 5 10
scaled H2O the melt

0.0

0.5

1.0

De
ns

ity
Fig. 12.4 Result of the application of the StandardScaler() to the data reported in Fig. 12.2.

variables and a split-point (Zhang & Haghani, 2015). The single tree algorithm is at
the base of random forest, gradient boosting regression, and extremely randomized
tree methods. More details about the single decision tree model can be found in
Breiman et al. (2017).

The RandomForest: the Random Forest algorithm (Breiman, 2001) combines two
established machine-learning principles (Zhang & Haghani, 2015): Breiman’s “bag-
ging” predictors (Breiman, 1996) and the random features selection (Ho, 1998). The
bagging is a method for producing multiple versions of a predictor and using these
to get an aggregated predictor (Breiman, 1996). The multiple versions are created
by making bootstrap replicates of the learning set and using these as new learning
sets (Breiman, 1996). In the Random Forest algorithm, the Bagging predictors have
been used to generate a diverse subset of data for training base models (Zhang &
Haghani, 2015). For a given training data set with sample size n, bagging produces
k new training set, each with sample size n, by sampling from the original training
data set uniformly and with replacement (Zhang & Haghani, 2015). Through sam-
pling with replacement (i.e., bootstrap), some observations appear more than once
in the produced sample, while other observations will be ‘left out’ of the sample
(Zhang & Haghani, 2015). Then, k base models are trained using the newly created
k training set and coupled through averaging for the regression or majority voting
for classification (Zhang & Haghani, 2015). A detailed description of the Random

12.3 A Study Case of Machine Learning in Geology 215

5.0 2.5 0.0 2.5
scaled SiO2 in cpx

0.0
0.2
0.4

De
ns

ity
2 0 2 4 6

scaled TiO2 in cpx

0.00

0.25

0.50

De
ns

ity

2 0 2 4 6
scaled Al2O3 in cpx

0.0

0.2

0.4

De
ns

ity

2 0 2 4 6
scaled FeOt in cpx

0.0
0.2
0.4

De
ns

ity
0 5 10
scaled MnO in cpx

0.00

0.25

0.50

De
ns

ity

4 2 0 2 4
scaled MgO in cpx

0.0

0.2

0.4

De
ns

ity

4 2 0 2
scaled CaO in cpx

0.0

0.2

0.4

De
ns

ity

0 5 10
scaled Na2O in cpx

0.0

0.5

1.0

De
ns

ity

0.0 2.5 5.0 7.5
scaled K2O in cpx

0.0

0.5

1.0

De
ns

ity

0 2 4
scaled Cr2O3 in cpx

0.0

0.5

De
ns

ity

Fig. 12.5 Result of the application of the StandardScaler() to the data reported in Fig. 12.3.

Forest algorithm can be found in Breiman (2001), Natekin and Knoll (2013), and
Zhang and Haghani (2015).

Gradient Boosting: distinct from bagging predictors, the boosting method creates
base models sequentially (Friedman, 2002; Zhang&Haghani, 2015). In the Gradient
Boosting algorithm, the prediction capability is progressively improved through
developing multiple models in sequence and focusing on these training cases that
are difficult to estimate (Zhang & Haghani, 2015). As a key feature in the boosting
process, examples that are hard to estimate using the previous base models appear
more often in the training data than the ones that are correctly estimated (Friedman,
2002; Zhang & Haghani, 2015). In detail, each successive base model is intended

216 12 Machine Learning

to correct the errors made by its previous base models (Zhang & Haghani, 2015). A
detailed description of the Gradient Boosting algorithm can be found in Friedman
(2002) and Zhang and Haghani (2015).

The Extremely Randomized Trees: the Extremely Randomized Trees algorithm
builds an ensemble of regression trees according to the top-down procedure proposed
by Geurts et al. (2006). Its two main differences with other tree-based ensemble
methods are: 1) it splits nodes by choosing cut-points fully at random and 2) it uses
the whole learning sample (rather than a bootstrap replica) to grow the trees (Geurts
et al., 2006). It has two main parameters: the number of attributes randomly selected
at each node and theminimum sample size for splitting a node (Geurts et al., 2006). It
works several times with the (full) original learning sample to generate an ensemble
model (Geurts et al., 2006). The predictions of the trees are aggregated to yield the
final prediction, by majority vote in classification problems and arithmetic average in
regression problems (Geurts et al., 2006). A complete description of the Extremely
Randomized Trees algorithm is reported in Geurts et al. (2006).

k-nearest neighbors: K-nearest neighbors is a simple algorithm that collects all
available cases and predicts the numerical target based on an estimation of similarity
(e.g., distance functions; Bentley, 1975). In detail, it typically uses an inverse distance
weighted average of the K nearest neighbors (Bentley, 1975). The weight of each
training instance can be uniform or computed using a kernel function, which could
depend on the distance (as opposed to similarity) between itself and the test instance.
To note, the prediction using a single neighbor is just the target value of the nearest
neighbor (Bentley, 1975). A common distance metric used to measure the distance
between two instances is the Euclidean distance metric. A detailed description of the
K-nearest neighbors algorithm can be found in Bentley (1975).

The scikit-learn implementation of Single Decision Trees (Breiman et al., 2017),
Random Forests (Breiman, 2001), Stochastic Gradient Boosting (Friedman, 2002),
Extremely Randomized Trees (ERT, Geurts et al., 2006), and k-nearest neighbors
(Bentley, 1975) are reported in Table 12.2.

Table 12.2 ML regressors reported in Petrelli et al. (2020).

Algorithm scikit-learn

Single Decision Trees class sklearn.tree.DecisionTreeRegressor()

The Random Forest class sklearn.ensemble.RandomForestRegressor()

Gradient Boosting class klearn.ensemble.GradientBoostingRegressor()

The Extremely Randomized Trees class sklearn.ensemble.ExtraTreesRegressor()

k-nearest neighbors class sklearn.neighbors.KNeighborsRegressor()

The training and test processes can be easily performed in scikit-learn as described
in the code listing 12.3.

12.3 A Study Case of Machine Learning in Geology 217

They consist in the following steps (code listing 12.3): 1) define and train the
algorithm (in our case the Extremely Randomized Trees method; lines 2 and 5); 2)
import the test data set and scale it in accordance with the rules used for the train
data set (lines 8-17); 3) make a prediction on the test data set (line 20); 4) select one
or more metrics to evaluate the results (lines 23 and 23); 5) make the evaluation for
the results (lines 28-35 producing the Fig 12.6).

1 # Define the regressor , in our case the Extra Tree Regressor
2 regr = ExtraTreesRegressor(n_estimators=550, criterion=’mse’,

max_features=22, random_state=280) # random_state fixed for
reproducibility

3
4 # Train the model
5 regr.fit(X_train, Y_train.ravel())
6
7 # Import the test data set
8 my_test_dataset = pd.read_excel(’GlobalDataset_Final_rev9_Test.

xlsx’, usecols = "A:M,O:X,Z:AA", skiprows=1, engine=’openpyxl
’)

9 my_test_dataset.columns = [c.replace(’.1’, ’cpx’) for c in
my_test_dataset.columns]

10 my_test_dataset = my_test_dataset.fillna(0)
11
12 X0_test = my_test_dataset.iloc[:, 1:23]
13 Y_test= np.array([my_test_dataset.T_K]).T
14 Labels_test = np.array([my_test_dataset.Sample_ID]).T
15
16 # Scale the test dataset
17 X_test_scaled = scaler.transform(X0_test)
18
19 # Make the prediction on the test data set
20 predicted = regr.predict(X_test_scaled)
21
22 # Evaluate the results using the R2 and RMSE
23 r2 = r2_score(Y_test, predicted)
24 RMSE = np.sqrt(mean_squared_error(predicted , Y_test))
25
26 # Plot data
27 fig, ax = plt.subplots(figsize=(6,6))
28 ax.plot([1050,1850],[1050,1850], c=’#000000’, linestyle=’--’)
29 ax.scatter(Y_test,predicted , color=’#ad1010’, edgecolor=’#000000’

, label=r"ExtraTreesRegressor - R2=" + "{:.2f}".format(r2)
+ " - RMSE="+ "{:.0f}".format(RMSE) +" K")

30 ax.legend()
31 ax.axis(’scaled’)
32 ax.set_xlabel(’Expected Temperature values [K]’)
33 ax.set_ylabel(’Predicted Temperature values [K]’)

Listing 12.3 Training and testing the ExtraTreesRegressor() algorithm for temperature predictions.

218 12 Machine Learning

1100 1200 1300 1400 1500 1600 1700 1800
Expected Temperature values [K]

1100

1200

1300

1400

1500

1600

1700

1800

Pr
ed

ict
ed

 T
em

pe
ra

tu
re

 v
al

ue
s [

K]

ExtraTreesRegressor - R2=0.94 - RMSE=52 K

Fig. 12.6 Result of the code listing 12.3.

Part VI
Appendices

Appendix A
Python Packages Specifically Developed for
Geologists

pyrolite

pyrolite1 is a set of tools to handle and visualize geochemical data. The python pack-
age includes functions to work with compositional data, to transform geochemical
variables (e.g. elements to oxides), functions for common plotting tasks (e.g. spi-
derplots, ternary diagrams, bivariate and ternary density diagrams), and numerous
auxiliary utilities.

ObsPy

ObsPy2 is an open-source project dedicated to provide a Python framework for
processing seismological data. It provides parsers for common file formats, clients
to access data centers and seismological signal processing routines which allow the
manipulation of seismological time series.

APSG

APSG3 defines several new python classes to easily manage, analyze and visualize
orientational structural geology data.

1 https://pyrolite.readthedocs.io/en/master/
2 https://github.com/obspy/obspy/wiki
3 https://apsg.readthedocs.io/en/stable/index.html

221

222 A Python Packages Specifically Developed for Geologists

GemPy

GemPy4 is a tool for generating 3D structural geological models in Python. As
such, it enables you to create complex combinations of stratigraphical and structural
features such as folds, faults, and unconformities. It was furthermore designed to
enable probabilistic modeling to address parameter and model uncertainties.

Segyio

Segyio5 is a small LGPL licensed C library for easy interaction with SEG-Y and
Seismic Unix formatted seismic data, with language bindings for Python andMatlab.
Segyio is an attempt to create an easy-to-use, embeddable, community-oriented
library for seismic applications. Features are added as they are needed; suggestions
and contributions of all kinds are very welcome.

Pyrocko

Pyrocko6 is an open source seismology toolbox and library. Most of Pyrocko is
written in the Python programming language, a few parts are written in C.

gprMax

gprMax7 is open source software that simulates electromagnetic wave propagation. It
solvesMaxwell’s equations in 3D using the Finite-Difference Time-Domain (FDTD)
method. gprMax was designed for modelling Ground Penetrating Radar (GPR)
but can also be used to model electromagnetic wave propagation for many other
applications.

Lasio, welly and PetroPy

Lasio8 is a Python package to read and write Log ASCII Standard (LAS) files,
used for borehole data such as geophysical, geological, or petrophysical logs. It’s
compatible with versions 1.2 and 2.0 of the LAS file specification, published by
the Canadian Well Logging Society. Support for LAS 3 is being worked on. In
principle it is designed to read as many types of LAS files as possible, including

4 https://www.gempy.org
5 https://github.com/equinor/segyio
6 https://git.pyrocko.org/pyrocko/pyrocko
7 https://www.gprmax.com
8 https://github.com/kinverarity1/lasio/

A Python Packages Specifically Developed for Geologists 223

ones containing common errors or non-compliant formatting. Sometimes we want a
higher-level object, for example to contain methods that have nothing to do with LAS
files. We may want to handle other well data, such as deviation surveys, tops (aka
picks), engineering data, striplogs, synthetics, and so on. This is where welly9 comes
in. Welly uses lasio for data I/O, but hides much of it from the user. We recommend
you look at both projects before deciding if you need the ’well-level’ functionality
that welly provides. Welly is a family of classes to facilitate the loading, processing,
and analysis of subsurface wells and well data, such as striplogs, formation tops, well
log curves, and synthetic seismograms. PetroPy10 is a python petrophysics package
allowing scientific python computing of conventional and unconventional formation
evaluation. Reads las files using lasio. Includes a petrophysical workflow and a log
viewer based on XML templates.

SimPEG

Simulation and Parameter Estimation in Geophysics (SimPEG)11 is a python package
for simulation and gradient based parameter estimation in the context of geophysical
applications.

Devito

Devito12 is a Python package to implement optimized stencil computation (e.g.,
finite differences, image processing, machine learning) from high-level symbolic
problem definitions. Devito builds on SymPy and employs automated code gener-
ation and just-in-time compilation to execute optimized computational kernels on
several computer platforms, including CPUs, GPUs, and clusters thereof.

pyGIMLi

pyGIMLi13 is an open-source library for modelling and inversion and in geophysics.
The object-oriented library provides management for structured and unstructured
meshes in 2D and 3D, finite-element and finite-volume solvers, various geophysical
forward operators, as well as Gauss-Newton based frameworks for constrained, joint
and fully-coupled inversions with flexible regularization.

9 https://github.com/agile-geoscience/welly
10 https://github.com/toddheitmann/PetroPy
11 https://github.com/simpeg/simpeg
12 http://www.devitoproject.org
13 https://www.pygimli.org

224 A Python Packages Specifically Developed for Geologists

HyVR

The Hydrogeological Virtual Reality simulation package (HyVR)14 is a Python
module that helps researchers and practitioners generate subsurface models with
multiple scales of heterogeneity that are based on geological concepts. The simulation
outputs can then be used to explore groundwater flow and solute transport behaviour.
This is facilitated by HyVR outputs in common flow simulation packages’ input
formats. As each site is unique, HyVR has been designed that users can take the
code and extend it to suit their particular simulation needs.

Landlab

Landlab15 is an open-source Python-language package for numerical modeling of
Earth surface dynamics. It contains: 1) a gridding engine which represents the model
domain. Regular and irregular grids are supported; 2) library of process components,
each of which represents a physical process (e.g., generation of rain, erosion by
flowing water); 3) utilities that support general numerical methods, file input/output,
and visualization. In addition Landlab contains a set of Jupyter notebook tutorials
providing an introduction to core concepts and examples of use.

pyGeoPressure

pyGeoPressure is an open source python package designed for pore pressure predic-
tion with both well log data and seismic velocity data. Though lightweighted, py-
GeoPressure is able to perform whole workflow from data management to pressure
prediction. The main features of pyGeoPressure are: 1) Overburden (or Lithostatic)
Pressure Calculation; 2) Eaton’s method and Parameter Optimization; 3) Bowers’
method and Parameter Optimization; 4) Multivariate method and Parameter Opti-
mization.

14 https://github.com/driftingtides/hyvr
15 https://github.com/landlab/landlab

Appendix B
Introduction to Object Oriented Programming

B.1 Object-oriented programming

Definition: "Object-oriented programming (OOP) is a programming paradigmbased
on the concept of "objects", which can contain data and code: data in the form of
fields (often known as attributes or properties), and code, in the form of procedures
(often known as methods)."1.

In details, the main building bloks of OOP are classes and objects.
A class is an abstraction that is used to create objects. Typically, classes represent

broad categories, like the items of an online shop or a physical objects that share
attributes. All the objects created using a specific class share the same attributes
(e.g., colors, sizes, etc..). In the practice, a class is the blueprint, whereas an object
(i.e., instance) contains real data and it is built from a class. The creation of a new
object from a class is defined as instantiating an object.

As an example we could define a class for the items of an online shops containing
the following attributes: color, size, description, and price. Then, we could start
defining each single object, characterized by a specific color, size, description, and
price. When we define a Dataframe or a Figure in python we are creating objects
using the class pandas.DataFrame() and matplotlib.figure.Figure(), respectively.

Also, classes contain functions, called methods. These functions are defined
within the class and perform actions or computations for the objects belonging to
that specific class. As an example, .var() and .mean() are methods available for the
objects belonging to the class pandas.DataFrame().

B.2 Defining classes, attributes and methods in Python

The class statement followed by the name of the class and a colon define a new
class. Note that Python class names are written in capitalized words notation by

1 https://en.wikipedia.org/wiki/Object-oriented_programming

225

226 B Introduction to Object Oriented Programming

convention. As an example the code listing B.1 define a class named Circle after
importing the NumPy library that will be required in the successive developments
of the class.

1 import numpy as np
2
3 class Circle:
4 # Attributes an methods here

Listing B.1 Defining a new class in Python

The attributes of the class are defined using a method called .__init__(). The
method .__init__() can contain many parameters, but the first one is always a variable
called self.

As an example, in the code listing B.2 we define the attribute radius to the class
Circle.

1 import numpy as np
2
3 class Circle:
4
5 def __init__(self, radius):
6 self.radius = radius

Listing B.2 Adding attributes to a class

Finally, methods are functions that are defined inside a class and can only be called
from an object belonging to that specific class. The code listing B.3 report the im-
plementation of the methods description(), area(), circumference(), and diameter(),
respectively.

1 import numpy as np
2
3 class Circle:
4
5 def __init__(self, radius):
6 self.radius = radius
7
8 # my first Instance method
9 def description(self):
10 return "circle with radius equal to {:.2f}".format(self.

radius)
11
12 # my secong instance method
13 def area(self):
14 return np.pi * self.radius ** 2
15
16 # my secong instance method

B.2 Defining classes, attributes and methods in Python 227

17 def circumference(self):
18 return 2 * np.pi * self.radius
19
20 # my tird instance method
21 def diameter(self):
22 return 2 * np.pi

Listing B.3 Adding methods to a class

Finally, the code listing B.4 explain how to create (i.e., instantiate) a new Circle
object named my my_Circle, print its description and calculate its area.

1 import numpy as np
2
3 class Circle:
4
5 def __init__(self, radius):
6 self.radius = radius
7
8 # my first Instance method
9 def description(self):
10 return "circle with radius equal to {:.2f}".format(self.

radius)
11
12 # my secong instance method
13 def area(self):
14 return np.pi * self.radius ** 2
15
16 # my secong instance method
17 def circumference(self):
18 return 2 * np.pi * self.radius
19
20 # my tird instance method
21 def diameter(self):
22 return 2 * np.pi
23
24
25 my_Circle = Circle(radius=2)
26
27 # Description
28 print(my_Circle.description())
29
30 # Calculate and report the area
31 my_Area = my_Circle.area()
32
33 # Reporting the area of my_Circle
34 print("The area of a {} is equal to {:.2f}".format(my_Circle.

description(), my_Area))

Listing B.4 Instatiating an object from the Circle class and using methods (i.e., functions)

Appendix C
The Matplotlib Object Oriented API

C.1 Matplotlib Application Programming Interfaces

As reported in the Section 3.1, there are two main Application Programming Inter-
faces (APIs) to use Matplotlib:

OO-style: Using the OO-style, you explicitly define the objects governing the con-
tent and the aesthetics of a diagram (i.e., figures and axes) and call methods on them
to create your diagram.

pyplot style: It is the simplest way of plotting in matplotlib. Using the pyplot style,
you rely on pyplot that automatically creates and manages the objects governing your
diagram. Then, you use the pyplot functions for plotting.

Regarding the use of a specific style, the official documentation of matplolib
reports (Feb, 2021): "Matplotlib’s documentation and examples use both the OO
and the pyplot approaches (which are equally powerful), and you should feel free
to use either (however, it is preferable pick one of them and stick to it, instead of
mixing them). In general, we suggest to restrict pyplot to interactive plotting (e.g.,
in a Jupyter notebook), and to prefer the OO-style for non-interactive plotting (in
functions and scripts that are intended to be reused as part of a larger project)."1

C.2 Matplotlib Object Oriented API

As reported is the Section 1.2 and and Appendix B, when using the Object Ori-
ented programming paradigm, everything is an object, instantiated from a class. The
following descriptions are taken and adapted from the matplotlib official documen-
tation2.

1 https://matplotlib.org/stable/tutorials/introductory/usage.html
2 https://matplotlib.org

229

230 C The Matplotlib Object Oriented API

0 1 2 3 40.25 0.50 0.75 1.25 1.50 1.75 2.25 2.50 2.75 3.25 3.50 3.75
X axis label

0

1

2

3

4

Y
ax

is
la

be
l

Minor tick label

Major tick

Minor tick

Major tick label

X axis label

Y axis label

Title

Line
(line plot)

Line
(line plot)

Markers
(scatter plot)

Grid

Legend

Axes
Figure

Spines

Made with https://matplotlib.org

Anatomy of a figure
Blue signal
Red signal

Fig. C.1 Anatomy of a matplotlib Figure

The main classes governing a diagram in matplotlib are:

Figure: the figure object embed the whole diagram and it keeps track of all the
child Axes, the artists (e.g., titles, figure legends, etc), and the canvas. A figure can
contain any number of Axes, but will typically have at least one.

Axes: Axes are what you typically think when using the word ’plot’. It is the region
of the Figure where you plot your data. A given figure can host many Axes, but a
specific Axes object can only be in one Figure.

Axis: The Axis take care of setting the graph limits and generating the ticks (i.e.,
the marks on the axis) and ticklabels (i.e., strings labeling the ticks). The location
of the ticks is determined by an object called Locator, and the ticklabel strings are
formatted by a Formatter. Tuning the Locator and Formatter allows you to get a very
fine control over tick locations and labels. Data limits can be also controlled via the

C.3 Fine Tuning of Geological Diagrams using the OO-style 231

axes.Axes.set_xlim() and axes.Axes.set_ylim() methods). Each Axes has a title (set
via set_title()), an x-label (set via set_xlabel()), and a y-label set via set_ylabel()).
Note that Axes and Axis are two different type of objects in matplotlib.

Artists: In few word, an artist is any object that you can see within a Figure. Artists
includes Text objects, Line2D objects, collections objects and many other objects.
When the figure is rendered, all of the artists are drawn to the canvas.

The Fig. C.1 (generated using a script available in the official documentation3)
reports the main anatomy of a matplotlib Figure. In detail, Fig. C.1 highlights the
main objects that you can manage to personalize further a matplotlib diagram.

C.3 Fine Tuning of Geological Diagrams using the OO-style

Using the OO-style, we can access to any class in matplotlib. These classes provide
us many attributes an methods to perform the fine tuning a geological diagram.

To provide an example, the code listing C.1 highlights, with embedded referenc-
ing to the official documentation, how to perform additional personalizations to a
geological diagram we developed in the present book (Fig. 4.2). Making the fine
tuning, we will improve further the quality of our artworks. Fig C.2 reports the result
of code listing C.1.

1 import matplotlib.pyplot as plt
2 import matplotlib as mpl
3 from matplotlib.ticker import MultipleLocator , FormatStrFormatter

, AutoMinorLocator
4 import pandas as pd
5 import numpy as np
6
7 myDataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
8
9 fig, ax = plt.subplots()
10 # Figure managment
11 # https://matplotlib.org/stable/api/_as_gen/matplotlib.figure.

Figure.html
12
13 # Axes managment
14 # https://matplotlib.org/stable/api/axes_api.html
15
16 # select your style
17 # https://matplotlib.org/stable/gallery/style_sheets/

style_sheets_reference.html
18 mpl.style.use(’ggplot’)
19
20 # Make the plot

3 https://matplotlib.org/stable/gallery/showcase/anatomy.html

232 C The Matplotlib Object Oriented API

21 ax.hist(myDataset.Zr, density=True, bins=’auto’, color=’Tab:blue’
, edgecolor=’k’, alpha=0.8, label = ’CFC recent activity’)

22
23 # Commonnly used personalizations
24 ax.set_xlabel(’Zr [ppm]’)
25 ax.set_ylabel(’Probability density’)
26 ax.set_title(’Zr sample distribution’)
27 ax.set_xlim(-100, 1100)
28 ax.set_ylim(0,0.0055)
29 ax.set_xlabel(r’Zr [$\mu \cdot g^{-1}$]’)
30 ax.set_ylabel(’Probability density’)
31 ax.set_xticks(np.arange(0, 1100 + 1, 250)) # adjust the x tick

frequency
32 ax.set_yticks(np.arange(0, 0.0051, .001)) # adjust the y tick

frequency
33
34
35 # Major and minor ticks
36 # https://matplotlib.org/stable/gallery/ticks_and_spines/

major_minor_demo.html
37
38 ax.xaxis.set_minor_locator(AutoMinorLocator())
39
40 ax.tick_params(which=’both’, width=1)
41 ax.tick_params(which=’major’, length=7)
42 ax.tick_params(which=’minor’, length=4)
43
44 ax.yaxis.set_minor_locator(MultipleLocator(0.0005))
45
46 ax.tick_params(which=’both’, width=1)
47 ax.tick_params(which=’major’, length=7)
48 ax.tick_params(which=’minor’, length=4)
49
50
51 # Spine management
52 # https://matplotlib.org/stable/api/spines_api.html
53
54 ax.spines["top"].set_color("#363636")
55 ax.spines["right"].set_color("#363636")
56 ax.spines["left"].set_color("#363636")
57 ax.spines["bottom"].set_color("#363636")
58
59 # Spine placement
60 # https://matplotlib.org/stable/gallery/ticks_and_spines/

spine_placement_demo.html
61
62 # Advanced Annotations
63 # https://matplotlib.org/stable/tutorials/text/annotations.html#

plotting -guide-annotation
64 ax.annotate("Mean Value",
65 xy=(myDataset.Zr.mean(), 0.0026), xycoords=’data’,
66 xytext=(myDataset.Zr.mean() + 250, 0.0035),

textcoords=’data’,
67 arrowprops=dict(arrowstyle="fancy",

C.3 Fine Tuning of Geological Diagrams using the OO-style 233

68 color="0.5",
69 shrinkB=5,
70 connectionstyle="arc3,rad=0.3",
71),
72)
73
74 ax.annotate("Modal \n value ",
75 xy=(294, 0.0045), xycoords=’data’,
76 xytext=(0, 0.005), textcoords=’data’,
77 arrowprops=dict(arrowstyle="fancy",
78 color="0.5",
79 shrinkB=5,
80 connectionstyle="arc3,rad=-0.3",
81),
82)
83
84 # Legend
85 # https://matplotlib.org/stable/api/legend_api.html
86 ax.legend(title = ’My Legend’)
87
88 fig.tight_layout()

Listing C.1 Advanced personalization of matplotlib diagrams

0 250 500 750 1000
Zr [µ · g−1]

0.000

0.001

0.002

0.003

0.004

0.005

Pr
ob

ab
ilit

y
de

ns
ity Mean Value

Modal
 value

Zr sample distribution
My Legend

CFC recent activity

Fig. C.2 Reasult of the personalization of code listing C.1

Appendix D
Working with pandas

D.1 How to perform common operations in pandas

Importing an Excel file:

1 In [1]: import pandas as pd
2
3 In [1]: myDataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx

’, sheet_name=’Supp_traces’)

Importing an .csv file:

1 In [1]: import pandas as pd
2
3 In [1]: myDataset = MyData = pd.read_csv(’DEM.csv’)

Get the column labels

1 In [3]: myDataset.columns
2 Out[3]: Index([’Analysis no.’, ’Strat. Pos.’, ’Eruption’, ’

controlcode’, ’Sample’, ’Epoch’, ’Crater size’, ’Date of
analysis’, ’Si/bulk cps’, ’SiO2* (EMP)’, ’Sc’, ’Rb’, ’Sr’, ’Y
’, ’Zr’, ’Nb’, ’Cs’, ’Ba’, ’La’, ’Ce’, ’Pr’, ’Nd’, ’Sm’, ’Eu’
, ’Gd’, ’Tb’, ’Dy’, ’Ho’, ’Er’, ’Tm’, ’Yb’, ’Lu’, ’Hf’, ’Ta’,
’Pb’, ’Th’, ’U’],dtype=’object’)

235

236 D Working with pandas

Get the shape (i.e. height and width) of a DataFrame

1 In [4]: myDataset.shape
2 Out[4]: (370, 37)

Selecting a single column

1 In[5]: myDataset[’Rb’]
2 Out[5]:
3 0 355.617073
4 1 367.233701
5 2 293.320592
6 3 344.871192
7 4 352.352196
8 ...
9 365 358.479709
10 366 405.655463
11 367 328.080366
12 368 333.859656
13 369 351.240272
14 Name: Rb, Length: 370, dtype: float64

or
1 In[6]: myDataset.Rb
2 Out[6]:
3 0 355.617073
4 1 367.233701
5 2 293.320592
6 3 344.871192
7 4 352.352196
8 ...
9 365 358.479709
10 366 405.655463
11 367 328.080366
12 368 333.859656
13 369 351.240272
14 Name: Rb, Length: 370, dtype: float64

Selecting the first two rows of the whole DataFrame

1 In[7]: myDataset[0:2]
2 Out[7]:
3 Analysis no. ... Pb Th U
4 0 ... 60.930984 35.016435 9.203411
5 1 ... 59.892427 34.462577 10.459280
6 [2 rows x 37 columns]

D.1 How to perform common operations in pandas 237

Selecting the first four rows of a single columns

1 In[8]: myDataset[’Rb’][0:4]
2 Out[8]:
3 0 355.617073
4 1 367.233701
5 2 293.320592
6 3 344.871192
7 Name: Rb, dtype: float64

Converting the first four rows of a single columns to a NumPy array

1 Out[9]: myDataset.Rb[0:4].to_numpy()
2 Out[9]: array([355.61707274, 367.23370121, 293.32059158,

344.87119168])

Selecting a single cell

1 In[10]: myDataset[’Rb’][4]
2 Out[10]: 352.3521959503882

or, using the indexes of the columns and rows (note that rows and columns are
reversed than the previous example)

1 In[11]: myDataset.iloc[4,11]
2 Out[11]: 352.3521959503882

Sorting

1 In[12]: myDataset.sort_values(by=’SiO2* (EMP)’, ascending=False)
2 Out[12]:
3 Analysis no. ... SiO2* (EMP) ... Th U
4 228 ... 62.410000 ... 56.114101 15.548608
5 236 ... 62.410000 ... 47.402098 12.345041
6
7 304 ... 54.425402 ... 16.539421 5.256582
8 318 ... 54.425402 ... 16.539421 5.256582
9 [370 rows x 37 columns]

Filtering:

238 D Working with pandas

1) define a sub DataFrame containig all the samples with Zirconium above 400

1 In[13]: myDataset1 = myDataset[myDataset.Zr > 400]

2) define a sub DataFrame containing all the samples with Zirconium between 400
and 450

1 In[14]: myDataset2 = myDataset[((myDataset.Zr > 400)&(myDataset.
Zr < 500))]

Managing Missing Data:
1) drop any rows that have missing data

1 In[15]: myDataset3 = myDataset.dropna(how=’any’)
2 In[16]: myDataset.shape
3 Out[16]: (370, 37) <- the original data set
4 In[17]: myDataset3.shape
5 Out[17]: (366, 37) <- 4 samples contained missing data

2) replace missing data with a fixed value (e.g., 5)
1 In[18]: myDataset4 = myDataset.fillna(value=5)

Further Readings

Part I: Python for Geologists, a kick-off

Beazley, D. M., & Jones, B. K. (K. (2013). Python cookbook.
Bisong, E. (2019). Matplotlib and Seaborn. Building machine learning and deep

learning models on google cloud platform (pp. 151–165). Apress. https:
//doi.org/10.1007/978-1-4842-4470-8{_}12

Bressert, E. (2012). SciPy andNumPy: AnOverview forDevelopers. O’ReillyMedia,
Inc.

Chen, D. Y. (2017). Pandas for everyone : Python data analysis. Addison-Wesley
Professiona.

Dowek, G., & Lévy, J.-J. (2011). Introduction to the Theory of Programming Lan-
guages. Springer London. https://doi.org/10.1007/978-0-85729-076-2

Downey, A. (2016). Think Python.
Gabbrielli, M., & Martini, S. (2010). Programming Languages: Principles and

Paradigms. Springer London. https://doi.org/10.1007/978-1-84882-914-5
Hunt, J. (2019).ABeginners Guide to Python 3 Programming. Springer International

Publishing. https://doi.org/10.1007/978-3-030-20290-3
Lubanovic, B. (2019). Introducing Python : modern computing in simple packages.
Matthes, E. (2019). Python crash course : a hands-on, project-based introduction to

programming.
Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S. B., Rocklin, M.,

Kumar, A., Ivanov, S., Moore, J. K., Singh, S., Rathnayake, T., Vig, S.,
Granger, B. E., Muller, R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson,
F., Pedregosa, F., . . . Scopatz, A. (2017). SymPy: symbolic computing in
Python. PeerJ Computer Science, 3, e103. https://doi.org/10.7717/peerj-
cs.103

Paper,D. (2020).Hands-on Scikit-Learn forMachine LearningApplications. Apress.
https://doi.org/10.1007/978-1-4842-5373-1

Rollinson, H. (1993). Using Geochemical Data: Evaluation, Presentation, Interpre-
tation. Routledge.

Rossant, C. (2018). IPython Cookbook, Second Edition. Pack.
Smith, V., Isaia, R., & Pearce, N. (2011). Tephrostratigraphy and glass compositions

of post-15 kyr Campi Flegrei eruptions: implications for eruption history
and chronostratigraphic markers. Quaternary Science Reviews, 30(25-26),
3638–3660. https://doi.org/10.1016/J.QUASCIREV.2011.07.012

Sweigart, A. (2019). Automate the boring stuff with Python : practical programming
for total beginners.

Turbak, F. A., &Gifford, D.K. (2008).DesignConcepts in Programming Languages.
MIT Press.

Van Roy, P., & Haridi, S. (2004). Concepts, Techniques, and Models of Computer
Programming. MIT Press.

239

240 PART III: INTEGRALS AND DIFFERENTIAL EQUATIONS IN GEOLOGY

Part II: Describing Geological Data

Blundy, J., &Wood, B. (1994). Prediction of crystal-melt partition coefficients from
elastic moduli. Nature, 372(6505), 452–454. https : / / doi . org / 10 . 1038 /
372452a0

Branch, M. A., Coleman, T. F., & Li, Y. (1999). A Subspace, Interior, and Con-
jugate Gradient Method for Large-Scale Bound-Constrained Minimiza-
tion Problems. SIAM Journal on Scientific Computing, 21(1), 1–23. https:
//doi.org/10.1137/S1064827595289108

Chatterjee, S., & Hadi, A. S. (2013). Regression Analysis by Example (fifth edit).
Healy, K. (2019). Data Visualization: A Practical Introduction.
Kopka, H., & Daly, P. W. (2003). Guide to LaTeX. Addison-Wesley Professional.
Lamport, L. (1994). LaTeX: A document preparation system, User’s guide and

reference manual. Addison Wesley.
Meltzer, A.,&Kessel, R. (2020).Modelling garnet-fluid partitioning inH2O-bearing

systems: a preliminary statistical attempt to extend the crystal lattice-strain
theory to hydrous systems. Contributions to Mineralogy and Petrology,
175(8), 80. https://doi.org/10.1007/s00410-020-01719-8

Mittelbach, F., Goossens, M., Braams, J., Carlisle, D., & Rowley, C. (2004). No
TitleThe LaTeX Companion, 2nd edition. Addison-Wesley Professional.

Montgomery, D. C., Peck, E. A., & G.Geoffrey, V. (2012). Introduction to Linear
Regression Analysis. Wiley.

Moré, J. J. (1978). The Levenberg-Marquardt algorithm: Implementation and the-
ory. In G. Watson (Ed.), Numerical analysis. lecture notes in mathematics
(pp. 105–116). Springer, Berlin, Heidelberg. https : / / doi . org / 10 . 1007 /
BFb0067700

Motulsky, H., & Christopoulos, A. (2004). Fitting models to biological data using
linear and nonlinear regression : a practical guide to curve fitting. Oxford
University Press.

Ross, S. M. (2017). Introductory statistics (4th Edition). Academic Press.
Seber, G. A. F. (A. F., & Wild, C. J. (J. (1989). Nonlinear regression. Wiley.
Tufte, E. (2001). The Visual Display of Quantitative Information (2nd editio). Graph-

ics Press.
Voglis, C., & Lagaris, I. E. (2004). A Rectangular Trust Region Dogleg Approach

for Unconstrained and Bound Constrained Nonlinear Optimization. In T.
Simos & G. Maroulis (Eds.), Wseas international conference on applied
mathematics, corfu, greece (pp. 562–565). Taylor; Francis Inc. https://doi.
org/10.1201/9780429081385-138

Part III: Integrals and Differential Equations in Geology

Agarwal, R. P., & O’Regan, D. (2008). An Introduction to Ordinary Differential
Equations. Springer. https://doi.org/9780387712758

PART III: INTEGRALS AND DIFFERENTIAL EQUATIONS IN GEOLOGY 241

Anderson, D. L. (1989). Theory of the Earth. Blackwell Scientific Publications.
Atkinson, K. E., Han, W., & Stewart, D. (2009). Numerical Solution of Ordinary

Differential Equations. John Wiley & Sons, Inc. https://doi.org/10.1002/
9781118164495

Burd, A. (2019). Mathematical Methods in the Earth and Environmental Sciences.
Cambridge University Press. https://doi.org/10.1017/9781316338636

Costa, F., Chakraborty, S., & Dohmen, R. (2003). Diffusion coupling between trace
and major elements and a model for calculation of magma residence times
using plagioclase. Geochimica et Cosmochimica Acta, 67(12), 2189–2200.
https://doi.org/10.1016/S0016-7037(02)01345-5

Costa, F., Shea, T., & Ubide, T. (2020). Diffusion chronometry and the timescales of
magmatic processes.Nature Reviews Earth & Environment, 1(4), 201–214.
https://doi.org/10.1038/s43017-020-0038-x

Crank, J. (1975). The mathematics of diffusion (2nd ed.). Clarendon Press Oxford
[England].

Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model.
Physics of the Earth and Planetary Interiors, 25(4), 297–356. https://doi.
org/10.1016/0031-9201(81)90046-7

Fick, A. (1855). Ueber Diffusion. Annalen der Physik und Chemie, 170(1), 59–86.
https://doi.org/10.1002/andp.18551700105

Griffiths,D. F.,&Higham,D. J. (2010).NumericalMethods forOrdinaryDifferential
Equations. Springer London. https://doi.org/10.1007/978-0-85729-148-6

King, D., Billingham, J., & Otto, S. R. (2003). Differential equations. Linear, non-
linear, ordinary, partial. Cambridge University Press.

Li, Z., Qiao, Z., & Tang, T. (2017). Numerical Solution of Differential Equations.
Cambridge University Press. https://doi.org/10.1017/9781316678725

Linge, S., & Langtangen, H. P. (2017). Finite Difference Computing with PDEs
(1st ed.). Springer International Publishing. https://doi.org/10.1007/978-
3-319-55456-3

Mazumder, S. (2015). Numerical methods for partial differential equations: Finite
difference and finite volume methods. Academic press.

Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S. B., Rocklin, M.,
Kumar, A., Ivanov, S., Moore, J. K., Singh, S., Rathnayake, T., Vig, S.,
Granger, B. E., Muller, R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson,
F., Pedregosa, F., . . . Scopatz, A. (2017). SymPy: symbolic computing in
Python. PeerJ Computer Science, 3, e103. https://doi.org/10.7717/peerj-
cs.103

Moore, A., Coogan, L., Costa, F., & Perfit, M. (2014). Primitive melt replenishment
and crystal-mush disaggregation in the weeks preceding the 2005–2006
eruption 9◦ 50’ N, EPR. Earth and Planetary Science Letters, 403, 15–26.
https://doi.org/10.1016/J.EPSL.2014.06.015

Morton, K. W., & Mayers, D. F. (2005). Numerical Solution of Partial Differen-
tial Equations. Cambridge University Press. https : / / doi . org / 10 . 1017 /
CBO9780511812248

Priestley, H. (1997). Introduction to Integration. Oxford University Press.

242 PART IV: PROBABILITY DENSITY FUNCTIONS AND ERROR ANALYSIS

Slavinić, P., &CvetkovićMarko. (2016). Volume calculation of subsurface structures
and traps in hydrocarbon exploration — a comparison between numerical
integration and cell based models. Open Geosciences, 8(1). https://doi.org/
10.1515/geo-2016-0003

Strang, G., Herman, E., OpenStax College, & Open Textbook Library. (2016). Cal-
culus. Volume 1. OpenStax - Rice University.

Zill, D. (2012). A First Course in Differential Equations withModeling Applications.
Cengage Learning, Inc.

Part IV: Probability Density Functions and Error Analysis

Agterberg, F. (2018). Statistical Modeling of Regional and Worldwide Size-
Frequency Distributions of Metal Deposits. Handbook of mathematical
geosciences (pp. 505–523). Springer International Publishing. https://doi.
org/10.1007/978-3-319-78999-6{_}26

Ahrens, L. H. (1953). A fundamental law of geochemistry. https://doi.org/10.1038/
1721148a0

Ballio, F., & Guadagnini, A. (2004). Convergence assessment of numerical Monte
Carlo simulations in groundwater hydrology. Water Resources Research,
40(4), 4603. https://doi.org/10.1029/2003WR002876

Barbu, A., & Zhu, S.-C. (2020).Monte Carlo Methods (1st Editio). Springer Nature.
Davies, J., Marzoli, A., Bertrand, H., Youbi, N., Ernesto, M., & Schaltegger, U.

(2017). End-Triassic mass extinction started by intrusive CAMP activ-
ity. Nature Communications, 8(1), 15596. https : / / doi . org / 10 . 1038 /
ncomms15596

Everitt, B. (2006). The Cambridge Dictionary of Statistics (3rd ed.). Cambridge
University Press.

Gramacki, A. (2018). Nonparametric Kernel Density Estimation and Its Computa-
tional Aspects (Vol. 37). Springer International Publishing. https://doi.org/
10.1007/978-3-319-71688-6{_}4

Haramoto, H., Matsumoto, M., & L’Ecuyer, P. (2008). A Fast Jump Ahead Al-
gorithm for Linear Recurrences in a Polynomial Space. Sequences and
their applications - seta 2008 (pp. 290–298). Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-540-85912-3{_}26

Hughes, I., & Hase, T. (2010). Measurements and their Uncertainties: A practical
guide to modern error analysis. Oxford University Press, US.

Johnston, D. (2018). Random number generators - principles and practices: a guide
for engineers and programmers. Walter de Gruyter GmbH.

Liu, S. A., Wu, H., Shen, S. Z., Jiang, G., Zhang, S., Lv, Y., Zhang, H., & Li,
S. (2017). Zinc isotope evidence for intensive magmatism immediately
before the end-Permian mass extinction. Geology, 45(4), 343–346. https:
//doi.org/10.1130/G38644.1

PART V: ROBUST STATISTICS AND MACHINE LEARNING 243

O’Neill, M. E. (2014). PCG : A Family of Simple Fast Space-Efficient Statistically
Good Algorithms for Random Number Generation.

Puetz, S. J. (2018). A relational database of global U–Pb ages.Geoscience Frontiers,
9(3), 877–891. https://doi.org/10.1016/J.GSF.2017.12.004

Reimann, C., & Filzmoser, P. (2000). Normal and lognormal data distribution in
geochemistry: Death of a myth. Consequences for the statistical treatment
of geochemical and environmental data. Environmental Geology, 39(9),
1001–1014. https://doi.org/10.1007/s002549900081

Rocholl, A. (1998). Major and Trace Element Composition and Homogeneity of Mi-
crobeam Reference Material: Basalt Glass USGS BCR-2G. Geostandards
and Geoanalytical Research, 22(1), 33–45. https://doi.org/10.1111/j.1751-
908X.1998.tb00543.x

Salmon, J. K., Moraes, M. A., Dror, R. O., & Shaw, D. E. (2011). Parallel random
numbers: As easy as 1, 2, 3. SC ’11: Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis, 1–12. https://doi.org/10.1145/2063384.2063405

Schwartz, L. M. (1975). Random Error Propagation byMonte Carlo Simulation. An-
alytical Chemistry, 47(6), 963–964. https://doi.org/10.1021/ac60356a027

Silverman, B. W. (1998).Density Estimation for Statistics and Data Analysis. Chap-
man; Hall/CRC.

Taylor, J. R. (1997). An Introduction to Error Analysis: The Study of Uncertainties
in Physical Measurements (2nd editio). University Science Books.

Tegner, C., Marzoli, A., McDonald, I., Youbi, N., & Lindström, S. (2020). Platinum-
group elements link the end-Triassic mass extinction and the Central At-
lantic Magmatic Province. Scientific Reports, 10(1), 1–8. https://doi.org/
10.1038/s41598-020-60483-8

Tobutt, D. C. (1982).Monte Carlo Simulationmethods for slope stability.Computers
and Geosciences, 8(2), 199–208. https://doi.org/10.1016/0098-3004(82)
90021-8

Troyan, V., & Kiselev, Y. (2010). Statistical Methods of Geophysical Data Process-
ing. World Scientific Publishing Company.

Ulianov, A., Müntener, O., & Schaltegger, U. (2015). The ICPMS signal as a Poisson
process: a review of basic concepts. Journal of Analytical Atomic Spectrom-
etry, 30(6), 1297–1321. https://doi.org/10.1039/C4JA00319E

Wang, Z., Yin, Z., Caers, J., & Zuo, R. (2020). A Monte Carlo-based framework for
risk-return analysis in mineral prospectivity mapping. Geoscience Fron-
tiers, 11(6), 2297–2308. https://doi.org/10.1016/j.gsf.2020.02.010

Part V: Robust Statistics and Machine Learning

Abedi,M., Norouzi, G.-H.,&Bahroudi, A. (2012). Support vectormachine formulti-
classification of mineral prospectivity areas. Computers and Geosciences,
46, 272–283. https://doi.org/10.1016/j.cageo.2011.12.014

244 PART V: ROBUST STATISTICS AND MACHINE LEARNING

Bentley, J. L. (1975). Multidimensional Binary Search Trees Used for Associative
Searching. Communications of the ACM, 18(9), 509–517. https://doi.org/
10.1145/361002.361007

Bishop, C. (2006). Pattern Recognition and Machine Learning. Springer.
Breiman, L. (1996). Bagging Predictors. Machine Learning, 24(2), 123–140. https:

//doi.org/10.1023/A:1018054314350
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.

org/10.1023/A:1010933404324
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (2017). Classification

and regression trees. CRC Press. https://doi.org/10.1201/9781315139470
Cannata, A., Montalto, P., Aliotta, M., Cassisi, C., Pulvirenti, A., Privitera, E.,

& Patanè, D. (2011). Clustering and classification of infrasonic events at
Mount Etna using pattern recognition techniques. Geophysical Journal
International, 185(1), 253–264. https:/ /doi .org/10.1111/ j .1365- 246X.
2011.04951.x

D’Agostino, R., & Pearson, E. S. (1973). Tests for departure from normality.
Biometrika, 60, 613–622.

D’Agostino, R. B. (1971). An omnibus test of normality for moderate and large
sample size. Biometrika, 58, 341–348.

Devine, J. D., Murphy, M. D., Rutherford, M. J., Barclay, J., Sparks, R. S. J.,
Carroll, M. R., Young, S. R., & Gardner, I. E. (1998). Petrologic evidence
for pre-eruptive pressure-temperature conditions, and recent reheating, of
andesitic magma erupting at the Soufriere Hills Volcano, Montserrat, W.I.
Geophysical Research Letters, 25(19), 3669–3672. https://doi.org/10.1029/
98GL01330

Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics and
Data Analysis, 38(4), 367–378. https://doi.org/10.1016/S0167-9473(01)
00065-2

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees.Machine
Learning, 63(1), 3–42. https://doi.org/10.1007/s10994-006-6226-1

Goldstein, E., & Coco, G. (2014). A machine learning approach for the prediction
of settling velocity. Water Resources Research, 50(4), 3595–3601. https:
//doi.org/10.1002/2013WR015116

Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., & Scholkopf, B. (1998). Support
vector machines. IEEE Intelligent Systems and their Applications, 13(4),
18–28. https://doi.org/10.1109/5254.708428

Hirschmann, M. M., Ghiorso, M. S., Davis, F. A., Gordon, S. M., Mukherjee, S.,
Grove, T. L., Krawczynski, M., Medard, E., Till, C. B., . Medard, E., &
Till, C. B. (2008). Library of Experimental Phase Relations (LEPR): A
database and Web portal for experimental magmatic phase equilibria data.
Geochemistry, Geophysics, Geosystems, 9(3), n/a–n/a. https://doi.org/10.
1029/2007GC001894

Ho, T. (1998). The random subspace method for constructing decision forests. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(8), 832–
844. https://doi.org/10.1109/34.709601

PART V: ROBUST STATISTICS AND MACHINE LEARNING 245

Huang, C., Davis, L., & Townshend, J. (2002). An assessment of support vector
machines for land cover classification. International Journal of Remote
Sensing, 23(4), 725–749. https://doi.org/10.1080/01431160110040323

Huber, P. J., & Ronchetti, E. M. (2009). Robust Statistics, 2nd Edition. Wiley.
Jain, A., Murty, M., & Flynn, P. (1999). Data clustering: A review. ACM Computing

Surveys, 31(3), 264–323. https://doi.org/10.1145/331499.331504
Jordan, M., & Mitchell, T. (2015). Machine learning: Trends, perspectives, and

prospects. Science, 349(6245), 255–260. https://doi.org/10.1126/science.
aaa8415

Kotsiantis, S. (2007). Supervised machine learning: A review of classification tech-
niques. Informatica (Ljubljana), 31(3), 249–268.

Le Maitre, R. (1982). Numerical Petrology. Elsevier.
Lee, J., & Verleysen, M. (2009). Quality assessment of dimensionality reduction:

Rank-based criteria. Neurocomputing, 72(7-9), 1431–1443. https://doi.org/
10.1016/j.neucom.2008.12.017

Maronna, R. A., Martin, R. D., & Yohai, V. J. (2006). Robust Statistics: Theory and
Methods (2nd editio). Wiley. https://doi.org/10.1002/0470010940

Masotta, M., Mollo, S., Freda, C., Gaeta, M., & Moore, G. (2013). Clinopyrox-
ene–liquid thermometers and barometers specific to alkaline differentiated
magmas. Contributions to Mineralogy and Petrology, 166(6), 1545–1561.
https://doi.org/10.1007/s00410-013-0927-9

Masotti, M., Falsaperla, S., Langer, H., Spampinato, S., & Campanini, R. (2006).
Application of Support Vector Machine to the classification of volcanic
tremor at Etna, Italy.Geophysical Research Letters, 33(20). https://doi.org/
10.1029/2006GL027441

Murphy, K. (2012). Machine Learning. MIT Press.
Natekin, A., & Knoll, A. (2013). Gradient boosting machines, a tutorial. Frontiers

in Neurorobotics, 7(DEC), 21. https://doi.org/10.3389/fnbot.2013.00021
Neave, D. A., Bali, E., Guðfinnsson, G. H., Halldórsson, A., Kahl, M., Schmidt,

A.-s., & Holtz, F. (2019). Clinopyroxene–liquid equilibria and geothermo-
barometry in natural and experimental tholeiites: the 2014–2015Holuhraun
eruption, Iceland David. Journal of Petrology, accepted.

Nimis, P. (1995). A Clinopyroxene Geobarometer for Basaltic Systems Based on
Crystal-Structure Modeling. Contribution to mineralogy and petrology,
121(2), 115–125.

Nimis, P., & Ulmer, P. (1998). Clinopyroxene geobarometry of magmatic rocks
Part 1: An expanded structural geobarometer for anhydrous and hydrous,
basic and ultrabasic systems. Contribution to mineralogy and petrology,
133(1-2), 122–135.

Palettas, P. (1992). Probability Plots and Modern Statistical Software. In C. Page
& R. LePage (Eds.), Computing science and statistics. Springer. https :
//doi.org/10.1007/978-1-4612-2856-1{_}84

Pedregosa, F., Varoquaux, G. G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É.

246 PART V: ROBUST STATISTICS AND MACHINE LEARNING

(2011). Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research, 12(85), 2825–2830.

Petrelli, M., Bizzarri, R., Morgavi, D., Baldanza, A., & Perugini, D. (2017). Com-
bining machine learning techniques, microanalyses and large geochemical
datasets for tephrochronological studies in complex volcanic areas: New
age constraints for the Pleistocene magmatism of central Italy. Quaternary
Geochronology, 40, 33–44. https://doi.org/10.1016/j.quageo.2016.12.003

Petrelli, M., Caricchi, L., & Perugini, D. (2020). Machine Learning Thermo-
Barometry: Application to Clinopyroxene-Bearing Magmas. Journal of
Geophysical Research: Solid Earth, 125(9). https : / / doi . org / 10 . 1029 /
2020JB020130

Petrelli, M., & Perugini, D. (2016). Solving petrological problems through machine
learning: the study case of tectonic discrimination using geochemical and
isotopic data. Contributions to Mineralogy and Petrology, 171(10). https:
//doi.org/10.1007/s00410-016-1292-2

Petrelli, M., Perugini, D., Moroni, B., & Poli, G. (2003). Determination of travertine
provenance from ancient buildings using self-organizing maps and fuzzy
logic. Applied Artificial Intelligence, 17(8-9), 885–900. https://doi.org/10.
1080/713827251

Putirka, K. (2008). Introduction to minerals, incusions and volcanic processes
(Vol. 69). https://doi.org/10.2138/rmg.2008.69.1

Putirka,K.,Mikaelian,H., Ryerson, F.,&Shaw,H. (2003).Newclinopyroxene-liquid
thermobarometers for mafic, evolved, and volatile-bearing lava composi-
tions, with applications to lavas fromTibet and the SnakeRiver Plain, Idaho.
American Mineralogist, 88(10), 1542–1554. https://doi.org/10.2138/am-
2003-1017

Reimann, C., & Filzmoser, P. (2000). Normal and lognormal data distribution in
geochemistry: Death of a myth. Consequences for the statistical treatment
of geochemical and environmental data. Environmental Geology, 39(9),
1001–1014. https://doi.org/10.1007/s002549900081

Shai, S.-S., & Shai, B.-D. (2013). Understanding machine learning: From theory
to algorithms (Vol. 9781107057). Cambridge University Press. https://doi.
org/10.1017/CBO9781107298019

Shapiro, S. S., & Wilk, M. B. (1965). An Analysis of Variance Test for Normality
(Complete Samples). Biometrika, 52(3/4), 591. https://doi.org/10.2307/
2333709

Smith, V., Isaia, R., & Pearce, N. (2011). Tephrostratigraphy and glass compositions
of post-15 kyr Campi Flegrei eruptions: implications for eruption history
and chronostratigraphic markers. Quaternary Science Reviews, 30(25-26),
3638–3660. https://doi.org/10.1016/J.QUASCIREV.2011.07.012

Smola, A., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics
and Computing, 14(3), 199–222. https : / / doi . org / 10 . 1023 / B : STCO .
0000035301.49549.88

Stephens, M. A. (1974). EDF Statistics for Goodness of Fit and Some Comparisons.
Journal of the American Statistical Association, 69, 730–737.

PART V: ROBUST STATISTICS AND MACHINE LEARNING 247

Thode, H. C. (2002). Testing for Normality (1st). Marcel Dekker.
Zhang, Y., & Haghani, A. (2015). A gradient boosting method to improve travel

time prediction. Transportation Research Part C: Emerging Technologies,
58, 308–324. https://doi.org/10.1016/j.trc.2015.02.019

Zuo, R., & Carranza, E. (2011). Support vector machine: A tool for mapping mineral
prospectivity.Computers andGeosciences, 37(12), 1967–1975. https://doi.
org/10.1016/j.cageo.2010.09.014

