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Abstract
Rolling-Element (RE) bearings are one of the most important components and have a great impact on safety. Due to factors such as design, installation technology, usage conditions and sudden load etc., the bearings may suffer from different failures modes such as corrosion, overheating, contamination etc. These failures are serious issues, which may often result in fires and other phenomena with clear risks to life. 
In order to minimize the occurrence of such failures, the assessment of the remaining useful life of the RE bearing is essential. Evaluation of the bearings remaining useful life requires diagnosis of the fault existence, estimation of its size, and estimation of the time interval until it reaches a critical size. One of the most common methods for diagnostics of rotating machinery is based on vibration signals. Vibration analysis has been proven as an effective method for detecting various faults and malfunctions. Different methods of vibration signal processing require the knowledge of the rotational speed of the mechanics. This is because actions of the moving parts take place at specific angular positions rather than at specific times. For this reason, accurate estimation of the instantaneous Angular Speed (IAS) has an important role in facilitating reliable diagnostics. Inaccurate angular speed, due to dynamic phenomena’s such as unbalance, misalignment, eccentricity, etc., can lead to masking the effects of incipient localized faults. In practice, however, direct measurement of the angular speed is sometimes impossible, uneconomical or inaccurate. 
This work focuses on the estimation of the IAS directly from the vibration signal for diagnostic of bearings, gears and other mechanisms. In this study, few methods for IAS estimation directly from the vibration signal are compared and a complete vibration analysis scheme for diagnostics of bearings is proposed and validated experimentally. In addition, this work presents new approach for automatic extraction of the IAS from the vibrations under time-varying angular speed conditions. First an approximate rotating speed is extracted from the vibrations TFR and in the second stage the IAS is determined. A complete analysis scheme for the diagnosed IAS is proposed and validated through real data and simulations.
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	signal in the time domain
	[-]
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	t
	Time vector
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	[-]
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[bookmark: _Toc34662718]1 INTRODUCTION
[bookmark: _Toc34662719]1.1 Condition Based Maintenance (CBM)

CBM is a predictive maintenance technique focused on performing a maintenance action based on the actual condition of a system. CBM attempts to avoid unnecessary maintenance tasks by taking maintenance actions only when there is evidence of abnormal behavior of a component. When implemented correctly, CBM can significantly reduce maintenance cost and workload, increase availability, and improve safety.
CBM consists of three steps [1] (Figure. 1):
1. Data acquisition, to obtain data relevant to system health.
2. Data processing, to analyze the data obtained in step 1.
3. Maintenance decision making, to recommend efficient maintenance policies.
[image: ]
[bookmark: _Toc34662754]         Figure 1: The three steps in the CBM technique.

Condition monitoring of components is achieved by processing data collected by sensors attached to these components. The data is summarized by Condition Indicators (CIs) and provides health indications for the decision making process. The analysis can be performed on various types of data, including vibration, acoustic, oil debris, etc. Vibration analysis is the prevalent method for the monitoring of rotating components. Collected vibration data is analyzed using different signal processing techniques to extract features that are used to diagnose the current condition of the mechanism. In the diagnosis stage, faults are detected. After fault isolation, a specific component which is under failure is identified and the extent and nature of the fault are estimated. In the prognosis stage, a time-to-failure is evaluated based on the fault identification.



[bookmark: _Toc34662720]1.2 Vibration Analysis

Vibration analysis has been proven to be an effective method for detecting various faults and malfunctions. This method is already in use for monitoring jet engines, wind turbines, and other mechanisms [7,8]. In this research, the vibration signatures of healthy and damaged ball-bearings with different sizes of faults and unbalances were used in order to estimate their constant or time-varying instantaneous angular speeds directly from the vibration signal, which is then used for bearing diagnostics. 
[bookmark: _Toc34662721] 1.3 Methodology

Comparison of experimental signals to simulated ones provides the necessary information for understanding the dynamic response of a vibration signature in the presence of a fault. During this research, a simulation was written on purpose to simulate the vibration signature of different mechanisms. An experimental validation confirmed the simulation results.
[bookmark: _Toc34662722]1.4 Thesis structure

The second chapter in this work presents the literature review that had been done as preliminary study for this work. In the third chapter, existing approaches and relevant theoretical background will be described. Chapter four present the objectives of the research. describes the simulations and experiment and the fifth chapter discuss the method for IAS estimation directly from the vibration signal. In chapter six the results analysis is given. The last chapter, chapter eight concludes the work. 







[bookmark: _Toc34662723]2. LITERATURE REVIEW THEORETICAL BACKGROUND

The following chapter presents a literature review about three themes that will be presented separately: IAS evaluation under constant angular speed, IAS evaluation under time-varying angular speed and evaluation of defect in bearings.
[bookmark: _Toc34662724]2.1 IAS estimation for constant angular speed

For bearings operating under constant rotational speed, faults can be diagnosed in the frequency domain since each type of fault has a specific fault characteristic frequency, which is proportional to the shaft rotational speed. In cases where the rotational speed cannot be measured the IAS can be estimated directly from the vibration signal. IAS estimation can be performed in many different ways, with each one having its advantages and disadvantages. One of earliest method for IAS estimation is Fourier-based. This approach is the simplest to implement method. Fourier-based IAS evaluation is available in some commercial IAS estimation software, in [13] a detailed analysis of these method is presented and compared the errors both qualitatively and graphically. this method can be considered as a good tool for overall IAS observation in stationary conditions however, this approach cannot work well with non-stationary data. A recent technique for IAS estimation was proposed in [19], the two-step method. In the first step, the IAS is roughly estimated based on a time– frequency distribution, such as a spectrogram. In the second step, a narrow band pass filter with tuned specification is applied based on the first IAS estimate and a refined estimate is obtained by frequency demodulation. The first IAS estimate obtained from the spectrogram is used for angular resampling of vibration signal. Then, it is possible to filter the component of interest in the angular domain by using a constant bandwidth band pass filter and resample it back to the original time domain. The final IAS estimate is then obtained by frequency demodulation on the previously filtered signal. The simplicity of the method implementation and the fact that the method allows good estimate of the rotation speed even when the IAS has relatively large fluctuations makes it attractive. However, the method has three major drawbacks, first the method is not yet suitable for practical applications. As the authors’ stated, an automatic, unsupervised rotational speed reconstruction from vibration signal is still not possible in the proposed method [19]. Secondly, the method requires a priori knowledge of observed machinery and visual examination of the spectrogram. The third disadvantage relates to the fact the method was tested only with signals obtained from experiments and not on simulations making it hard to determine whether the method works well in other cases. Signals have multicomponent nature, where different families of harmonics may coexist, alongside with the interaction between the orders and the structural resonances of the machine. This “multicomponent nature” requires some techniques which are able to decompose the signal. Empirical Mode Decomposition (EMD) algorithm is a technique for multicomponent signals which has become a popular tool to separate a signal, hence it ensures an additive representation of the signal into a finite set of Intrinsic Mode Functions (IMF), a function assumed to be monocomponent. EMD has proven its usefulness in decomposition of multicomponent signals, however it is not characterized as a filter. EMD is a well-known method, however, the full theoretical framework of EMD has not yet been clarified. Moreover, the method provides a poor estimate of the IAS in the presence of noise [18]. This is considered to be the main disadvantage of the method. 
In [20] a new approach for a robust IAS estimation was introduced, The Multi-Order Probabilistic approach (MOPA). The main idea of the method is to take into account the most possible periodical mechanical events of the studied mechanism to infer the most probable IAS at each time step. A first step is to obtain a list of all periodical phenomena of the system such as shafts rotation speeds, meshing frequencies and their harmonics etc., with frequencies related to the frequency of the shaft of interest. Then, MOPA uses all the a priori knowledge about the kinematics, to fusion all the components harmonics, and finally to obtain the IAS after a smoothing operation. MOPA was applied to a challenging signal recorded from the gearbox of a wind turbine, showing excellent performance in terms of a relative error with respect to IAS estimated processing the tachometer signal [20]. Overall, the method allows a good estimate of the rotation speed even when it has relatively large fluctuations. Despite the good results, MOPA suffer from a number of disadvantages. First, MOPA is a relatively new method which increases the uncertainty about its limitations. Additionally, the method was tested only with stationary signals measured from machines running at a relatively constant angular speed. Moreover, in order to apply this method, prior knowledge of the machine under study is required. 
adaptive filters can be used to estimate the IAS. one such filter is the Vold-Kalman Filter (VKF). VKF was first adapted to order tracking by Vold and Leuridan in 1993, but its underlying theory is not as straightforward as the previous method. This method allows extraction of close and crossing orders in systems with multiple shafts, and features a finer frequency and order resolution than conventional techniques. The filtering capabilities are independent of the rate of change of the rotational speed [27, 15, 16]. Despite the many benefits, VKF holds some notable disadvantages. In [26] a paper to objectively compare the features of the VKF technique published. It was found that other methods, such as Gabor order tracking, are clearly more efficient than the VKF in terms of rejecting out-of-band energy. Additionally, it was noted that the VKF exhibit more computation time compared to the examined methods making it not suitable for real time processing. In [25] an adaptive Vold-Kalman filtering approach was proposed to overcome this drawback. This makes VKF a more practical and powerful tool and makes real time condition monitoring by using VKF possible and feasible. Many researchers [10, 11, 23, 12, 15] have reported on the often-neglected issue of setting the filter pass band, which is a fundamental characteristic of Vold-Kalman filter. The theoretical framework for VKF bandwidth selection is incomplete and further investigation is needed.

[bookmark: _Toc34662725]2.2 IAS estimation for varying angular speed

Rotating machinery often operates under time-varying speed conditions. Under such circumstances, the methods used for the case of constant speed are not applicable. Therefore, investigations of machinery fault diagnosis under time-varying speed conditions are critical for industrial applications. Various methods have been proposed for bearing fault diagnosis under time-varying speed conditions, including methods based on signal resampling [31,32], methods based on machine learning [33,34], and methods based on time-frequency analysis [35,36]. However, some of the existing methods used to identify the IAS are incomplete. The accuracy of signal angular resampling is limited by many factors. Machine learning methods can be used to automatically diagnose bearing faults without the acquisition of the rotational speed and signal resampling [32,33]. However, numerous data is required to train the method-related parameter. Time-frequency analysis techniques, such as STFT, can be used to present the instantaneous shaft rotational frequency as a curve in the Time-Frequency Representation (TFR) [35]. Additionally, the TFR can be used to estimate the time-varying rotational speed or instantaneous shaft rotational frequency. However, for automatic bearing fault diagnosis, the instantaneous shaft rotational frequency need to be extracted from the TFR [37]. The Multiple Time-Frequency Curve Extraction (MTFCE) algorithm is a newly proposed method which can be used to extract time-frequency curves from the TFR of a signal [38]. With the MTFCE algorithm, multiple time-frequency curves can be extracted from the TFR of bearing vibration signal. Bearing faults can be automatically diagnosed if the instantaneous fault characteristic frequency and the instantaneous shaft rotational frequency are recognized from the extracted time-frequency curves. The extracted time-frequency curves are identified as the instantaneous fault characteristic frequency and the instantaneous shaft rotational frequency by calculating the average frequency ratio of two curves and comparing the average ratio to the fault characteristic coefficient of each fault types. The fault characteristic coefficient is the ratio of the fault characteristic frequency to the rotational frequency, which remains constant under time-varying speed conditions. However, if the bearing is healthy, it is possible that the average ratio of two randomly extracted curves matches the fault characteristic frequency yet either of the extracted curve is the instantaneous fault characteristic frequency or the instantaneous shaft rotational frequency. This will lead to a false result that a healthy bearing is diagnosed as faulty. Therefore, the average ratio of two curves is not sufficient for the identification of the instantaneous fault characteristic frequency and the instantaneous shaft rotational frequency [38,16]. From the above, it can be concluded that further research and new methods to estimate the rotation speed under time-varying speed conditions are needed. 

[bookmark: _Toc34662726]2.3 Bearing diagnostics 

Methods for bearing diagnostics and prognostics can be divided into two main categories, physics-based and data-based [39]. Currently, most of the physics-based methods are based on frequency and time domain analysis of the acceleration signal [40]. A widely accepted and well-known approach is to locate a fault in a bearing by examination of the frequency domain. Each of the bearing elements affects the frequency domain differently. When a fault exists in one of the bearing elements, it is reflected in increasing the vibration energy related to the specific element. For example, in this study, for a fault in the outer race, a Ball Pass Frequency Outer race is produced, or in short BPFO [41]. The factors influencing these frequencies are the bearing geometric parameters and the shaft rotating speed.
Eq. 1


where  is the shaft rotating speed in RPS (Hz),  is the number of balls,  is the ball diameter, is the bearing pitch diameter and  is the contact angle. 

[image: ]
[bookmark: _Toc34662755]Figure 2: BPFO parameters (Harris (2001)).
 
Examining the frequency domain is not the only method for defect evaluation. Different methods to estimate the bearing defect presence and size using time domain analysis or integration of the frequency and the time domain exist. Spike energy analysis have been employed to identify different defects and their severity in bearings [44]. The distinct and different behavior of vibration signals from bearings with inner race defect, outer race defect and roller defect helps in identifying the defects in bearings. An acoustic emission method for defect estimation in bearings was presented in [45]. It was claimed that the acoustic emission method is more sensitive to the change of the defect. The acoustic emission method compared to vibration measurements using statistical tools like Root Mean Square (RMS) and kurtosis, where the vibration signal has no proven correlation to the fault size. These researchers did not compare the acoustic emission to the latest methods of vibration signal processing. It should be noted that statistical parameters such as peak-to-peak value, RMS, Crest factor and kurtosis, may indicate the presence of a defect, but they do not give information about the location of defect. Sets of data are gathered before and after using defective bearings. Compared to conventional methods, the superiority of the proposed method is shown in the success of fault detection. However, the presented method is evaluated using experimental signals only.  It can be concluded that the vibration monitoring is the most useful technique because it is reliable and very sensitive to fault severity. Also, it gives clear indications regarding the condition of the bearing in question. In addition, the level of vibrations and the frequency at which these vibrations occur can serve in determining the exact location of the defect and possibly severity of such defect. 

[bookmark: _Toc34662727]3. Theoretical background 

The following chapter summarizes the background needed to understand the methods and techniques used in this research. 
[bookmark: _Toc34662728]3.1 Power Spectral Density (PSD)

Measured signals have random noise. This problem can be reduced by averaging several outcomes together. The averaging can be done by partial blocks (windows) of the signal, each block containing a certain number of cycles. The PSD provides the energy distribution of the signal in the frequency domain. It is calculated by averaging the Fourier Transform (FT) of several windows of the time history signal. The statistic error of  PSD is, where M is the number of windows. The PSD of the signal  can be evaluated.
Eq. 2

[bookmark: _Toc34662729]2.4.2 Angular Resampling

This algorithm was created to overcome the instability of rotation speed. Angular velocity tracking is one of the most important and sensitive stages in the vibration analysis of synchronous machines. Using the speed signal, the raw vibration signal is resampled. During angular resampling, the signal is resampled by constant angular increments rather than constant time increments as recorded originally. The sampled time signal is remapped into a ‘Cycle’ domain. FT of the data in the cycle domain produces a signal in the ‘Order’ domain, equivalent to the transformation of time to the frequency domain. The signal in the order domain is presented so that one per cycle impulse will generate a peak in the first order. 
[bookmark: _Toc34662730]2.4.3 Synchronous Average (SA)

The Synchronous Average is a signal processing technique for the vibration analysis of mechanical systems. The purpose of SA is the removal of all signal components asynchronous with a particular fundamental frequency. In practice it is done by averaging together a series of signal segments each corresponding to one period of a synchronizing signal. In practice it is done by averaging together a series of signal segments each corresponding to one period of a synchronizing signal (Randall, 2011):
Eq. 3

Performing enough number of averages, spectrum peaks that are harmonics of rotational speed will remain when non-synchronous peaks will be averaged out from the spectrum.


[bookmark: _Toc34662731]2.4.4 Vold – Kalman Filter 

VKF can extract the vibration component from the time-varying vibration signal. The VKF method provides three main advantages. First, VKF works directly in the time domain. Second, it allows an accurate tracking of harmonic orders. Third, its tracking performance is independent of running speed. The advantage of VKF compared to other order tracking techniques, is that the time-domain signal corresponding to a specific component can be extracted from the raw data together with its amplitude and phase. VKF relies on two basic equations: 
Eq.4


Eq.4 called the data equation. Where the component  denotes the tracked order component,  denotes other not-concerned components.  and the structural equation;
Eq.5


where  denotes the tracked order component, and  is the radian frequency and  nonhomogeneous term represent the other not-concerned components.

 More detailed description on the function of the data and structural formula can be found in [15]. With the two fundamental equations, VKF can extract and track the intended components and acquire their corresponding time waveform without involving angular resampling [15,30]. However, the filter performance is highly dependent on the filter bandwidth  and on a weighting factor, r; 
Eq.6

The weighting factor varies according to the change in , A large bandwidth leads to small value of weighting factor and vice versa. The VKF transfer function denominator coefficients are a function of weighting factor, their value influence and changes the filter selectivity. A large value of weighting factor leads to high values of transfer function denominator coefficients witch make the filter more selective and vice versa.

Eq.7

[bookmark: _Toc34662732]2.4.5 zero-crossing (ZC) 

The simplest way to estimate the instantaneous frequency (IF) of the signal is to identify the number of times the signal crosses the zero on a small segment of the signal. The instantaneous frequency can be estimated from the number of zero crossing [29] in a short window of lengthof the form:
Eq.8

[bookmark: _Toc34662733]2.4.6 Hilbert – Method 

In mathematics and signal processing, the Hilbert Transform is a linear operator, which takes a function and produces another function in the same space. The Hilbert transform of function  is a convolution of function with the function h (t) = 1 / πt according to:
Eq.9 

[bookmark: _Toc34662735]3. RESEARCH OBJECTIVES 

In this study few methods for IAS estimation directly from the vibration signal are compared. In addition, a new approach for automatic extraction of the IAS from the vibrations under time-varying angular speed conditions is proposed. 

[bookmark: _Toc34662736]3.1 Hypotheses

· A spall in the outer race causes different dynamic behavior of the bearing compared to a healthy bearing.
· Instantaneous Angular Speed, can be automatically estimated under constant or time-varying angular speed conditions angular speed conditions without using tachometers.
· An autonomous method for IAS estimation can be developed and establish.  

Validation 

                 

Simulation/ Experiments
comparison





In this study, vibration signals of bearings with a spalled outer race have been analyzed. As shown in Figure. 4, the methodology of this research is based on the combination of experiments and the analysis of the simulated vibration signals results. The comparison of simulations and measurements assisted in the understanding of the proposed methods limitations and to develop an autonomous, generic algorithm for IAS estimation directly from the vibration signal.

[bookmark: _Toc34662737]4. SIMULATION 

Generating the simulation of each vibration signal consists of following steps: first the global simulation parameters and the RPS are set, then the signals and noises are generates based on the parameters from the first part. Next the transmission function is calculated in order to simulate real machine signals in which the rotating parts excitations give rise to responses at the sensor through the machinery’s structure transfer function which amplifies each frequency range differently. Then the signals created in the second step are combined with the transmission function. The simulation allows monitoring the dynamic behavior of shaft, gears and bearing components. 

The simulated vibration signal was composed using one motor shaft. In addition, bearing and gear like components with gear meshes with FM (frequency modulation) by the respective rotating speed were added. 

Bearings 

The bearing simulation consists of the following steps: first a series of delta functions having frequency corresponding to the defect (BPFO in this case) is produced, then the series is passed through the transmission function of the bearing. The mathematical description of the bearing signal is given in the following equation:
Eq.16

Where  is the simulated bearing signal,  is the delta functions series,  is the simulated bearing signal amplitude,  is the number of harmonics,  is the rotational speed and  is the transfer function. 

Gears

The simulation allows setting of two gears. For each gear, the following parameters must be provided: amplitude, number of teeth, number of harmonics and modulations. The simulation is produced by constructing periodic signal according to the modulations, which are modulated on the various harmonics using FM modulation. The signal can be mathematically described as follows:
Eq.17

Where is the simulated gear signal,  is the number of gear teeth,   is the simulated gear signal amplitude,  is the number of harmonics,  is the rotational speed and  is the modulated signal (periodic signal). 

Shaft 
The shaft simulation is generated by creating harmonics corresponding to the shaft rotational frequency. Mathematically this can be described as follows:
Eq.18

Where is the simulated shaft signal,  is the simulated shaft signal amplitude,  is the number of harmonics,  is the rotational speed,  is the amplitude of the n harmony and  is the phase of the n harmony. 

All the amplitudes of the synchronous elements ( for 𝑘=1,2 corresponding to  and gear meshes were constant. The added white noise was 2 dB. Shaft  was dictated by different functions. In total twenty-two signals were simulated, in each record bearing fault having constant amplitude have been added, different types of  profiles or shaft harmonics were chosen (see specification of the bearing tones and  profiles and harmonics in Table.1).
[bookmark: _Toc34662778]Table 1: Simulation specification.
	Record
	Bering tone
	 profile
	acceleration
	RPS range
	shaft harmonics

	1
	BPFO
	3.5
	Constant speed, 25 Hz
	1
	[23 26]
	[1 12]

	2
	BPFO
	3.5
	Constant speed, 25 Hz
	1
	[23 26]
	[ 1 3]

	3
	BPFO
	3.5
	Constant speed, 25 Hz
	1
	[23 26]
	[1 3 12]

	4
	BPFO
	3.5
	Constant speed +
	11
	[15 35]
	[1 12]

	5
	BPFO
	3.5
	Constant speed +
	11
	[15 35]
	[1 3]

	6
	BPFO
	3.5
	Constant speed +
	11
	[15 35]
	[1 3]

	7
	BPFO
	3.5
	Constant speed +
	11
	[15 35]
	[1 12]

	8
	BPFO
	3.5
	Constant speed +
	11
	[15 35]
	[3 12]

	9
	BPFO
	3.5
	Constant speed +
	11
	[15 35]
	[1 3 12]

	10
	BPFO
	3.5
	
	10
	[95 285]
	[1 3]

	11
	BPFO
	3.5
	
	10
	[95 285]
	[12 24]

	12
	BPFO
	3.5
	
	10
	[95 285]
	[1 12]

	13
	BPFO
	3.5
	
	12
	[95 285]
	[1 3]

	14
	BPFO
	3.5
	
	12
	[95 285]
	[1 3 12]

	15
	BPFO
	3.5
	
	12
	[95 285]
	[1 12]

	16
	BPFO
	3.5
	
	12
	[95 285]
	[3 12]

	17
	BPFO
	3.5
	
	12
	[95 285]
	[1 3]

	18
	BPFO
	3.5
	
	12
	[95 285]
	[1 12]

	19
	BPFO
	3.5
	
	19
	[95 285]
	[1 3]

	20
	BPFO
	3.5
	
	19
	[95 285]
	[1 12]

	21
	BPFO
	3.5
	
	19
	[95 285]
	[1 3 12]

	22
	BPFO
	3.5
	
	19
	[95 285]
	[1 50]



[bookmark: _Toc34662740]5. ALGORITHMS for ANGULAR SPEED ESTIMATION 

[bookmark: _Toc34662741]5.1 Constant angular speed 

The method for constant angular speed estimation proposed in this study was developed by combining several existing methods. The IAS is the derivative of the angular displacement in respect to time. In order to estimate it the specific phasor need to be isolated from the many vibration sources existing in the vibration signal. Figure 4 describes two tasks, the first is the definitions and implementation of the methods considered for IAS estimation and the second for the accuracy evaluation of each method. The IAS evaluation is done in two stages, first the phasor extraction and then the IAS extraction. For the signal extraction two methods where considered. A cascade of BP filters and a Vold Kalman filter. For IAS extraction the zero crossing and phase estimation based on envelope analysis were used. The second had relatively large boundary effects and it was decided to work with the zero crossing only. Hence, only the BP vs VK filters compared. When the nominal rotating speed is constant, the region of frequencies that should be investigated is known. In the evaluation phase each estimated IAS is used to analyze the vibrations. The data is resampled, the order spectrum, synchronous average and order spectrum of the synchronous average are calculated. The spectrum of the resampled vibrations and the spectrum of the synchronous average are compared for IAS evaluation. In order to evaluate the best IAS two processes applied, order Spectrum Evaluation (SE) and IAS evaluation.

IAS Extraction


Signal Extraction





[bookmark: _Toc34662758]Figure 5: Proposed method algorithm.
To evaluate The nature of the Spectrum, two indices were developed based on an existing one previously developed by Koren et al. The first index, the Energy Leakage Index (EL) and the second is the Peak Energy Concentration Index (PEC).
[bookmark: _Toc34662742]5.1.1 Energy Leakage (EL) 

In order to evaluate the best order spectrum, the energy leakage was measured as the ratio in dB between the resampled signal spectrum integer multiples of the rotating speed to the background noise, caused by other elements and the Transfer Function, according to:

Eq.19

Where is the order spectrum of the resampled signal integer multiples of the RPS in the ith bin, is the order spectrum of the background noise in the jth bin. 
A large EL represents the spectrum that has the least energy leakage, i.e. the optimal spectrum is the spectrum with the narrowest and highest peaks. A narrow and high peak means that more energy is concentrated in the peak, meaning less energy leaked. Insufficient localized peaks may mask the effects of faults in the bearings or other rotating components.  
[bookmark: _Toc34662743]5.1.2. Peak Energy Concentration (PEC) 

The peak energy concentration was measured as the ratio between the resampled signal spectrum integers multiples of the RPS to the Root Mean Square (RMS) of the signal, according to:

Eq.20

Where is the order spectrum of the resampled signal integer multiples of the RPS in the ith bin.
The peak energy concentration measures the amount of energy, from the total energy, that is concentrated in the peaks. A large PEC implies that more energy is concentrated in the signal integer multiples rather in the background noise.
An illustration of the spectrum evaluation can be seen in Figure.5. The figure shows the order spectrum produced by using the proposed method and by angular speed measured using a tachometer focused around the 56th harmony of the angular speed. The amplitude differs among the different order spectra that were calculated. In this case, the order spectrum produced by the measured angular speed (blue) will have the lowest indices. In contrast, the order spectrum produced by the Butterworth filter (red) will have the highest indices as can be seen in Table.2.
Table 2 :  Indices result illustration
	result
	Method
	Index

	0.01766
	Sensor
	PEC

	0.01845
	VKF
	

	0.01892
	Butterworth
	

	1.16312
	Sensor
	EL

		1.7016
	VKF
	

	1.7201
	Butterworth
	



[image: ]
[bookmark: _Toc34662759]Figure 6: Order spectrum foxed around 56th harmony of the RPS.
The synchronous average is extremely sensitive to noise or inaccuracy of angular speed. Inaccuracies in the angular speed result in energy leakage in the high orders of the synchronous average spectrum. The evaluation process consists of calculating the total energy loss of the synchronous average spectrum compared to the order spectrum, according to the Eq.21. The comparison is only made in the integer multiples of the angular speed and is calculated in dB.
Eq.21

Where is the order spectrum,is the SA order spectrum of the resampled signal integer multiples of the RPS in the ith bin. 
Figure.7 illustrates the IAS evaluation process. As can be seen, different estimates can produce different levels of energy leakage. In the case shown in Figure.4, the reference order is the order generated by the angular speed measured by a speed sensor (blue). Relative to this order, the energy leakage  index was calculated. In this case, the synchronous average which was calculated using the measured angular speed will have the largest energy leakage (the distance to the reference order (blue) is the largest among the three SAs orders shown), among the three synchronous averages shown in the figure. This large energy leakage is due to the angular speed inaccuracy that accumulate as phase errors during signal re-sampling, which leads to significant energy leakage in the high order.
[image: ]
[bookmark: _Toc34662760]Figure 7: Reference order spectrum VS SA order spectrum foxed around 30th harmony of the RPS.

[bookmark: _Toc34662744]5.2. Varying angular speed algorithm

The algorithm (Figure.8) is a newly proposed method which can be used to extract time-frequency curves from the TFR of a signal. The algorithm, is an expansion of the constant angular speed algorithm and basically used as a preliminary selection process. Using the algorithm, multiple time-frequency curves can be extracted from the TFR of vibration signal. The relevant curve is isolated from the existing curves extracted from the TFR. Then based on the curve the relevant phasors are extracted from the vibration signal. The extracted phasors are then combined and the IAS evaluation is done. 
In the proposed method, a number of inputs must be provided; the range in which the instantaneous shaft rotational frequency can change, acceleration and instantaneous shaft rotational frequency harmonics. Next, based on the acceleration, the frequency resolution of the spectrogram will be calculated. Then for each spectrum in the TFR peaks within the specified range which are greater than a certain percentile will be obtained. Assuming that the TFR of a signal  is , in which  is the variable referring to time,  is a variable referring to the frequency, then peaks within the specified range can be extracted from : 


where  is the percentile, are the lower and upper boundary of the specified rotational frequency range respectively, is the rotational speed harmonic and  is the time resolution of the TFR.
Using the percentile term, noise which is not related to the instantaneous shaft rotational frequency is filtered. The remaining peaks, forms a large number of time-frequency curves which do not necessarily represent the instantaneous shaft rotational frequency, Figure.8b. Therefore, further filtering is performed based on the continuity of the time-frequency curves found, i.e., a curve whose length is not equal to the duration of the signal is erased since it is unlikely to represent the rotational frequency (Figure.8c). The remaining curves are normalized to the harmonic of the rotation speed around which the search was performed. This procedure is repeated for all harmonics received as an input. 

where  is the rotational speed harmonic and  referring to time equal to the signal duration. The extracted time-frequency curve represents the approximate value of the average shaft rotational frequency. The selected curve is identiﬁed as the instantaneous shaft rotational frequency curve by comparing the curves obtained from a certain harmony to those obtained from another harmony until a match is found in all harmonies (Figure.9). Each value in the selected curve is used as a value around which filtering will be performed. The signals received at the end of the filtering process comprise a vector with overlapping segments. The overlap is designed to prevent edge effects created as a result of discontinuity at the points of connection between the segments. Zero – crossing is applied to the resulting vector and the instantaneous shaft rotational speed is obtained., The proposed method is free from any instrument for measuring the time-varying rotational speed and re-sampling. 
The effectiveness of the method is validated by simulated signals with time-varying speed and experimental data collected from experimental system operating under constant speed conditions. To illustrate the proposed process, the following example is given. Figure.34a shows the spectrogram of simulated signal. The angular speed in this case is dictated by:
Eq.22

Where 't' being signal duration, 'T' signal length (20 second in this case) thus the angular speed ranges from 100 to 280 Hz. The spectrogram shows all curves in the 3th harmonic of the angular speed range, that is 300 1000 Hz. Figure.6b shows the multiple T-F curves extracted, it can be seen that many of the curves are not continuous. The non – continuous curves are deleted until the remaining curves are only the continuous ones (Figure.7c). This process is repeated for all angular speed harmonic. The remaining curves are normalized to the angular speed value of the 1th angular speed harmonic. Finally, a comparison is made between the remaining curves from all RPS harmonics aiming to find the same curve. Figure.8 is an example of two continuous matching curves, 1th and 3th angular speed harmonics in this case. 
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Figure 8: Algorithm description scheme.

[bookmark: _Toc34662761][image: ]

[bookmark: _Toc34662762]Figure 9: Curves selection, (a) spectrogram, (b) 3th T-F curves, (c) continuous 3th T-F curves.
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[bookmark: _Toc34662763]Figure 10: Normalized continuous 1th and 3th rotational speed T-F curves comparison.




4. EXPeRiMENTAL SET

Experiments were conducted using an experimental system consists of a dedicated table on which a passenger car condenser fan assembly was installed. The system consists of an electric motor that rotates a fan with 12 blades, a 25 [mm] shaft and fan blades. The rotor of the electric motor and fan blades are mounted to the shaft of the motor. The motor shaft is supported by two bearings. The assembled system with the sensor locations is presented in Figure.2.
 Experiments data was acquired by measuring physical phenomenon with a sensor by transforming it into a digital signal. In the experiments, speed was measured using a Honeywell variable reluctance speed sensor 3030AN and vibrations were monitored by a three-axis piezo-electric Dytran 3053B2 S/N 1787 accelerometer.










Figure 3: Experiment rig, red rectangle indicates the position of the speed sensors.

A set of experiments on a bearing with a seeded fault in the outer race was conducted. The faults were created by removing material from the bearing outer race (Figure.3) using an Electric Discharge Machining (EDM). The spall width is measured in the tangential direction i.e. the bearing rotational direction. Table.2 presents the width of the spalls which were tested in the experiments.



Figure 10: Seeding a spall with the EDM.







Figure 4: Outer race seeded fault.
The experiment was performed when the rotational speed of the fan shaft was ~1475 rpm, ~24.6 Hz. Under these working conditions the frequencies of interest (BPFO, BPFI, FTF, BSF) were calculated and can be seen in Table.2. A total of 5 bearings were tested, for each 25 experiments were performed, i.e. a total of 125 experiments. The sampling rate for measuring the rotational speed of the shaft and acceleration was set as 15 KHz.

Table 2: Experiments specification.
	bearing mark
spall size [mm]
	Bearing tone
	Experiments
	Nominal RPS (Hz)
	sampling frequency (KHz)

	
	Hz
	Order
	
	
	

	E-00
	0
	133.42
87.98
114.84
9.78
	5.418
3.578
0.4
4.707
	25
	24.6
	15

	E-01
	1.5
	
	
	25
	24.6
	15

	E-02
	2.5
	
	
	25
	24.6
	15

	E-03
	3
	
	
	25
	24.6
	15

	E-04
	3.5
	
	
	25
	24.6
	15



Three angular speed harmonics (1, 3, and 12) were filtered from the acceleration obtained from the balanced and unbalanced fan experimental system. Filter parameters, band pass, attenuation, ripple, are shown in the Table.3. For VKF, in the case of constant angular speed, the VKF bandwidth was set as 2.46 (10% of the nominal rotation frequency, hence literature indicates that good results were observed when the filter bandwidth equals 10% of the nominal rotation frequency) for all tracked harmonics, as shown in the Table.4. However, in the case where the angular speed was time-varying, in which the signals are not stationary and the harmonic may shift from its nominal value, the VKF bandwidth must be wider. Thus the bandwidth was calculated as four times the acceleration value, That way, the larger the acceleration, the wider the bandwidth. 

Table 3: Filter parameters.
	Attenuation
(dB)
	Ripple      (dB)
	Filter Order
	Filter Cascades
	Bandpass
(Hz)
	Harmonic
	Nominal RPS
(Hz)

	10
	3
	Auto
	20
	[20  30]
	1
	24.6

	
	
	
	
	[70 80]
	3
	

	
	
	
	
	[290 300]
	12
	



Table 4: VKF filter parameters.
	time-varying Frequency
	Nominal constant Frequency
(Hz)
	Harmonic
	Bandpass 
 (Hz)

	
	24.6
	1
	2.46

	
	
	3
	

	
	
	12
	




[bookmark: _Toc34662745]6. RESULTS

[bookmark: _Toc34662746]6.1 Constant angular speed experiments results  

Figure.11 shows, the order tracking of the first harmonic of the rotational speed (~24.6 Hz) using the proposed method in the frequency plane. The signal shown in Figures.11 and 12 is a signal measured while a bearing with 3.5mm spall size was assembled on an unbalanced fan shaft. The figures show the recorded vibration signal (black), Butterworth filter response (light blue) and VKF frequency response (red). Both Butterworth and the VKF exhibit high performance in tracking and isolating the phasor. However, the phasor isolated by the VKF appears slightly smoother compared to that produced the Butterworth filter. An explanation of this phenomenon can be found in the set of the filter specifications (ripples, attenuation etc.) and other filter properties. However, the general shape is almost identical in both methods. Both Butterworth and VKF resulted a significant attenuation of the spectrum outside the filters passband. Clearly, both filtering methods are able to track the harmony, however, within the passband VKF exhibits slightly better tracking and attenuation relative to that obtained by the Butterworth filter. Near the 12th (~295.4 Hz) harmony there are two sidebands (Figure.12), which appeared as a result of the shaft unbalance. Both filtering methods failed to completely overcome this issue. Furthermore, the VKF showed poor filtering results compared to those obtained from the Butterworth filter in this case. The appearance of the sidebands in the filtered signal led to the appearance inaccuracies in the rotation speed estimation process (Figure.15). As expected in this case, for the VKF the inaccuracies were more pronounced. The rotation speed estimated from this harmonic was not comparable and rated as the worst (in the process of IAS evaluation).  The region shown in Figure.12 is an example for a region were it is not recommended to use the proposed method.  
[image: ]
[bookmark: _Toc34662764]Figure 11: order tracking of the first harmonic of the rotational speed (~24.6 Hz) using the proposed method.
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[bookmark: _Toc34662765]Figure 12: order tracking of the 12th (~295.4 Hz) harmonic of the rotational speed using the proposed method.
Figures 13 and 14 show 5 seconds of the RPS (blue) which was measured from a balanced and unbalanced fan shaft respectively. The figures also show the IAS which was evaluated from the 1st harmonic filtered by VKF (red) and Butterworth (green). The estimated IAS extracted using Butterworth filter appears smoother compared to the IAS evaluated by the VKF. However, the general shape of the IAS seems identical. A significant difference is noticeable between the measured rotational speed which was measured on a balanced shaft to that measured on an unbalanced shaft. These differences also appeared in the IAS evaluated using proposed method, which was noisier and had more fluctuation compere to IAS evaluated for a balanced system. The IAS evaluated by both methods had short edge effects (1 second at the beginning and end of the signal). Therefore, these values were cut from the overall evaluated IAS time signal (40.2 seconds). For most system operational limitations (allowing short measurement time) such a reduction has no effect. Therefore, these methods can be considered as practical methods for estimating the IAS. On the other hand, Hilbert transform accuracy is highly depending on quality of the filtered signal. As a result, Hilbert transform may provide a poor estimate of the IAS in the presence of noise. The IAS evaluated by the Hilbert transform had long edge effects, ~5 seconds of the IAS time history. Emergence of these edge effects forced a significant reduction in the IAS time history. The long edge effects led to the decision to abandon the use of this method.  Figure.13 shows 5 seconds of the RPS (blue) which was measured on unbalanced fan shaft. In the case shown the IAS was evaluated using a signal which was filtered from the 12th harmonic (~295.4 Hz) of the RPS. As can be seen, both IAS had a significant deviation between seconds 35-36. This deviation appeared due to incapacity of VKF and Butterworth to extract a phasor in the presence of sidebands near the 12th harmonic. 
[image: ]
[bookmark: _Toc34662766]Figure 13: 5 seconds of the RPS measured on a balanced fan shaft and IAS evaluated from 1th harmonic.
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[bookmark: _Toc34662767]Figure 14:  5 seconds of the RPS measured on an unbalanced fan shaft and IAS evaluated from 1th harmonic.
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[bookmark: _Toc34662768]Figure 15:  5 seconds of the RPS measured on an unbalanced fan shaft and IAS evaluated from 12th harmonic
Table.5 show the results of the spectrum evaluation indexes calculation. The results shown in the table represent the average of the indexes calculated for the 1th harmony order spectrum. As mentioned, a total of 125 experiments were performed, 25 experiments for each of the five bearings. For example, the PEC and EL indexes presented in the table under the heading ‘healthy’ represent the average indexes of 25 experiments conducted when a healthy bearing was installed. From the table it can be seen that for all cases the highest results were obtained for the order spectrum calculated using the IAS evaluated using the VKF. Conversely, the order spectrum indexes calculated using rotational speed measured using a speed sensor were the lowest. The difference between the methods is not high but consistent for the 3th harmonic. In general, the indexes calculated for the order spectrum which was produced using the IAS evaluated from the 1th harmonic were higher than those calculated for the 3th harmonic. The results were similar and consistent for both balanced and un balanced system. From the results it can be concluded that the order spectrum produced using the IAS evaluated from the 1th rotational speed harmonic using the VKF has the highest and narrowest peaks. The significant advantage of high and narrow peaks is a better diagnosis and identification of a faulty bearing, since the peaks are not smeared or masks other interest peaks.
[bookmark: _Toc34662782]Table 5 : Spectrum evaluation parameters indexes.
	3.5 mm
	2.5 mm
	2 mm
	1.5 mm
	healthy
	Method
	Index

	2.8850
	2.3376
	2.7237
	2.7458
	0.01766
	Sensor
	PEC

	2.9209
	2.3620
	2.7393
	2.7722
	0.0181
	VKF
	

	2.8957
	2.3412
	2.7277
	2.7498
	0.01758
	Butterworth
	

	2.8138
	2.7020
	2.9626
	2.910
	1.16312
	Sensor
	EL

	2.9953
	2.9167
	2.9944
	2.9970
	1.7005
	VKF
	

	2.9017
	2.8112
	2.9785
	2.9598
	1.6483
	Butterworth
	



Figure 16a and 16b show the calculation result of the total energy leakage of the SA spectrum compared to the order spectrum according to the  index (Eq.21, chapter 5) for unbalanced and balanced shaft respectively. The reference order spectrum in this case was the order spectrum calculated using the VKF estimated IAS. The energy leakage was calculated for the first 60 harmonics of the rotational speed. The graph connected by 5 points, each point denotes an average energy leakage of 12 harmonics. The figure shows the average energy leakage for the IAS estimated from each of the three selected rotational speed harmonics (1th, 3th and 12th). This type of graph was produced for each experiment, the results shown in the figure represent one case from all experiments. It was found that for the balanced shaft the smallest energy leakage was calculated for the SA order spectrum which was calculated by IAS estimated using the Butterworth filter. It means that in this case there is a perfect fit between the reference order spectrum to the Butterworth SA order. In both balanced and unbalanced, the poorest results obtained for the 12th harmonic as was expected. In addition, for all cases the energy leakage increases with the progress towards higher orders. This is the result of measured rotational speed and estimated IAS inaccuracies that accumulate as phase errors during signal re-sampling, leading to significant energy leakage in the high orders of the SA spectrum. Nevertheless, it can be seen that the largest energy leakage was obtained for the measured rotational speed, reaching up to the value of 21dB at the high SA order (Figure.16b). Similar results can be seen in Figure.14a (unbalanced shaft), however, the most significant difference is seen in the energy leakage for the measured rotational speed. In this case the highest energy leakage reached a maximum value of 36dB, which means 58% more energy leakage than that calculated for the balanced shaft. Both IAS with was produced directly from the vibration signal showed significantly better results over those obtained from the measured rotational speed.          
[image: ]Figure.17 shows the average energy leakage for the experiments. Each column represents the average energy leakage of 25 experiments. For example, the rightmost column refers to the average energy leakage calculated for the IAS evaluated by tracking the 1th harmonic of the rotational speed using Butterworth filter in the experiments conducted with healthy bearing. In most cases, the average energy leakage is smaller when the IAS is evaluated using the VKF. The largest average energy leakage was calculated for the experiments performed when a healthy bearing installed on the fan shaft. This is because the "peaks" of the rotational speed harmonics were four times smaller than those created when a faulty bearing was installed in the experimental system. In this case, both 
                                       (a)                                                                                                             (b)  
Figure 16: average energy leakage of harmonic: 1th, 3th and 12th, (a) unbalanced shaft, (b) balanced shaft.
tracking methods, Butterworth and VKF, exhibit low performance. However, even in this situation, both methods showed superiority to the results calculated for the measured RPS.



[bookmark: _Toc34662770]Figure 17: average energy leakage for 125 experiments.
[bookmark: _Toc34662747]6.2 Summary  

The results of the experiments were presented in this chapter. The difficulties of tracking low Signal to Noise Ratio (SNR) harmonics was explained. The IAS estimated by the three methods were presented and the relationship between poor order tracking and poor IAS estimation was explained. The results of the calculated indexes for reference order selection were presented and their significance and importance was explained. A discussion on the results of the energy leakage and the relationship between low ‘quality’ IAS and energy leakage was conducted. From the result the following conclusions can be drawn: 
· The 1st harmonic provided best results at high orders.
·  Both methods for rotating speed signal extraction from the vibrations, i.e. cascade of Butterworth filter and VKF provided good results. 
· The angular speed estimation based on zero crossings was found superior to phase estimation via Hilbert transform. 
· VKF and Butterworth filter have very similar results. However, VKF was selected because of its efficiency.
[bookmark: _Toc34662748]6.3 Varying angular speed simulation and experiments results

In most cases, the algorithm was able to trace the simulated rotational speed profile. Figure.18 shows the IAS (blue) which was estimated by the proposed algorithm when the simulated rotational speed profile (red) was varies by the function . This speed profile is characterized by a relatively slow rotational speed change rate. The basic assumption was that the algorithm will easily track this profile. As expected, it can be seen that the overall shape of the IAS is almost identical to that of the simulated rotational speed profile. It means that the processes of T-F curves extraction, selection and IAS estimation performed well. From the visual results it can be seen that the IAS is smooth without any evidence of edge effects. This confirms the need of the overlap between the VKF segments. It can also be concluded the default 50% overlap is a proper choice. Figure.19 present the algorithm IAS evaluation were the simulated rotational speed profile was constant speed combined with a sine function (25 Hz)+. Here in each segment the rotational speed can accelerate or decelerate every second up to . A closer look reveals some differences between the estimated IAS values to those of the simulated rotational speed profile. However, the algorithm was able to generate an IAS of the same shape as the simulated rotational speed despite the rapid changes. In this case, too, the curve is smooth without edge effects at the VKF segments connection points. Similar results were observed for the other simulated rotational speed profiles. 
[image: ]
[bookmark: _Toc34662771]Figure 18: Evaluated IAS VS slow rate RPS change profile.
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[bookmark: _Toc34662772]Figure 19: Evaluated IAS VS high acceleration RPS profile.
The results presented so far represent the IAS, which was estimated using the continuous T-F curve obtained from the 1th simulated rotational speed harmonic since it has been chosen by default. However, one may decide to use another RPS harmonic. Moreover, when the IAS was evaluated using different RPS harmonics (3th and 12th in this case) the results same just as good. However, visual results alone cannot be relied upon. Therefore, an index was suggested to calculate the mean error between the simulated RPS profiles and the estimated IAS. The index calculates the mean relative squared difference of the RPS and estimated IAS at each time point;


Eq.23

Were N being the total number of time points and i stands for single time point. 
The index results are shown in Figure.20. The figure shows the result obtained using Eq.23 for each of the simulated rotational speed and estimated IAS by each RPS harmonic. For example, the rightmost bar represents the resulted calculation of Eq.23 when the 12th RPS harmonic was selected to estimate the IAS. Several conclusions can be drawn from the result analysis. 
· As the acceleration increases, the error will be greater.
· The higher the harmony the smaller the error. 
This means that under ideal conditions it would be prefer to work with higher harmonics of the RPS in order to obtain better resolution. 

[bookmark: _Toc34662773]Figure 20: error index results.

[image: ]So far the proposed algorithm capabilities tested on simulated signals. However, in order to verify the results and establish a reliable algorithm an experimental validation should be performed. In order to conduct the validation a recorded signal obtained using the test rig was used. The operating conditions selected to test the algorithm capabilities represent the worst operating conditions with respect to the system under study. Figure.21 shows the estimated IAS (red) which was evaluated from the selected T-F curve extracted by the algorithm compared to the measured rotational speed. It can be seen that the estimated IAS follows the general shape of the measured rotational speed. The IAS is smooth with no evidence of edge effects. This finding is important for most practical system which many time allows only a short measuring time. Therefore, these methods can be considered as practical methods for estimating the IAS for both constant or time-varying rotational speed. 
[bookmark: _Toc34662774]Figure 21: Estimated IAS VS measured rotational speed.

[bookmark: _Toc34662749]6.4 Summary

The result IAS estimation using the proposed time-varying rotational speed algorithm were presented. The algorithm capabilities were tested using simulations and validated experimentally. A new index for calculating the root mean squared error was introduced. The results of the calculated index were presented and their significance and importance was explained and a discussion on the results was conducted. From the result the following conclusions can be drawn:
· The proposed algorithm is able to track, extract and evaluate the IAS even when the rotational speed is rapidly changes.
· The mean root squared error was relatively low in all simulated scenarios, indicating the capabilities of the algorithm.
· As the acceleration increases and the rotational speed change rapidly, the error will be    greater. However, higher harmonic produced smaller errors. 
· When dealing with stationary signals it is recommend to choose high rotational harmonic as a default for IAS estimation, conversely for non-stationary signals a low harmonic should be considered. 
[bookmark: _Toc34662750]7. DEFECT EVALUATION 

Extracting feature from vibrations signals is needed for effective prognostics of bearing. These features explore information of forecasting the time of failure before it occurs. Therefore, this chapter accentuates an application steps to investigate the defect development. 
The processing scheme depicted in Figure.22 has several steps. In the first step, the IAS is evaluated using the proposed method. Next, resampling is performed and the PSD is calculated. Then, the envelope is produced and the envelope PSD calculated using 34 frames and 50% overlap hanning window. Finally, the fault and feature extraction is conducted. 

[bookmark: _Toc34662775]Figure 22: Defect Evaluation processing scheme.

The considered bearing analysis is based on the checking of the order and envelope order spectrum magnitudes around characteristic frequencies. By comparing with a nominal bearing spectrum, if some large magnitude deviations can be observed around some specific characteristic frequencies, then the corresponding fault scenario will be claimed. 

The order spectrum, obtained from a faultless and faulty bearing is shown Figure.23.  The signals are color-coded; heathy bearing (black), 1.5 mm defect bearing (red), 2.5mm defect bearing (blue) and 3.5 defect bearing (green).  The electric motor has a 5.9 kg rotor mounted on its shaft. Therefore, it is no surprising that the highest-energy signature appeared in the axial direction. Therefore, the analysis will focus in the measurement at this direction.
 Looking in the order spectrum, it is difficult to detect any of the bearing orders in the baseband measurement because other vibration sources have produced dominant orders components. Furthermore, it can be observed that it is very difficult to distinguish between a faultless and faulty bearing order spectrums. Therefore, it is impossible to compare the different orders spectrum with the nominal order spectrum.
 From the order spectrum little can be learned about the case under consideration. Consequently the envelope analysis was used. The spectral analysis is performed on this resampled signal and the corresponding envelope order spectrum is presented in Figure 24. It is noticeable that there is a significant difference between the order spectrum to the envelope spectrum. It can be easily seen that the outer raceway fault show significant features compared with the nominal bearing spectrum, whose overall level is around and the different signals are easily be distinguished. 
It can also be seen from Figure.24 that the BPFO orders (which means the BPFO is 3.578 times the rotating frequency of the bearing) and its harmonics are rather evident, which clearly indicates the existence of a fault on the outer race. The envelope spectrum makes it easy to see that the energy level is lowest when no defect is present. 
Furthermore, it is notice that as the defect is bigger, it can be more readily detected, which is expressed by a higher amplitude of BPFO. These features classify the envelope spectrum as an effective and preferable tool for signal analysis for the given case. 
Figure.25 shows a zoomed envelope order spectrum of a 3.5-defect bearing.  Sidebands caused by modulation can easily be identified. The results showed that the BPFO value is not exactly equal the theoretical value. The deviation stems from the fact that the theoretical BPFO is based on the geometry of the bearing. In practice, however the geometry and dimensions of the bearing may be inaccurate. 
For the studied case, it was found that the envelope analysis is a powerful technique, which helps, separates the effects of specific faults from background vibration. Analysis of the envelope order spectrum enables easier diagnosis and distinction between the signals were defects are present, as the periodicity of the impacts can be easily recognize.
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 Figure 23:  Order spectrums
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[bookmark: _Toc34662777]Figure 24: Envelope Order spectrum
[image: ]
Figure 25: Zoomed envelope Order spectrum

7.1 Energy level analysis

In the first part of this chapter, a distinction between a signal of healthy and damaged bearing was made. In addition, it was decided which method is superior for the signal analysis of the studied case. The results indicate that there is a significant difference in energy level between the different bearing signals. Since the experimental conditions in the experiments were the same, this trend can be assumed to be related to the size of the defect. 
In order to determine whether the increase in energy levels can be attributed to the size of the spall, the energy of orders related to the fault was summed in the order spectrum and envelope order spectrum according to; 
Eq.24

Where  represent the energy sum,  is the fault harmonic number and  the number of fault sidebands. 
For each experiment, 50 faults harmonics were taken into consideration. However, a larger number of sidebands appeared in the envelope order spectrum comparing to the order spectrum as can be seen in Table.6. In the envelope order spectrum 15 sidebands and 10-cage sideband absorbed around the BPFO and its harmonics while in the order spectrum only 10 sidebands and 5-cage sideband appeared. In Table.6 the mean summed energy is show, each represent the mean energy of 25 experiments, for example the mean energy from 25 experiments with healthy bearing is 10.79 [] in the envelope order spectrum and 1.15 [] in the order spectrum. 
Table 6: Spectrum evaluation parameters indexes.
	bearing mark
spall size [mm]
	Bearing tone
	Experiments
	Summed fault harmonic

	Summed fault sideband

	Mean summed energy 
[]

	
	
	
	
	Cage sideband 
	Sideband 
	Envelope
	Order

	
	
	
	
	Envelope
	Order
	Envelope
	Order
	
	

	E-00
	0
	3.578
	25
	50
	10
	5
	15
	5
	10.79
	1.15

	E-01
	1.5
	3.5782
	25
	50
	10
	5
	15
	5
	75.85
	3.21

	E-02
	2.5
	3.5782
	25
	50
	10
	5
	15
	5
	138.98

	5.69

	E-03
	3
	3.5782
	25
	50
	10
	5
	15
	5
	187.46

	6.78

	E-04
	3.5
	3.5783
	25
	50
	10
	5
	15
	5
	242.66
	9.17



Figure.26 and 27 show the mean energy values of sidebands and BPFO fault for all spall sizes in the envelope order spectrum and in the order spectrum respectively. For all cases, the sidebands energy is greater than the energy of the cage sidebands. Furthermore, the energy increases as the spall size grows. Comparing the two figures reveals significant difference in the amplitude of the BPFO and its sidebands. The amplitudes in the envelope order spectrum had significantly larger values compared to order spectrum. In addition, the relatively large energy difference among the various spall sizes in Figure.26 making it easy to distinction between different spall sizes in contrast to the result show in Figure.27. This is important because the severity of the fault can be assessed. 
Figure 26: Summed energy - envelope order spectrum

Figure 27: Summed energy - order spectrum

Figures.28 and 29 show a box diagram of the total energy calculated in all 125 experiments. Each point represents the total amount of energy of orders associated with a fault in a particular experiment. As can be seen in Figure 28, distinguish between healthy and faulty bearings can be done easily due to the significant energy differences. For example, distinguish between a healthy bearing having a 1.15 [] average energy sum and variance of 0.28 to a 1.5 mm spalled bearing having 3.21 [] average energy and a variance of 0.85 is an easy task. However, things start to be complicated as the spall is bigger. Looking at the results received for a 2.5mm, 3mm or 3.5mm spalled bearings (Figure 28) it can be seen that the energy levels for each experiments are scattered which may mislead. For example, the higher bounds of the energy in part of the experiments of the 2.5 mm spalled bearing were equal to 6.5-7 [] and were above the lower bounds of the energy level (~6 []) of experiments of the 3 mm spalled bearing. This may lead to misdiagnosis of the severity of the fault. From the results shown in Figure.28 a judgment threshold cannot be well determined at this time. 
The threshold can be determined in a way that there will be a clear separation of the elements such as the maximum of the non-faulty element, the maximum upper bound of the non-faulty components , and the minimum of the fault element , the minimum lower bound of the fault element do not blend. Similarly, there should also be ensured that there is a clear separation of all faults situations. In Figures.29 such separation can be seen, were the lower and upper bounds of the energy level in each experiment  do not overlap. these allowed to establish a reliable threshold. For the studied case the threshold was determined to be 11 []) , which was the largest energy level of non-fault elements. In all fault situations, the accuracy of fault identification using this method can reach 100%. In this way, the characteristic energy level can be used to diagnose bearing [image: ]faults automatically and locate faulty components.	

Figure 28: Box-plot diagram- order spectrum
[image: image.png]

Figure 29: Box-plot diagram- envelope order spectrum

[bookmark: _Toc34662751]7.1 Conclusions


· The processing scheme justified with analysis of the bearing failure analysis. 
· In similar cases, it is preferable to use the envelope spectrum in search of bearing tones. 
· It is possible to distinguish between a heathy and damaged bearing even when the defect is relatively small defects (1.5mm) by using IAS, which estimated using the proposed method. 
· Analysis of experiments with seeded faults validated the concept of extracting RPS from the vibration signal, and demonstrated the abilities to detect bearing faults and to rank their severity. Based on the above findings, an algorithm for diagnostics of a bearing without a rotating speed sensor was developed and validated. 




















[bookmark: _Toc34662752]8. SUMMARY

This research laid the foundation for the ability to identify defected bearings. In this study, few methods for IAS estimation directly from the vibration signal were compared. The motivation and need to evaluate the rotational speed directly from the vibration signal was presented. The advantages of each estimation method was discussed and the experiment test rig and measurement unit were also presented. A new method for RPS accuracy evaluation was proposed and implemented. In addition, a new approach for automatic extraction of the IAS from the vibrations under time-varying angular speed conditions was proposed and a complete analysis scheme for the diagnosed IAS is proposed and validated through real data and simulations.
A large number of experiments were carried out in order to test and validate the capabilities of the proposed algorithm. In order to execute the experiments, a suitable bearing was found. The bearing was dismantled so a defect can be inserted and assembled back without causing significant defects that could have affected the vibration signature.  The results showed that it is possible to identify and differentiate between healthy and defective bearings with different spall sizes. Furthermore, it can be seen that the Hilbert method was found unsuitable for the studied case due to the appearance of edge effects. Additionally, the results indicate that the VKF and Butterworth methods are well capable to estimate the IAS, even when compared with relatively unbalanced shaft. The results show that the VKF and Butterworth methods showed superiority in terms of energy leakage. However, VKF was chosen because it is more efficient.  Based on the results it can be determined that the VKF can be considered as practical alternative for estimate the IAS in practical systems. 
The new proposed algorithm for time-varying angular speed estimation was described and validated through simulations experiments. Overall, the method allows a good estimate of the rotation speed even when it has relatively large acceleration. The proposed algorithm showed excellent performance in terms of a relative error with respect to IAS estimated processing the tachometer signal. One of the notable advantages of the proposed method is that almost no prior knowledge about the kinematics is needed, unlike other methods currently available. 
The proposed algorithms make it will possible to support maintenance decisions, which means recommending effective maintenance policies. The algorithms will enable to establish several decision-making issues such as: frequency of maintenance, safety definitions, developing a decision-making method to select the most affordable maintenance operations (i.e. understanding which maintenance option is preferable in a given situation, in terms of maintenance cost). The algorithm will enable much better understanding of which type of maintenance should perform and as a result choosing the most lucrative and efficient maintenance schedule. Implementing this type of algorithms in the maintenance lineup will enable cost-effective action plans to be designed, given that the health condition of the fan bearings will be known. 
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