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Abstract

We study fair resource allocation among agents with addi-
tive valuations and matroid feasibility constraints. In these
settings, every agent i is associated with a matroid Mi, and
may receive only bundles that are independent in Mi. Such
scenarios have been of great interest in the AI community, as
they encompass many real-world applications (e.g., alloca-
tion of shifts to medical doctors). A common fairness notion
for indivisible goods is envy-free up to 1 good (EF1), which
is a natural relaxation of envy freeness. Previous studies im-
ply EF1 solutions for either complete allocations (where all
goods are allocated) with homogeneous agents, or partial
allocations with heterogeneous agents, where heterogeneity
may refer to the agents’ feasibility constraints or their valu-
ations. A major open problem is the existence of fair alloca-
tions in settings with both complete allocations and hetero-
geneous agents. In this work, we make several steps towards
resolving this problem. For settings with heterogeneous con-
straints, we use the notion of feasible EF1 (F-EF1), which
captures envy under feasibility constraints. We establish pos-
itive and negative results for the existence of F-EF1 in var-
ious settings with heterogeneous agents, including different
matroid types and different valuation types.

1 Introduction
The problem of fair division of indivisible goods has at-
tracted a large body of recent work in artificial intelligence
and algorithmic game theory literature. See Brandt et al.
(2016); Endriss (2017) and references therein for compre-
hensive surveys. As many applications concern the division
of indivisible goods, and algorithms for fair division of divis-
ible goods are often inapplicable to such settings, algorithms
for this domain are crucially desired. This problem is not a
mere theoretical exercise: it arises in many real-life settings
of resource allocations, such as the ones implemented in the
Spliddit website (Goldman and Procaccia 2015) algorithms
for fairly dividing course seats among students in various
universities (Budish 2011).

In a fair division problem with additive valuations, a set
M ofm indivisible goods should be allocated among a setN
of n agents. Every agent i has a valuation function vi which
assigns a real value vij to every item j, so that agent i’s value
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for a set of items S is vi(S) =
∑

j∈S vij . An allocation is a
partition of the set of items among the agents; it is denoted
by a vector X = (X1, . . . , Xn), where Xi ⊆ M for every
agent i and Xi ∩Xj = ∅ for every i, j ∈ N .

A common notion of fairness is that of envy freeness (EF),
which means that every agent (weakly) prefers her bundle to
the bundle of any other agent: for every i, j ∈ N , vi(Xi) ≥
vi(Xj). While EF is a powerful notion in applications with
divisible goods, it may be unattainable for indivisible goods.

In this paper we focus on a very common relaxation of
EF, denoted EF1 — envy free up to one good (Budish 2011)
. An allocationX is EF1 if every agent i (weakly) prefers her
bundle to any other agent j’s bundle, up to the removal of the
best good (in i’s eyes) from agent j’s bundle. I.e., for every
two agents i, j, if Xj 6= ∅, then there exists an item g ∈ Xj

such that vi(Xi) ≥ vi(Xj \ {g}). An EF1 allocation always
exists and can be computed efficiently (Lipton et al. 2004).
Moreover, there always exists an allocation that is both EF1
and Pareto efficient — no other allocation is at least as good
for everyone and strictly better for someone (Caragiannis
et al. 2019). In a sense, EF1 has become the analog of EF
for settings with indivisible items.

(Erel: I think it is important to put our main focus —
different constraints — already at the first page.)

However, these strong results apply only in unconstrained
settings, in which any partition of the goods among agents
is allowed. In many settings of interest, the set of possible
allocations is inherently constrained. Moreover, in general,
different agents may have different constraints. For example,
consider the allocation of employees among departments of
a company: one department has room for 4 project managers
and 2 backend engineers, while another one may need de-
partment B has room for 3 backend engineers and 5 data
scientists, etc. Another example is assigning shifts to shift
workers, where every worker has their own schedule limita-
tions. Such real-life constraints can be modeled by matroids
(see Definition 2.1), particularly partition matroids. In a par-
tition matroid, the set of items is partitioned into a set of cat-
egories, and every category is associated with a cap on the
number of goods from that category that can be allocated to
the agent. There are two ways to address such constraints.

The first approach is to directly construct allocations that
satisfy the constraints, i.e., guarnatee that each agent re-
ceives a feasible bundle. This approach was recently taken



by Biswas and Barman (2018, 2019). Assuming that at least
one feasible allocation exists, they establish the existence
of EF1 allocations in scenarios where agents have: (i) iden-
tical matroid constraints and identical valuations, and (ii)
identical partition matroid constraints, even under heteroge-
neous valuations (see Section 2 for details). However, their
algorithms cannot handle agents with different partition con-
straints (Section 3) or general matroid constraints with dif-
ferent valuations (Section ???).

A second approach is to treat the constraints as a part of
the valuation function. That is, the valuation of an agent
to a bundle equals the value of the best feasible subset of
the bundle. This approach seemlessly handles heterogene-
ity in both constraints and valuations. The valuation func-
tions constructed this way are no longer additive, but they
are submodular. Recently, Babaioff, Ezra, and Feige (2020).
and Benabbou et al. (2020) have independently proved the
existence of EF1 allocations when agents have submodular
valuations with binary marginals. Such an allocation can be
converted to a fair and feasible allocation by giving to each
agent the best feasible subset of his allocated bundle, and
disposing the other items. However, this is possible only
when there is free disposal, which is not always the case.
For example, when allocating shifts to doctors, if an allo-
cation rule returns an unfeasible allocation and we dispose
shifts to make it feasible, the emergency-room might remain
empty for a shift. A similar situation in the context of al-
locating papers to referees may leave some papers without
reviews. The allocation rules developed in the above paper
do not work when they are constrained to return feasible al-
locationsm, as we show in Section 3. Thus, a major open
question remains:

Open problem. Given agents with different additive
valuations and different matroid constraints, does there
always exist a complete and feasible EF1 allocation?

1.1 Contribution and Techniques
This paper makes some steps towards solving this problem.

Impossibilities. We first set the boundaries to our explo-
ration by observing some simple impossibility results.

First, consider a setting with 2 agents and 8 identical items
of a single category, where Alice’s capacity is 3 Bob’s capac-
ity is 5. The only complete feasible allocation gives 3 items
to Alice and 5 to Bob. By mere valuation considerations, it is
not EF1, since even after removing a single item from Bob’s
bundle, Alice values it at 4, which is more than her value for
her own bundle. However, a bundle of 4 items is infeasible
for Alice. Therefore, a more reasonable definition of envy
in this setting is feasible envy, in which each agent com-
pares her bundle against the best feasible subset of any other
agent’s bundle (see Section 2 for the formal definition). In
the example above, the best feasible subset of Bob’s bundle
for Alice is worth 3, thus the allocation is feasibly-envy-free
(F-EF). If Alice values one of Bob’s items at 2, then the
above allocation is not F-EF since the best feasible subset
of Bob’s bundle for Alice is worth 4. But it is F-EF1, since

it becomes F-EF after removing this item from Bob’s bun-
dle. Note that F-EF1 is equivalent to EF1 when agents have
identical constraints.

Second, we show that if the partition of items into cate-
gories is different for different agents, an F-EF1 allocation
may not exist, even for two agents with identical valuations
(see Example 3.5).

Third, we show that going beyond matroid constraints
to graph-matching constraints (an intersection of two ma-
troids) is hopeless: even with 2 agents with identical valua-
tions and identical matching constraints, an EF1 allocation
may not exist (Example 3.4).

Fourth, going beyond EF1 to the stronger notion of envy-
free up to any good (EFX) is hopeless: even with 2 agents
with identical valuations and identical matroid constrains,
an EFX allocation may not exist (Example 3.3). (Erel: Do
we have an non-existence example for EFX with partition
matroids?)

Based on these results, we focus on finding F-EF1 alloca-
tions when the agents’ constraints are represented by either
(1) partition matroids where all agents share the same par-
tition of items into categories but may have different capac-
ities; (2) general matroids where all agents have the same
matroid constraints but may have different valuations.

Algorithms For partition matroids, we identify the reason
for which the algorithms of Lipton et al. (2004) and Biswas
and Barman (2018) fail for agents with different capacities:
it is the process of cycle-removal. Informally (see Section 2
for details), these algorithms maintain a directed envy-graph
in which each agent points to the agents he envies. The algo-
rithm prioritizes the agents who are not envied, since giving
an item to such agents keeps the allocation EF1. If there are
no unenvied agents, then there must be a cycle in the envy-
graph, and it can be removed by exchanging bundles among
the involved agents. This process does not work when dif-
ferent agents may have different constraints (See example
XX). Our main challenge is thus to develop techniques that
guarantee that no envy-cycle is created in the first place. We
manage to do this in four different settings:

1. All agents have binary valuations — the value of each
item is either 0 or 1 (Section ...).

2. All agents have identical valuations (Section ...).

3. There are two agents (Section ...).

4. There are at most two categories (Section ...).

Each setting is solved by a different algorithm and using a
different cycle-prevention technique.

For general matroid constraints, we present algorithm
that can handle agents with different additive valuations in
the following cases (Section ...):

1. At most two agents;

2. At most three agents with binary valuations.

(Erel: Can we start the enumeration at 5?)
Table 1 compares our results with known results.



Matroid
Type

Complete
Allocation

Heterogeneity
in Constraints

Heterogeneity
in Valuations

Binary /
General

# of
agents Remark Source / Section

Uniform V V V General n Section 4.1

Partition

V - V General n Biswas and Barman (2018)
V V - General n Section 4.2
V V V General 2 Section 6.2

V V V Binary n
Pareto-efficient
if caps in {0, 1} Section 5

General

V - - General n Biswas and Barman (2018)

- V V Binary n efficient
Pareto Babaioff, Ezra, and Feige (2020)

Benabbou et al. (2020) ***

V - V Binary 3 Pareto
efficient Section 7

V - V General 2 Section 7

V V V General 2 Non-
existence Example 3.5

Table 1: A summary of our results in the context of previous results. All results are for additive valuation functions. The result
marked by *** is not mentioned explicitly in the references, but it follows from them by disposing items (see Introduction).
(Erel: Where is the result on 2 categories?)

1.2 Related Work
Capacity constraints are common in matching markets
such as doctors–hospitals and workers–firms; see Klaus,
Manlove, and Rossi (2016) for a recent review. In these
settings, the preferences are usually represented by ordi-
nal rankings rather than by utility functions, and the com-
mon design goals are Pareto-efficiency, stability and strate-
gyproofness, rather than fairness.

Fair allocation with capacity constraints is particularly
relevant to the problem of assigning conference papers to
referees. Garg et al. (2010); Long et al. (2013); Lian et al.
(2017) study a setting in which for each agent (reviewer)
there is both an upper and a lower capacity on the total
number of items. The constraints may be different for each
agent, but there is only one category of items. Note that
lower capacities are not matroid constraints, since they are
not downwards-closed. The same is true in the setting stud-
ied by Ferraioli, Gourvès, and Monnot (2014), where each
agent must receive exactly k items.

Fair allocation of items of different categories has been
studied by Mackin and Xia (2016); Sikdar, Adali, and Xia
(2017). There are k categories, each of which has n items,
and each agent must receive exactly one item of each cat-
egory. Sikdar, Adalı, and Xia (2019) consider an exchange
market in which each agent holds multiple items of each cat-
egory and should receive a bundle with exactly the same
number of items of each category. Nyman, Su, and Zer-
bib (2020) study a similar setting (they call the categories
“houses” and the objects “rooms”), but with monetary trans-
fers (which they call “rent”).

Barrera et al. (2015); Bilò et al. (2018); Suksompong
(2019) study another kind of constraints in fair allocation.
The goods are arranged on a line, and each agent must re-
ceive a connected subset of the line (as when each item is
a house and each agent should get a connected part of the
street). Bouveret et al. (2017); Bei et al. (2019) study a more

general setting in which the goods are arranged on a general
graph, and each agent must receive a connected subgraph.
Note that these are not matroid constraints.

Gourvès, Monnot, and Tlilane (2013) study a setting with
a single matroid, where the goal is to build a base of the
matroid and provide worst case guarantees on the agents’
utilities. Gourvès, Monnot, and Tlilane (2014) and Gourvès
and Monnot (2019) require the union of bundles allocated
to all agents to be an independent set of the matroid. This
inherently implies a free-disposal assumption, which we do
not make here.

Fair allocation with binary additive valuations (without
constraints) has been studied recently, due to its practical ap-
plications (Aleksandrov et al. 2015). Binary valuations allow
to attain better fairness guarantees (Bouveret and Lemaı̂tre
2016; Barman et al. 2017; Amanatidis et al. 2020) and mech-
anisms with better strategic properties (Halpern et al. 2020).
While in general the MNW solution is NP-hard, with bi-
nary valuations it can be computed efficiently (Darmann and
Schauer 2015; Barman, Krishnamurthy, and Vaish 2018).

2 Model and Preliminaries
2.1 Model
We consider settings where a set M of m items should be
allocated among a set N of n agents. Every agent i is asso-
ciated with an additive valuation function vi, which assigns
a real value to every subset of items S ⊆ M . For ease of
notation, we use vi(g) := vi({g}) for any single item g.
A valuation vi is additive if vi(S) =

∑
j∈S vi(j) for every

S ⊆M .
A valuation vi is binary if vi(j) ∈ {0, 1} for every i ∈

N, j ∈M .
An allocation is denoted by X = (X1, . . . , Xn), where

Xi ⊆M is the bundle given to agent i, and Xi∩Xj = ∅ for
all i, j ∈ N . An allocation is complete if

⋃
i∈N Xi = M .



In our setting, every agent i is associated with a matroid
Mi = (M, Ii) that specifies the feasible bundles for agent
i.

Definition 2.1. A pairMi = (M, I) of a set of elementsM
and a set of subsets I ⊆ P (M) (termed the set of indepen-
dent sets) is a matroid if it satisfies the following properties:

• ∅ ∈ I
• For every S, S′ ⊆ S, if S ∈ I, then S′ ∈ I.
• For every S, T ∈ I, if |S| > |T |, then there exists g ∈
S \ T such that T ∪ {g} ∈ I.

We next define the notion of feasible allocations.

Definition 2.2. (feasible allocation) An allocation X is said
to be feasible if:

• it is individually feasible: Xi ∈ Ii for every agent i, and
• it is complete:

⊎
iXi = M

That is, an allocation is feasible if every agent receives a
feasible bundle according to her matroid, and all items are
allocated. The set of all feasible allocations is denoted by F .

Throughout this paper, we restrict attention to instances
that admit a feasible allocation.

Assumption 2.3. There exists at least one feasible alloca-
tion: F 6= ∅.

We next define a special case of matroid, called partition
matroid.

Definition 2.4. (partition matroid) A matroid Mi =
(M, Ii) is a partition matroid if

• for some `i ≤ m, there exists a set of subsets of M ,
C1

i , . . . , C
`i
i , that form a partition of M . These sets are

termed categories,
• every category Ch

i , h ∈ [`i], is associated with some ca-
pacity khi , and

• The collection of independent sets is

Ii = {S ⊆M | |S ∩ Ch
i | ≤ khi for every h ∈ [`i]}.

A special case of a partition matroid is a uniform matroid:

Definition 2.5. (uniform matroid) A matroidMi = (M, Ii)
is a uniform matroid if Ii = {S ⊆ M : |S| ≤ ki} for some
capacity ki.

An instance with partition matroids is said to have iden-
tical categories if all the agents have the same categories,
but not necessarily the same capacities. I.e., `i = `j = ` for
every i, j ∈ N , and Ch

i = Ch
j = Ch for every h ∈ `.

An instance is said to have identical matroids if all agents
have the same matroid feasibility constraints. I.e., Ii = Ij
for all i, j ∈ N .

2.2 Fairness Notions
In this section we present several definitions of fairness re-
garding allocations of indivisible goods.

Definition 2.6 (envy and envy freeness). Given a feasible
allocation X, agent i envies agent j iff vi(Xi) < vi(Xj).
X is envy free iff no agent envies another agent.

Definition 2.7 (EF1). An allocation X is envy free up to 1
good (EF1) iff for every i, j ∈ N , if Xj 6= ∅, then there
exists g ∈ Xj such that vi(Xi) ≥ vi(Xj \ {g}).
Definition 2.8 (best feasible subset). The best feasible sub-
set of a set S for agent i is

BESTi(S) := argmax
T⊆S, T∈Ii

vi(T ).

Note that BESTi(S) may not be uniquely defined. When
clear in the context, we abuse notation and use BESTi(S) as
an arbitrary set in argmaxT⊆S, T∈Ii vi(T ).

In the case of partition matroids, the best feasible set de-
composes into the different categories; i.e.,

BESTi(S) =
⊎

h∈[`i]

BESTi(S
h), where Sh = S ∩ Ch

i . (1)

Definition 2.9 (feasible valuation). Given a feasibility con-
straint, the feasible valuation of agent i for a set S is

v̂i(S) = vi(BESTi(S)).

Definition 2.10. Given a feasible allocation X:
• Agent i F-envies agent j iff v̂i(Xi) < v̂i(Xj).
• X is F-EF feasible envy-free) if no agent F-envies another

agent.
• X is F-EF1 iff for every i, j ∈ N :

if Xj 6= ∅, then ∃g ∈ Xj s.t. vi(Xi) ≥ v̂i(Xj \ {g}).

Another usfull notation we use is positive envy, which is,
intuitively, the amount by which agent i envies some other
agent j.
Definition 2.11. Given an allocation X, the positive envy of
agent i towards agent j is:

Envy+(i, j) := max(0, v̂i(Xj)− v̂i(Xi))

2.3 Common Tools and Techniques
Below we recall the most common methods for finding an
EF1 allocation.

Envy Cycles Elimination The first method for attaining
an EF1 allocation is due to Lipton et al. (2004).
Definition 2.12. The envy graph of an allocation X, G(x),
is a directed graph where the nodes represent the agents, and
there is an edge from agent i to agent j iff vi(Xi) < vi(Xj)

The envy cycles elimination algorithm works as follows:
At every step, choose an agent that has no incoming edges
in the envy graph. Give this agent an arbitrary unallocated
item, and re-draw the envy graph. If there is a directed cycle
in the graph, switch the agents’ bundles along the cycle. Do
so until no cycles remain (guaranteeing the existence of an
agent with no incoming edges), and continue to the next step.
This procedure was essentially proved to result in an EF1
allocation (the term EF1 was not invented, but it was proved
to hold equivalent traits) for the unconstrained setting even
under general valuations (Lipton et al. 2004).

We use the term feasible envy graph to indicate an envy
graph created by the feasible-envy instead of plain envy.



Max Nash Welfare The first proof of existence of EF1
allocations that are also Pareto efficient is due to Caragiannis
et al. (2019).

Definition 2.13. Given an allocation X:

• The Nash Social Welfare (NSW) of X is the product of
the agents’ values:

∏
i∈[n] vi(Xi)

• X is Maximum Nash Welfare (MNW) if it maximizes
NSW among all feasible allocations.

(Amitay: TODO move to intro) Maximum Nash welfare
(MNW) allocations have been recently seen as a way to unite
all fairness criteria into one notion, and indeed they seem to
accomplish several fairness criteria at once in different set-
tings. In particular, for additive valuations a MNW alloca-
tion is proved to be EF1. (Caragiannis et al. 2019).

Round Robin A common simple algorithm for fair alloca-
tion is the round robin procedure. Given a set of items, a set
of agents and an order σ of the agents, the algorithm works
as follows: While there are still unallocated items, give the
next agent in σ (or the first agent if reaching the end of σ) the
item she values most among the unallocated items. Simple
as it might be, this algorithm results in an EF1 allocation in
the unconstrained setting for additive valuations. (Caragian-
nis et al. 2019)

Round Robin per Category + Envy Cycle Elimination
Biswas and Barman (2018) suggested an algorithm (algo-
rithm 1) for homogenous partition constraints. Their algo-
rithm runs round-robin on each category in turn, where the
picking order in each category is determined by a topolog-
ical order on the envy-graph, such that each agent picks an
item before all agents she envies. They prove the resulting
allocation is EF1 for the homogenous partition setting.

Algorithm 1: Per-Category Round Robin, (Biswas
and Barman 2018)

initialize:
σ ← an arbitrary order over the agents.
∀i ∈ [n] Xi ← ∅
for every category h do

Run round robin with Ch, σ;
Let Xh

i be the resulting allocation for agent i;
∀i ∈ [n] Xi ← Xi ∪Xh

i ;
Draw envy graph for current allocation;
Remove cycles from the graph, switching bundles

along the cycles;
Set σ to be a topological order of the graph;

end

3 Negative Results and Failed Attempts
In this section we show some negative results and give intu-
ition for why common approaches fail in settings with het-
erogeneous constraints.

3.1 Partition Matroids
Round Robin Per Category + Envy Cycle Elimination
We next observe that algorithm 1 may fail in the heteroge-
neous constraints setting.

Category Capacities Alice Bob

C1 k1A = 1
k1B = 1

1,1 1,0

C2 k2A = 1
k2B = 0

0,0

C3 k3A = 0
k3B = 1

0,0

C4 k4A = 1
k4B = 1

0,1 1,1

Table 2: Possible Intermediate allocation of algorithm 1 applied
on heterogeneous capacities may contain an envy cycle that cannot
be removed by bundle switching.

Example 3.1. Consider an instance with 4 categories and 2
agents, and for simplicity, mark the valuations of items as
an ordered pair vAlice, vBob (e.g. an item 0, 1 is an item Al-
ice values 0 and Bob values 1). The allocation described in
table 2 can be the intermediate outcome of algorithm 1 be-
fore the stage of removing envy cycles after category 4. If
Alice begins and the choosing order is: C1: A:1, 1, B:0, 1;
C2: A:0, 0; C3: B:0, 0; C4: B:1, 1, A:0, 1; This intermedi-
ate allocation contains a cycle in the envy graph. Algorithm
1 removes cycles by switching bundles, but here it is impos-
sible due to different feasibility constraints in C2 and C3.
Without removing the cycle, even one extra item added to
any of their bundles might cause a non-EF1 allocation.

Maximum Nash welfare Next, we observe that even with
homogeneous constraints, MNW does not imply EF1 even
with binary valuations. (Amitay: this did appear in a foot-
note in (Biswas and Barman 2018). not an example but the
existence of such an example. should we remove it or add a
comment?)
Example 3.2. Consider the non-EF1 allocation in Table
3. The total values of the agents in this allocation are
vA(XA) = 2, vB(XB) = 3, resulting in Nash welfare of
6. The only other possible value profiles are (1, 4) or (0, 5),
resulting in lower Nash welfare. Hence, the allocation is
MNW.

Note that Benabbou et al. (2020) prove that MNW al-
ways implies EF1 for submodular valuations with binary
marginals. However, they consider only clean allocations,
where items with 0 marginal value are not allocated. In con-
trast, we require that all items be allocated.

In order to decide where to focus our attention, we con-
sidered several settings and fairness criteria to get a sense of
what settings may admit a fair allocation and which criteria
might be achievable.

3.2 General Matroids, Non existence of EFX
(Erel: Should we consider F-EFX?) (Amitay: since this ex-
ample if with identical matroids, EFX and F-EFX are the



Category Alice Bob
C1 1,1 0,0

k1A = k1B = 2 1,1 0,0
C2 0,1 0,1

k2A = k2B = 3 0,1 0,1
0,1 0,1

Table 3: Example where for different binary valuations, even with
the same partition matroid, a MNW allocation is not EF1. Also,
round robin might fail at achieving EF1. The table presents the
MNW allocation, that can also be the result of running round robin,
and shows for every item the valuations of the agents for it (for
example, for item g = 0, 1 the values are vA(g) = 0, vB(g) = 1)

Figure 1: Identical valuations, identical matroids, no feasible EFX
allocation. This graphic matroid, with the valuation indicated on
the edges, admits no EFX allocation for 2 agents.

same, as any feasible bundle is feasible for every agent)
An Envy Free up to any good (EFX) allocation is a feasi-

ble allocationX where for every pair of agents i, j, for every
good g in j’s bundle, vi(Xi) ≥ vi(Xj \ {g}). It is a stronger
fairness notion than EF1, not proved to exist even for the
unconstrained setting. We show that in the constrained set-
ting, even with homogeneous constraints and homogeneous
agents such allocation is not guaranteed to exist.

We will use a graphic matroid for the example. A graphic
matroid is represented by a graph where the edges corre-
spond to items, and a set of items is an independent set if the
corresponding edges do not form a cycle.
Example 3.3. Even under identical matroids and identical
binary valuations with 2 agents, a complete EFX allocation
may not exist. Consider the graphic matroid in figure 1, with
the valuation indicated on the edges. For 2 agents, the only
EFX allocation gives the diagonal edge as a single item bun-
dle to one agent, and the rest of the edges to the other. The
second bundle creates a cycle in the graph, so it is not a fea-
sible allocation.

3.3 Matching Constraints, Non existence of EF1
We also tried to extend beyond matroid constraints, but even
for the slight extension to matching constraints, we found an
EF1 allocation may not exist. Matching constraints require
that each bundle be a matching in a given bipartite graph (the
edges are the items). Note that the set of possible matchings
is not a matroid, but it is an intersection of two matroids.
Example 3.4. In the bipartite graph described in figure 2,
there are only 2 possible matchings: the diagonal edges and

Figure 2: Example- Matching Constraints with no feasible EF1 al-
location. The only feasible allocation gives one agent the diagonal
edges and the other one the horizontal edges, and it is not EF1.

the horizontal edges. For two agents with identical valua-
tions (indicated in the figure over each edge), the allocation
that gives one of them the horizontal edges and the other the
diagonal ones is not EF1, as the second agent would envy
the first even after removing any of the items in her bundle.

3.4 Partition with Different Categories, Non
existence of F-EF1

In the case of general partition matroids, even where valu-
ations are identical and there are only 2 agents, there exists
an instance that does not admit an F-EF1 allocation.
Example 3.5 (Different partition, no F-EF1). Let M =
{a, b, c, d}, N = {1, 2}, v1 = v2 = v, v(a) = v(b) = 10
and v(c) = v(d) = 1. Let the partitions for agent 1 be:
C1

1 = {a, c}, C2
1 = {b, d} with capacities: k11 = k21 = 1

and for agent 2: C1
2 = {a}, C2

2 = {b}, C3
2 = {c, d} with

capacities k12 = k22 = 1, k32 = 0:

Item: a b c d

v1 = v2 = v : 10 10 1 1
Category for agent 1: 1 2 1 2
Category for agent 2: 1 2 3 3

The only feasible allocation is X1 = {c, d}, X2 = {a, b}.
and it is not F-EF1 for agent 1.

Therefore, in the remainder of this paper when consider-
ing partition matroid we restrict attention to identical parti-
tions (but, possibly different capacities and valuations).

4 Warm-up: Uniform Matroids and Partition
Matroids with Identical Valuations

The main question in this section is under what conditions
an F-EF1 allocation is guaranteed to exist.

(Biswas and Barman 2018) proved existence for identical
capacities and additive valuations:
Theorem 4.1 (Biswas and Barman). For Identical Parti-
tion matroid with Identical Capacities, there always exists
an EF1 allocation.

4.1 Uniform Matroid, Different Capacities,
Different Valuations

As a warm-up, we consider a partition matroid with a sin-
gle category, also known as a uniform matroid. We show an



algorithm that finds an F-EF1 allocation for n agents with
different valuations and different capacities. This algorithm
(Algorithm 2) is a slight modification of round robin where
if an agent reached her capacity she is being skipped over. It
will serve as a sub-routine in the following sections.

Theorem 4.2. For a uniform matroid, a F-EF1 allocation
always exists and can be found by Capped Round Robin (Al-
gorithm 2). Furthermore, ifX is the resulting allocation, for
every i, j such that i precedes j in σ , vi(Xi) = v̂i(Xi) ≥
v̂i(Xj)

The proof for this is similar to that of the unconstrained
setting and standard round robin. Note, that it does not work
for more than one category, as can be seen in section 3.

Algorithm 2: Capped Round Robin

Input: Category h, capacities khi for every i ∈ [n],
and an order σ of [n]

Initialize:
L← Ch, P ← {i : khi = 0}, t← 0,
∀i ∈ [n] Xh

i ← ∅
while L 6= ∅ do

i← σ[t];
if i /∈ P then

g = argmaxg∈L vi({g});
Xh

i ← Xh
i ∪ {g}; {Agent i gets her best

unallocated item in Ch}
L← L \ {g};
if |Xh

i | == khi then
P ← P ∪ {i} {Agent i cannot get any

more items from Ch}
end

end
t← t+ 1 mod n;

end
Return Xh

4.2 Different Capacities, Identical Valuations
We now consider an arbitrary number of categories, allow
agents to have different capacities, but assume that all agents
have the same valuations; this is a “dual” of the setting of
Biswas and Barman (2018). Note that in this setting, the al-
gorithm we used for a uniform matroid might fail.

Lemma 4.3. In the setting of identical additive valuations
and partition matroids with identical categories (but possi-
bly different capacities), it is an invariant that throughout
the stages of Algorithm 3 at no points are there cycles in
the envy graph. (Amitay: Possible rephrasing: For identical
valuations and different capacities, Algorithm 3 creates no
cycles in the feasible envy graph at any stage. )

Proof. Assume towards contradiction that at some point
while running Algorithm 3 there is a cycle in the feasible
envy graph. Denote the agents in the cycle 1 . . . p, ordered

by the order of the cycle. The existence of the cycle implies:

v(X1) < v̂1(X2) ≤ v(X2) < v̂2(X3)

≤ v(X3) < ... ≤ v(Xp) < v̂p(X1) ≤ v(X1),

a contradiction.

Theorem 4.4. Every instance with identical additive valu-
ations and partition matroids with identical categories (but
different capacities) admits an F-EF1 allocation. Further-
more, Algorithm 3 finds such allocation.

Proof. We show by induction that after every category the
allocation is F-EF1. Induction base: after the first category
the allocation is F-EF1 according to Lemma 4.2. Induction
step: assume the allocation is F-EF1 after t categories. Be-
fore running category t + 1 we reorder the agents topologi-
cally according to the feasible envy graph, and use this order
as σ in Algorithm 2. this is possible by Lemma 4.3. For ev-
ery i, j such that i precedes j in σ, j does not F-envy i. By
Lemma 4.2, during category t + 1’s iteration j can become
envious of i, but only up to F-EF1. TODO re-phrase: Also
by 4.2, during category t + 1’s iteration i cannot gain any
feasible envy towards j, and since the allocation before the
t+ 1’th category was F-EF1, it remains F-EF1 after it.

Algorithm 3: Per-Category Capped Round Robin

Input: M,C, khi for every i ∈ [n], h ∈ [l]
Result: an allocation X which is F − EF1
initialize:
σ ← an arbitrary order over the agents.
∀i ∈ [n] Xi ← ∅
foreach Ch ∈ C do

Run Capped Round Robin with Ch, σ;
∀i ∈ [n] Xi ← Xi ∪Xh

i ;
Draw ”Feasible Envy” directed graph where
(i, j) ∈ E ⇐⇒ vi(Xi) < v̂i(Xj);

Set σ to be a topological order of the graph
(Lemma 4.3 claims it is a-cyclic);

end

We next show that for different capacities and identical
valuations Maximum Nash Welfare implies F-EF1.

Theorem 4.5. For different capacities and identical valua-
tions, any allocation that maximizes Nash Social Welfare is
F-EF1.

Proof. Let X be an allocation that maximizes Nash social
welfare (MNW), and suppose there exist agents i, j such that
i f-envies j.

Case 1: there exist a category h such that |Xh
i | < khi and

v̂i(X
h
j ) > 0. In this case, the original proof for the non-

constrained setting shall work: Let g ∈ Xh
j such that v(g) >

0. Since |Xh
i | < khi , Xi ∪ {g} is a feasible allocation. X

being MNW implies:

(v(Xi) + v(g)) · (v(Xj)− v(g)) ≤ v(Xi) · v(Xj)



opening the parenthesis:

v(Xi)v(Xj)−v(Xi)v(g)+v(Xj)v(g)−v(g)2 ≤ v(Xi)v(Xj)

Simplifying the above expression and using the fact that
v(g) > 0 we get:

v(Xj)− v(g) ≤ v(Xi)

Since valuations are additive, this implies

v(Xj \ {g}) = v(Xj)− v(g) ≤ v(Xi)

By the fact that v̂i(S) ≤ v(s) ∀S, we get the desired feasible
EF1 property:

v̂i(Xj \ {g}) ≤ v(Xj \ {g}) ≤ v(Xi) = v̂i(Xi)

Case 2: for every category h′ such that |Xh′

j | > 0, it
holds that |Xh′

i | = kh
′

i . Let h be some category in which
i feasibly envies j. that is: v(Xh

i ) = v̂i(X
h
i ) < v̂i(X

h
j ).

Such a category exists since otherwise i wouldn’t be able
to envy j feasibly at all. Let g = argmaxt∈Xh

j
v(t), b =

argmint∈Xh
i
v(t). Such items exist because |Xh

i | = khi > 0

otherwise i wouldn’t have feasible envy for j in that cat-
egory, and |Xh

j | > 0 otherwise i wouldn’t envy j at all
at that category. Than v(Xh

i ) ≥ khi · v(b) and v(Xh
j ) ≤

khj · v(g). We know that i envies j a feasible envy in Ch so:
khi · v(g) ≥ v̂i(X

h
j ) > v̂i(X

h
i ) = v(Xh

i ) ≥ khi · v(b) there-
fore v(g)− v(b) > 0.
We will use a hypothetical item exchange for the proof: look
at the allocation that exchanges the items b, g. It is feasi-
ble since they are in the same category. We know that X is
MNW, so the value product of i, j should be higher than in
the new allocation:

(v(Xi)+v(g)−v(b))·(v(Xj)−v(g)+v(b)) ≤ v(Xi)·v(Xj)

let z = v(g)− v(b). We get:

v(Xi)v(Xj)− v(Xi)z + v(Xj)z − z2 ≤ v(Xi)v(Xj)

Simplifying the above expression and using the fact that z >
0, we get:

v(Xj)− z ≤ v(Xi)

Since the valuation is additive, and v(b) ≥ 0, we get:

v(Xi) ≥ v(Xj)− z = v(Xj)− v(g) + v(b)

≥ v(Xj)− v(g) = v(Xj \ {g})
Because the value for i’s best feasible subset ofXj is smaller
or equal to v(Xj), we get that:

v̂i(Xj \ {g}) ≤ v(Xj \ {g}) ≤ v(Xi) = v̂i(Xi),

as desired.

5 Partition Matroids with Different
Capacities, Different Binary Valuations

In this section we consider n agents with different binary
valuations and partition matroids with different capacity
constraints.

Theorem 5.1. For partition matroids with heterogeneous
capacities and heterogeneous binary valuations, there exist
an F-EF1 allocation for n agents.

The main tool we use is priority matchings, which we de-
fine below.

In a graph G = (V,E), a matching is a subset µ ⊆ E
such that each vertex u ∈ V is adjacent to at most a single
edge in µ. A vertex adjacent to an edge of µ is said to be sat-
urated by µ. Given a partition of V into subsets V1, . . . , Vk
(called priority classes), a priority matching is a matching
that, among all feasible matchings, maximizes the number
of saturated vertices of V1; subject to this, maximizes the
number of saturated vertices of V2; etc. Priority matchings
were introduced by Roth, Sönmez, and Ünver (2005) in the
context of kidney exchange. They consider the case where
each priority class is a singleton. They prove that every pri-
ority matching is also a maximum-cardinality matching; that
is, maximizes the overall number of saturated vertices of
V . Okumura (2014) extends their results to arbitrary prior-
ity classes, and also shows a polynomial-time algorithm for
finding a priority matching. Faster algorithms were recently
presented by Turner (2015b,a).

The general scheme of our algorithm is presented as Al-
gorithm 4. Each step is explained in detail below.

Algorithm 4: F-EF1 allocation with binary valua-
tions.

Input: M,C, khi for every i ∈ [n], h ∈ [l].
Result: an F-EF1allocation X.
Initialize:
∀i ∈ [n] Xi ← ∅
for each category h do
∀i ∈ [n] Xh

i ← ∅
Let Th := maxi∈N khi ;
for t = 1, . . . , Th do

Construct a bipartite agent-item graph Gh
t

(see below for details);
Partition the agents into priority-classes based
on a topological order on the feasible
envy-graph;

Find a priority matching in Gh
t ;

For every item g matched to agent i :
Xh

i ← Xh
i ∪ {g};

end
Allocate the unmatched items of Ch arbitrarily to

agents with remaining capacity;
∀i ∈ [n] Xi ← Xi ∪Xh

i
end
[TODO: write in a way that is consistent with the
other algorithms. Maybe add step numbers and refer
to them in the explanation below.]

Algorithm 4 works category-by-category. For each cate-
gory h, the items of Ch are allocated in several iterations,
where in each iteration, every agent receives at most one
item. The number of required iterations is at most the maxi-
mum capacity of an agent in Ch; we denote this number by



Th := maxi∈N khi .
In each iteration t, we construct a bipartite graph that we

denote byGh
t . One side ofGh

t consists of the agents with re-
maining capacity, i.e., agents for which khi > |Xh

i |. [TODO:
maybe add the notion of “agent with remaining capacity” to
the preliminaries — if it is used elsewhere]. The other side
ofGh

t contains the unallocated items ofCh. There is an edge
between an agent i and an item j iff the agent wants the item,
i.e., vi(j) = 1.

We then find a topological order σ on the feasible envy-
graph (we later prove that the feasible envy-graph never
has cycles, so a topological order exists), and partition the
vertices of Gh

t corresponding to agents into priority-classes
V1, . . . , Vk such that, for all i < j, the agents in Vi preceed
the agents in Vj in σ.(Amitay: I think we need to also make
sure there is no envy within each class. otherwise all of the
agents could be in the same class) (Erel: You are right. In
fact, we can make each class a singleton.) In other words,
agents in Vi are not envied by agents in Vj . This step as-
sumes that Gh

t is cycle-free; we will prove below that it is.
Based on the priority-classes V1, . . . , Vk, we find a pri-

ority matching in Gh
t , and allocate each item to the agent

matched to it. Then we update the envy-graph and the agent-
item graph and proceed to allocate another batch of items of
Ch.

After at most Th iterations, no more items of Ch can be
allocated to agents who value them at 1, but there may be
remaining items that are valued at 0 by all agents with re-
maining capacity. We allocate these items to arbitrary agents
with remaining capacity. This is always possible, since by
assumption a feasible allocation exists, so the sum of capac-
ities of all agents is at least |Ch|. [TODO: verify this. Do we
mention this condition elsewhere?]

To prove the correctness of the algorithm, we need to
prove that the envy-graph never has cycles, and that the fea-
sible envy between every two agents is at most 1. We prove
both conditions simultaneously.

Theorem 5.2. In each iteration of Algorithm 4:
(a) The envy-graph has no cycles;
(b) For every i, j ∈ N , the envy of i in j is at most 1.

[TODO: Define “envy of A in B” in the preliminaries] (Ami-
tay: maybe use PE (positive envy) that we defined in section
6? we can move it to the model section) (Erel: Sounds good)

Proof. The proof is by induction. Both claims obviously
hold when the algorithm starts. For any category h and it-
eration t ∈ [Th], we denote by before (after) ht the situation
before (after) iteration t of allocating the items in Ch. We
assume that properties (a) and (b) hold before ht and prove
that they hold after ht.

(a) Suppose by contradiction that after ht there is a cycle
i1 → · · · → ik = i1 in the envy-graph. By assumption (a)
the cycle did not exist before ht, so at least one edge is due
to an item of Ch allocated in iteration t. Suppose w.l.o.g.
that it is the edge i1 → i2. This means that i1 did not receive
an item adjacent to it in Gh

t , while i2 did receive some item
j2 ∈ Ch that is adjacent to i1 inGh

t . This j2 was necesssarily
adjacent to i2 too in Gh

t — otherwise the priority matching
algorithm would assign it to i1 instead. By assumption (b),

the envy of i2 in i3 before ht was at most 1, and the utility of
i2 increased by 1 due to j2. Therefore, the envy edge i2 → i3
implies that i3 received some item j3 ∈ Ch that is adjacent
to i2 inGh

t . This j3 was necesssarily adjacent to i3 too inGh
t

— otherwise the priority matching algorithm would assign
the items (j3, j2) to (i2, i1) instead. Similar arguments im-
ply that every agent in the cycle must have received an item
adjacent to it in Gh

t . This includes the agent ik = i1 — a
contradiction.

(b) Suppose by contradiction that the envy of Alice in Bob
after ht is more than 1. Since the valuations are binary and
at most one item is allocated in each iteration, the envy of
Alice in Bob before ht must have been exactly 1. There-
fore, Alice appeared before Bob in the topological order σ.
Alice’s envy towards Bob increased, so the algorithm must
have allocated to Bob some item j ∈ Ch that was adja-
cent to Alice in Gh

t (Amitay: this sentence is not true, alice
could become envious more than EF1 even if she is not on
the graph because her capacity in this category is full. the
contradiction is that if that happened it implies that she was
envious more than EF1 even before that category. ). (this
implies that Alice both values j at 1 and had sufficient re-
maining capacity to receive j). If Alice did not reach her ca-
pacity in category h, the algorithm for priority-matching on
Gh

t would prefer the matching in which j is given to Alice to
the one in which j is given to Bob — a contradiction. Other-
wise, since the item allocated to Bob was of value to Alice,
it means we couldn’t have given Alice any items worth 0
to her in this category, as we would assign this item to her
beforehand. So in category h, all of the items allocated to
Alice are worth 1 to her. That is, if X is the allocation after
ht, vA(Xh

A) = khA ≥ v̂A(Xh
B). After ht Alice envies Bob

more than EF1, vA(XA) ≤ v̂A(XB) − 2. This implies that
if X ′ was the allocation before h1, that is- before starting to
allocate items from category h:

vA(X ′A) = vA(XA)− vA(Xh
A)

≤ v̂A(XB)− 2− v̂A(Xh
B)

= v̂A(X ′B)− 2,

implying the allocation was not F-EF1 even before category
h — a contradiction.

Remark 5.3. Consider the special case in which the capac-
ities are binary, i.e., khi ∈ {0, 1} for all i, h. Then Algorithm
4 runs a single priority matching in each category. Since
this matching is also maximum-cardinality, it maximizes the
sum of utilities in each category, and thus maximizes the
overall social welfare. Therefore, the algorithm in this case
returns a Pareto-efficient allocation. [TODO: check whether
we define Pareto-efficient anywhere]

However, when the capacities are larger, the algorithm
may return a non Pareto-efficient allocation. For exam-
ple, suppose there is a single category and two agents
with a capacity of 2. There are four items with values
(1, 0), (1, 0), (1, 1), (0, 1). In iteration 1, the priority match-
ing may assign (1, 1) to Alice and (0, 1) to Bob. Then Bob
does not want any remaining item, so in iteration 2 Alice



gets (0, 1). The final value profile is (2, 1), which is Pareto-
dominated by the allocation giving (1, 0), (1, 0) to Alice and
(1, 1), (0, 1) to Bob. [TODO: put in a table / in the appendix]

6 Partition Matroids with Different
Capacities, Different Non-Binary

Valuations
6.1 Different Capacities, Different Valuations, 2

Categories
In this section we present an algorithm that finds an F-EF1
allocation in settings with 2 categories and different capaci-
ties and valuations.

Theorem 6.1. For Partition matroids with 2 identical cate-
gories, different capacities and different additive valuations
there exist a F-EF1 allocation.1

Algorithm 5: Bi-directional CRR
σ ← an arbitrary order over the agents.
Run Capped Round Robin with C1, σ;
Let X1

i be the outcome allocation for agent i;
∀i ∈ [n] Xi ← X1

i ;
σ′ ← reverse(σ)
Run Capped Round Robin with C2, σ′;
Let X2

i be the outcome allocation for agent i;
∀i ∈ [n] Xi ← Xi ∪X2

i ;

Proof. Our algorithm (Algorithm 5) runs CRR in an arbi-
trary order for the first category, then uses the reverse order
for CRR in the second category. After the first phase of Al-
gorithm 5 (the first category), by Theorem 4.1, the allocation
is F-EF1 and no agent envies another agent that appears in
σ after her. Consider two arbitrary agents i, j at the end of
the algorithm. If agent i f-envied agent j (up to 1 good) af-
ter the first category, she appears before j in σ′ and thus
will not gain any more envy in the second category. If she
didn’t envy after the first category, she can only gain envy
up to one good in the second category. That is- in one of the
categories she might envy up to one good, in the other she
will not envy at all. Adding them together results in a F-EF1
allocation.

6.2 Different Capacities, Different Valuations, 2
agents

In this section we present an algorithm for 2 agents.

Theorem 6.2 (Different Capacities, Different Valuations, 2
agents). In every setting with 2 agents, a F-EF1 allocation
exists and can be computed efficiently by Algorithm RR2

(Algorithm 6).

Before we present the algorithm and its analysis, we in-
troduce some notation.

1This can be extended to k categories and F-EF k
2

, Envy freeness
up to k

2
goods

• Given an allocation X, the surplus of agent i in category
h is

shi (X) := v̂i(X
h
i )− v̂i(Xh

j ).

I.e., it is the difference between agent i’s value for her
own bundle and her value for agent j’s bundle.

• Given agents 1, 2, ` ∈ {1, 2}, valuation functions v, v′
and category h, χ(v, v′, `)h is the allocation obtained by
Capped Round Robin (Algorithm ??) for category h, un-
der valuations v1 = v, v2 = v′, and where agent ` plays
first. When clear in the context, we omit the superscript h
from χ(v, v′, `)h.
We are now ready to present Algorithm “Round Robin

Squared” (RR2) . In RR2, there are two layers of round
robin (RR), one layer for choosing the next category, and
one layer for choosing items within a category. For every
agent i, the categories are ordered based on shi (χ(v1, v2, i)),
in a non-increasing order; call this order πi. In the first it-
eration, agent 1 chooses the first category in π1. Within this
category, the items are allocated according to Capped Round
Robin (CRR) (Algorithm 2), with agent 1 choosing first. In
the second iteration, agent 2 chooses the first category in
π2 that has not been chosen yet. Within this category, the
items are allocated according to CRR, with agent 2 choos-
ing first. The algorithm proceeds in this way, where in every
iteration, the agent who chooses the next category flips; that
agent chooses the highest category in her order that has not
been chosen yet, and within that category, agents are allo-
cated according to CRR with that agent choosing first. This
process proceeds until all categories have been exhausted.

Algorithm 6: RR-Squared ((RR)2)
Input: a ∈ {1, 2} the first agent to choose, a set of

items M , categories C1, ..., Cl,capacities khi
for every i = 1, 2, h ∈ [l].

∀i = 1, 2 Xi ← ∅;
∀i = 1, 2 ψi ← Order over the categories according

to shi (χ(v1, v2, i)) for every category h. (According
to the expected results of running Algorithm 2 over
them where i is first to choose).

for j ∈ [l] do
h← the first category in ψa not yet played;
Xh ← χ(v1, v2, a) (result of CRR (Algorithm 2)

over category h where a is first to choose);
∀i ∈ [2] Xi ← Xi ∪Xh

i ;
Switch a to be the other agent;

end

The key lemma in our proof asserts that the surplus of an
agent i when playing first within a category h is at least as
large as minus the surplus of the same agent when playing
second in the same category. I.e.,
Lemma 6.3. For every category h and every i = 1, 2:

shi (χ(v1, v2, i)
h) ≥ −shi (χ(v1, v2, j)

h)

Before proving Lemma 6.3, we show how it implies the
assertion of Theorem 6.2.



Proof of Theorem 6.2. We first show that the first agent to
choose does not F-envy the other agents. That is,

vi(Xi) ≥ v̂i(Xj),

where i is the first agent to choose.
By reordering, let C1, ..., Cl be the categories in the order

they are chosen, and let agent 1 choose a category first. It
holds that:

v1(X1)− v̂1(X2) =
∑̀
h=1

v1(Xh
1 )−

∑̀
h=1

v̂1(Xh
2 )

=
∑̀
h=1

(v1(Xh
1 )− v̂1(Xh

2 ))

=
∑

h is odd

sh1 (χ(v1, v2, 1)) +
∑

h is even

sh1 (χ(v1, v2, 2))

(2)

≥
∑

h is odd

sh1 (χ(v1, v2, 1)) +
∑

h is even

−sh1 (χ(v1, v2, 1))

(3)

=

`
2∑

t=1

(s2t−11 (χ(v1, v2, 1))− s2t1 (χ(v1, v2, 1))). (4)

The first equations follow from additivity. Equation 2 fol-
lows from the definition of surplus, the facts that agent 1
chooses the odd categories, and the agent who chooses the
category is the one to choose first within this category. In-
equality 3 follows from Lemma 6.3.

Now, since agent 1 chooses the odd categories, and
she chooses according to the highest surplus of the
categories not yet chosen, it means that for every t
s2t−11 (χ(v1, v2, 1)) ≥ s2t1 (χ(v1, v2, 1)) as category 2t was
available when agent 1 chose category 2t−1. Therefore, ev-
ery summand in the sum of line 4 is non-negative. Thus,
the whole sum is non-negative, implying that v1(X1) ≥
v̂1(X2), as desired.

We next show that agent 2 does not F-envy agent 1 beyond
F-EF1. As a thought experiment, consider the same setting
with the first chosen category removed. Following the same
reasoning as above, in this setting agent 2 does not F-envy
agent 1. But within the first category, agent 2 can only F-
envy agent 1 up to 1 item. That is, there exists one item in
the first category such that when it is removed, it eliminates
the feasible envy of the second agent within that category,
and thus eliminates her total feasible envy. We conclude that
the obtained allocation is F-EF1.

We are now ready to establish the proof of Lemma 6.3. Its
proof is based on several lemmas, which we state below.

(MF: up to here.)
Lemma 6.4. When two agents with identical additive val-
uations v play CRR on one category, and one agent plays
according to v, the best strategy of the other agent is to play
according to v. that is, for every additive valuation v′ and
every ` ∈ {1, 2}:

(a) v(χ(v, v, `)1) ≥ v(χ(v′, v, `)1)

(b) v(χ(v, v, `)2) ≥ v(χ(v, v′, `)2)

Proof. The two statements are obviously analogous; below
we prove claim (b).

Denote by “truthful play” the play of CRR in which agent
2 plays by v and gets the bundle χ(v, v, `)2; denote by “un-
truthful play” the play of CRR in which agent 2 plays by
v′ and gets the bundle χ(v, v′, `)2. Order the items in each
of these two bundles in descending order of v. Denote the
resulting ordered vectors π and π′ respectively, such that
v(π1) ≥ v(π2) ≥ · · · and v(π′1) ≥ v(π′2) ≥ · · · . Note that
|π| = |π′| (agent 2 gets the same number of items in both
plays). We now prove that v(πt) ≥ v(π′t) for all t ≤ |π|.

For every index t ≤ |π|, denote by zt the number of items
held by agent 1 when it’s the t-th turn of agent 2, that is:

zt :=

{
min (kh1 , t− 1) if ` = 2

min (kh1 , t) if ` = 1

Assume towards contradiction that there exist an index t ≤
|π| s.t. v(π′t) > v(πt) and let us look at smallest such t
(corresponding to a highest valued item in π′).

In the truthful play, before agent 2 picks πt, agents 1 and
2 together hold the zt + t − 1 highest-valued items; hence
there are exactly zt + t− 1 items more valuable than πt.

In the untruthful play, agent 1 still plays by v and thus
still holds at least zt of the zt + t − 1 highest-valued items.
While we do not know by which order agent 2 picks items,
we do know that in the final allocation π′, the first t items
are at least as valuable as π′t, which is by assumption more
valuable than πt. Hence there are at least zt + t items more
valuable than πt — a contradiction.

Since the sum of values of bundle 1 and bundle 2 is fixed,
we get the following corollary:
Lemma 6.5. When two agents with identical additive val-
uation v play CRR on one category, and one agent plays
according to v, the worst case for this agent is that the other
agent plays according to v too. That is, for every v′ and
` ∈ {1, 2}:

(a) v(χ(v, v, `)2) ≤ v(χ(v′, v, `)2)

(b) v(χ(v, v, `)1) ≤ v(χ(v, v′, `)1)

A third lemma that we will need is:
Lemma 6.6. When two agents with identical additive valu-
ation v1 = v2 = v play CRR on one category, the value of
each agent to her own bundle when she plays first is at least
her value to the other agent’s bundle when the other agent
plays first, and vice versa:

(a) v1(χ(v, v, 1)1) ≥ v̂1(χ(v, v, 2)2)

(b) v1(χ(v, v, 2)1) ≥ v̂1(χ(v, v, 1)2)

Proof. When both agents play using the same valuation,
the only thing that differentiates agent 1’s bundle when
1 chooses first/second from agent 2’s bundle when 2
chooses first/second is the capacity. If kh1 ≤ kh2 , than
χ(v, v, 1)1 ⊆ χ(v, v, 2)2, and moreover, χ(v, v, 1)1 =
BEST1(χ(v, v, 2)2) and (a) holds with equality. Other-
wise, χ(v, v, 2)2 = BEST1(χ(v, v, 2)2) ⊂ χ(v, v, 1)1 so
v1(χ(v, v, 1)1) > v̂1(χ(v, v, 2)2) and (a) holds strictly. Sim-
ilar considerations apply to (b).



Using the same proof from Lemma 6.4, but for agents
where both capacities are set to be the minimum of kh1 , k

h
2

proves the following corollary regarding feasible valuations:

Lemma 6.7. When two agents with identical additive val-
uation v1 = v2 = v play CRR on one category, and one
agent plays according to v, they will feasibly prefer the bun-
dle the other agent gets playing according to v than the one
the other agent gets playing according to v′ 6= v. That is, for
every ` ∈ {1, 2}:

(a) v̂1(χ(v, v, l)2) ≥ v̂1(χ(v, v′, l)2)

(b) v̂2(χ(v, v, l)1) ≥ v̂2(χ(v′, v, l)1)

proof of Lemma 6.3. We will prove for i = 1, j = 2. The
other case is analogous. The proof is based on the following
four inequalities:

1. v1(χ(v1, v2, 1)1) ≥ v1(χ(v1, v1, 1)1)

2. v̂1(χ(v1, v2, 1)2) ≤ v̂1(χ(v1, v1, 1)2)

3. v1(χ(v1, v1, 1)1) ≥ v̂1(χ(v1, v2, 2)2)

4. v̂1(χ(v1, v1, 1)2) ≤ v1(χ(v1, v2, 2)1)

We prove each inequality separately.

1. Apply Lemma 6.5(b) with v := v1 and v′ := v2 and
` = 1.

2. Apply Lemma 6.7(a) with v := v1 and v′ := v2 and ` =
1.

3. First, we claim that v1(χ(v1, v1, 1)1) ≥
v̂1(χ(v1, v1, 2)2). This follows from Lemma 6.6(a)
with v := v1.
Secondly, we claim that v̂1(χ(v1, v1, 2)2) ≥
v̂1(χ(v1, v2, 2)2). Apply Lemma 6.7(a) with v := v1 and
v′ := v2 and ` = 2.

4. First, we claim that v̂1(χ(v1, v1, 1)2) ≤
v1(χ(v1, v1, 2)1). This follows from Lemma 6.6(b)
with v := v1.
Secondly, we claim that v1(χ(v1, v1, 2)1) ≤
v1(χ(v1, v2, 2)1). Apply Lemma 6.5(b) with v := v1 and
v′ := v2 and ` = 2.

Combining the 4 inequalities gives:

sh1 (χ(v1, v2, 1)) = v1(χ(v1, v2, 1)1)− v̂1(χ(v1, v2, 1)2))

≥1,2 v1(χ(v1, v1, 1)1)− v̂1(χ(v1, v1, 1)2)

≥3,4 v̂1(χ(v1, v2, 2)2)− v1(χ(v1, v2, 2)1)

= −sh1 (χ(v1, v2, 2)),

which completes the proof of the lemma.

7 General Matroids with up to 3 agents
In this section we consider general matroid constraints with
identical matroids and heterogeneous valuations. We first
observe that every instance with 2 agents admits an F-EF1
allocation.

Observation 7.1. For identical general matroid constraints,
2 agents and heterogeneous valuations there exists an F-EF1
allocation.

Proof. Observe the case of 2 agents with valuations v1, v2.
(Biswas and Barman 2019) devise a method for EF1 alloca-
tion for identical matroids and identical valuations. Use this
method on an instance where both agents have an identical
valuation v1, to partition the items into two bundles. Both
bundles are feasible for both agents as they share identical
matroid constraints. Let agent 2 choose which of the bundles
to get, so she cannot be envious at all. Agent 1 gets the other
bundle, but she cannot envy more than EF1 as if she was
it would mean the allocation is not EF1 even for identical
valuations.

In what follows, we establish an existence result for 3
agents with binary valuations.
Theorem 7.2. For identical general matroid constraints and
3 agents with heterogeneous binary valuations, there exists
an F-EF1 allocation. Furthermore, there exist such alloca-
tion that is also social welfare maximizing.

Let X be a welfare-maximizing allocation. We construct
X ′ which is an EF1 allocation that is also welfare maximiz-
ing. The algorithm we use is as follows: while there exist
agents i, j such that i envies j beyond EF1, if possible move
an item valuable to i from j to i. otherwise- swap items such
that i will get an item worth 1 to her and give an item worth
0 to her. We prove that one of the options is always possi-
ble and that the process terminates, but first we need several
lemmas.

Algorithm 7: Repeated Swaps
Initialize:
X ← a welfare maximizing complete allocation;
while X is not EF1 do

Find i, j s.t. Envy+(i, j) > 1;
If possible, move item a s.t. vi(a) = 1 from Xj

to Xi;
Else, swap between items a ∈ Xj , b ∈ Xi s.t.
vi(a) = 1, vi(b) = 0

end

Definition 7.3. Given a matroid (M, I) and 2 independent
sets I, J ∈ I, items i ∈ I and j ∈ J represent a feasible
swap if both (J \ {j}) ∪ {i} and (I \ {i}) ∪ {j} are in I.
Lemma 7.4 (Biswas et al.). Let (M, I) be a matroid with
independent subsets I, J ∈ I which satisfy I ∩ J = ∅ and
|I| ≥ |J |. Then, there exists a one-to-one map µ : J → I
such that for any j ∈ J , the pair j, µ(j) represents a feasible
swap.
Lemma 7.5. For a matroid constrained setting with binary
valuations, if agent i envies agent j under a feasible alloca-
tion X, one of these 2 options hold:
1) There exist a ∈ Xj s.t. vi(a) = 1 and a can be added to
i’s bundle: Xi ∪ {a} ∈ I
2) There exists a ∈ Xj , b ∈ Xi s.t. vi(a) = 1, vi(b) = 0 and
a, b represent a feasible swap.
That is, there exist either an item that can be feasibly moved
from j to i or two items that can be feasibly exchanged be-
tween i and j such that agent i’s value will increase by 1



from the action. We will denote such item swap/transfer a
smart swap.

Proof. Case 1: |Xi| ≥ |Xj |; By Lemma 7.4, there exist a
matching between Xj and some subset of Xi such that any
matched pair is a feasible swap. Agent i is envious of agent
j, that means

|{a ∈ Xj : vi(a) = 1}| = vi(Xj) >

> vi(Xi) = |{a ∈ Xi : vi(a) = 1}|,

By the pigeonhole principle, in any such matching there will
be at least one pair of matched items a ∈ Xj , b ∈ Xi s.t.
vi(a) = 1, vi(b) = 0. Consequently, property (2) of the
lemma holds.

Case 2: |Xi| < |Xj |; By the matroid exchange property,
there exists c ∈ Xj s.t. Xi ∪ {c} ∈ I. If there exists such
c s.t. vi(c) = 1, property (1) holds. Otherwise, for all such
c : vi(c) = 0 and let us denote the group of those items by
C = {c ∈ Xj s.t. Xi ∪ {c} ∈ I}. Consider some group
D ⊆ Xj such that Xi ∪ D ∈ I, and |Xi ∪ D| = |Xj |.
Such a group must exist from the matroid exchange property.
We now notice that D ⊆ C, as any subgroup of Xi ∪ D is
also an independent set due to matroid hereditary property,
in particular for every d ∈ D Xi ∪ {d} ∈ I, so every such d
is also in C. Hence vi(D) = 0.
Now consider the independent setsXj , (Xi∪D). It is shown
in (Goemans 2009) that for any two independent subsets of
the same cardinality, I and J , there exists a bijection µ :
J \I → I \J such that any matched pair represent a feasible
swap.
In our case, if we take J = Xj , I = Xi ∪D the bijection is
between J\I = Xj\D and I\J = Xi. Since vi(Xj \D) =
vi(Xj)− vi(D) = vi(Xj) > vi(Xi), a similar argument to
case 1 suggests in such bijection there must be some item
a ∈ Xj such that vi(µ(a)) = 0, vi(a) = 1. Consequently,
property (2) of the lemma holds.

Lemma 7.6. Let X be a welfare maximizing allocation in a
matroid constrained setting with binary valuations, and let
agent i envy agent j under that allocation. Lemma 7.5 holds
with the additional properties:
1) vj(a) = 1.
2) if the second option of Lemma 7.5 holds, vj(b) = 0.
i.e. one can either move item a that is worth 1 to both agents
fromXj toXi or swap between item a and some item b ∈ Xi

that is worth 0 to both agents.

Proof. From Lemma 7.5 we know that there must be a feasi-
ble smart swap. Denote the item moved from j to i: a, denote
the item that moved from i to j (if a swap was needed) b.
By Lemma 7.5, vi(a) = 1 and vi(b) = 0. Regarding vj ,
notice that if vj(a) = 0 or vj(b) = 1 the swap would
result in a strictly higher social welfare, in contradiction
to the maximality of X. Hence vj(a) = vi(a) = 1 and
vj(b) = vi(b) = 0.

Corollary 7.7. For a welfare maximizing allocation X
where agent i envies agent j, every smart swap between
j and i holds that the resulting allocation X ′ will remain

welfare maximizing.

SW (X ′) = SW (X)− vi(b) + vi(a)− vj(a) + vj(b)

= SW (X)− 0 + 1− 1 + 0 = SW (X)

Therefore, at every step the allocation remains welfare
maximizing and we can re-apply Lemma 7.6 to make an-
other smart swap.
Lemma 7.8. Let X be a welfare maximizing allocation
where agent i envies agent j such that Envy+(i, j) > 1,
and let X ′ be the allocation after a smart swap.

1. Envy+(i, j) will drop by 2 after the smart swap.
2. Envy+(j, i) after the smart swap is 0.

Proof. 1. Let a be the item added to Xi in the smart swap.

vi(X
′
j) = vi(Xj)− vi(a) = vi(Xj)− 1,

vi(X
′
i) = vi(Xi) + vi(a) = vi(Xi) + 1.

If we denote Envy+(i, j)′ the positive envy after the
smart swap:

Envy+(i, j)′ = vi(X
′
j)− vi(X ′i)

= vi(Xj)− 1− (vi(Xi) + 1) = Envy+(i, j)− 2

2. Notice that vi(X ′j) − vi(X
′
i) ≥ 0 after the smart swap.

If j would start to envy i, switching their bundles would
strictly increase social welfare in contradiction to maxi-
mality.

(Erel: I suggest to write the algorithm in a float.)
Now we prove theorem 7.2

Proof. LetX be a complete feasible welfare-maximizing al-
location.

If X is EF1, we are done. Otherwise, at each iteration of
the algorithm, choose agent i that envies some agent j such
that Envy+(i, j) > 1. If j also envies i we could switch
their bundles and receive higher SW in contradiction to the
assumption, so we can assume j doesn’t envy i.

Define a potential function:

Φ(X) :=
∑
i

∑
j 6=i

Envy+(i, j).

Intuitively, Φ is the sum of positive envy in the allocation.
By Corollary 7.7 and Lemma 7.8, there must exist a feasi-
ble smart swap between j, i such that the social welfare re-
mains unchanged, Envy+(i, j) drops by 2 and Envy+(j, i)
remains 0. Thus the sum of the relevant terms in the poten-
tial, namely Envy+(i, j) + Envy+(j, i), drops by 2.

Now let us look at the positive envy that might be added
due to other terms of Φ. Denoting the 3rd agent as k:

1. Envy+(i, k) cannot increase, as the smart swap improves
i’s valuation, and does not change k’s bundle.

2. Envy+(k, i) may increase by at most 1, as the largest
possible increase in vk(X ′i) is 1, while vk(Xk) doesn’t
change.



3. Envy+(k, j) may increase by at most 1, as the largest
possible increase in vk(X ′j) is 1, while vk(Xk) doesn’t
change.

4. Envy+(j, k) may increase by at most 1, as this is the ex-
act decrease in vj(X ′j), while vj(Xk) doesn’t change.

Now, notice that among the only options of added envy
(#2,#3,#4) no two options can occur simultaneously:

• Envy+(k, j), Envy+(j, k) cannot increase simultane-
ously as this will create an envy cycle, and de-cycling
it will strictly increase social welfare in contradiction to
maximality.

• Envy+(k, i), Envy+(j, k) cannot increase simultane-
ously as this together with the fact that the envy of i to-
wards j after the smart swap is non-negative will create
a weak envy cycle, and de-cycling it will strictly increase
social welfare in contradiction to maximality.

• Envy+(k, i), Envy+(k, j) cannot increase simultane-
ously as vk(Xi)+vk(Xj) = vk(X ′i)+vk(X ′j). That is, in
the eyes of agent k the added value to one agent’s bundle
will strictly decrease the value of the other’s bundle.

By the above observation, at every iteration the poten-
tial function drops by at least 1: Envy+(i, j) drops by
2, Envy+(j, i), Envy+(i, k) do not change, and among
Envy+(k, i), Envy+(k, j), Envy+(j, k) only one can in-
crease, by at most 1. Noticing that Φ is bounded by 0, the
process ends and we end up with a feasible allocation that is
EF1 and welfare maximizing.
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