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Abstract

“Losses loom larger than gains” — Daniel Kahneman; Amos Tversky

The endowment effect, coined by Nobel Laureate Richard Thaler, posits that people tend
to inflate the value of items they own. This bias was studied mainly using an experimental
methodology. Recently, Babaioff et al. proposed a specific formulation of the endowment
effect in combinatorial settings, and showed that equilibrium existence with respect to the
endowed valuations extends from gross substitutes to submodular valuations, but provably
fails to extend to XOS valuations.

We show that this negative result is an artifact of their specific formulation. To this end,
we introduce a principle-based framework that captures a wide range of different formulations
of the endowment effect, including the formulation proposed by Babaioff et al.. We equip our
framework with a partial order over the different effects, which (partially) ranks them from
weak to strong. We provide algorithms for computing endowment equilibria with high welfare
for sufficiently strong endowment effects, as well as non-existence results for weaker ones. Our
main results are the following:

• For markets with XOS valuations, we provide an algorithm so that for sufficiently strong
endowment effects outputs an endowment equilibrium with at least half of the optimal
social welfare.

• For markets with arbitrary valuations, we show that bundling leads to a sweeping posi-
tive result. In particular, if items can be prepacked into indivisible bundles, we provide
a polynomial algorithm that, given an arbitrary allocation S, computes an endowment
equilibrium with the same welfare guarantee as in S. This can be viewed as a black-box
reduction from the computation of an approximately-optimal endowment equilibrium to
the algorithmic problem of welfare approximation.

1 Introduction

Consider the following combinatorial market problem: A seller wishes to sell a set M of m items
to n consumers. Each consumer i has a valuation function vi : 2M → R+ that assigns a non-
negative value vi(X) to every subset of items X ⊆M . The valuation functions can exhibit various
combinations of substitutability and complementarity over items; and as standard, valuations
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are assumed to be monotone (vi(Z) ≤ vi(X) for any Z ⊆ X) and normalized (vi(∅) = 0). Each
consumer i has a quasi-linear utility function, meaning that her utility for a bundle X ⊆M that
she pays p(X) for is ui(X, p) = vi(X) − p(X). An allocation is a vector S = (S1, . . . , Sn) of
disjoint bundles of items, where Si is the bundle allocated to consumer i. The social welfare of
an allocation S is the sum of consumers’ values for their bundles, i.e., SW (S) =

∑
i∈[n] vi(Si).

An allocation that maximizes the social welfare is said to be socially efficient.
A classic market design problem is setting prices so that socially efficient outcomes arise in

“equilibrium”. Arguably, the most appealing equilibrium notion is that of a Walrasian Equi-
librium (WE) [Walras, 1874]. A WE is a pair of allocation S = (S1, . . . Sn) and item prices
p = (p1, . . . , pm), where each consumer maximizes her utility, i.e.,

vi(Si)− p(Si) ≥ vi(T )− p(T )

for all T ⊆ [m], and the market clears, namely all items are allocated.1 A WE is a desired
outcome, as it is a simple and transparent pricing that clears the market. Moreover, by the
“First Welfare Theorem”, every allocation that is part of a WE maximizes the social welfare2.

Unfortunately, Walrasian equilibria exist only rarely. In particular, they are guaranteed to
exist for the class of “gross substitutes” valuations [Kelso Jr and Crawford, 1982], which is a strict
subclass of submodular valuations; and in some formal sense, it is a maximal class for which a
WE is guaranteed to exist [Gul and Stacchetti, 1999]. Given the appealing properties of a WE, it
is not surprising that various approaches and relaxations have been considered in the literature
in an attempt to ameliorate the non-existence problem.

The endowment effect. The endowment effect, coined by Thaler [1980], posits that con-
sumers tend to inflate the value of the items they own. This phenomenon was later validated by
experiments, which realized and quantified the magnitude of the effect [Knetsch, 1989; Kahne-
man et al., 1990; List, 2011, 2003]. By now, it is widely accepted that the endowment effect is
apparent in many markets.

Yet, as far as we are aware, the endowment effect has been studied mainly via experiments.
Recently, Babaioff, Dobzinski and Oren [2018] (henceforth, Babaioff et al.) proposed a formal
model for studying the endowment effect. In their work they take a behavioral economic perspec-
tive, and harness the endowment effect in order to extend market stability and efficiency. In this
work, we introduce a new framework that provides a more flexible formulation of the endowment
effect, which allows us to generalize and extend their work to richer settings.

Babaioff et al.’s formulation. Babaioff et al. propose capturing the endowment effect in
combinatorial settings by formulating an endowed valuation function. Given some valuation
function v, and an endowed set X ⊆ M , the endowed valuation function, parameterized by α,
assigns the following real value to every set Y ⊆ M , referred to as the endowed valuation of Y
with respect to X:

vX(Y ) = α · v(X ∩ Y ) + v(Y \X | X ∩ Y ), (1)

where α ≥ 1 is the endowment effect parameter, and v(S | T ) = v(S ∪ T ) − v(T ) denotes the
marginal contribution of S given T for any two sets S, T . The idea behind this formulation is
that the value of items already owned by the agent (X ∩Y ) is multiplied by some factor α, while
the marginal value of the other items (Y \X) remains intact.

1More precisely, unallocated items have price 0.
2Moreover, every allocation that is part of a WE maximizes welfare also over all feasible fractional allocations

[Nisan and Segal, 2006].
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An endowment equilibrium is then a Walrasian equilibrium with respect to the endowed
valuations, i.e., a pair of allocation S = (S1, . . . Sn) and item prices p = (p1, . . . , pm), where each
consumer maximizes her endowed utility:

vSi
i (Si)− p(Si) ≥ vSi

i (T )− p(T ),

and the market clears.
The main result of Babaioff et al. is that when consumers’ valuations are submodular and

α ≥ 2, there exists an endowment equilibrium that gives a 2-approximation to the optimal (even
fractional) social welfare with respect to the original valuations. They also show that the existence
result does not extend to the more general class of XOS valuations. In particular, for every α > 1,
there exists an instance with XOS valuations that does not admit an endowment equilibrium.

The specific function given in Equation (1) is one way to formulate the endowment effect
in combinatorial settings, but certainly not the only one. For example, suppose a consumer is
endowed some set X, a-priori, it is not clear how to reevaluate some set Z ⊂ X, subject to
the endowment effect. Babaioff et al. established non-existence result for the case where v(Z)
is multiplied by some parameter α. Can a more flexible formulation of the endowment effect
circumvent this impossibility result?

1.1 A New Framework for the Endowment Effect

In this section we provide a new framework for various formulations of the endowment effect;
our framework is based on fundamental behavioral economic principles. Beyond circumventing
impossibility results, our framework seems the right way to treat this problem, as there is no single
formulation that fits all scenarios. Specifically, our framework allows reasoning about different
ways of defining the value of a subset Z of an endowed set. We hope that our work will inspire
further discussion regarding meaningful endowment effects in combinatorial settings, as well as
experimental work that will shed more light on appropriate instantiations for different scenarios.

A crucial component of our framework is a partial order ≺ over endowment effects, which
is stability preserving; i.e., given two endowment effects, E , E ′, such that E ≺ E ′, a Walrasian
equilibrium with respect to the endowed valuations according to E is also a Walrasian equilibrium
with respect to the endowed valuations according to E ′ (Corollary 3.7).

As in previous work, we take a “two step” modeling approach, i.e., a consumer has a valuation
function v prior to being endowed a set X, and an endowed valuation function vX after being
endowed a set X, which describes the inflation in value due to the endowment effect.

Our framework is based on two basic principles, described below.

The “loss aversion” principle. The loss aversion hypothesis is presented as part of prospect
theory and is argued to be the source of the endowment effect [Kahneman et al., 1990, 1991;
Tversky and Kahneman, 1979]. This hypothesis claims that

People tend to prefer avoiding losses to acquiring equivalent gains.

The loss aversion principle can be formulated as follows:

vX∪Y (X ∪ Y )− vX∪Y (Y ) ≥ vY (X ∪ Y )− vY (Y ) ∀X,Y ⊆M (2)

The left hand side term signifies the loss incurred due to losing a previously-endowed set X, while
the right hand side term signifies the benefit derived from being awarded a set X not having been
owned before. The loss aversion inequality states that the loss incurred due to losing X is greater
than the benefit derived from getting X.
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The “seperability” principle. The additional principle, proposed by Babaioff et al., states
that the endowment effect with respect to set X should maintain the marginal contribution of
items outside of X intact. That is, given set Y ⊆ M , only the value of items in X ∩ Y may be
subject to the endowment effect. This principle is formulated as follows:

vX(Y \X | X ∩ Y ) = v(Y \X | X ∩ Y ) ∀Y ⊆M (3)

In section 3.1 we show that these two principles imply that the value of set Y for a consumer
that is endowed a set X is given by:

vX(Y ) = v(Y ) + gX(X ∩ Y ) ∀Y ⊆M,

for some function gX : 2X → R such that gX(Z) ≤ gX(X) for all Z ⊆ X. The function gX is
referred to as the gain function with respect to X. It describes the added effect an endowed set
X has on the consumer’s valuation.

An endowment effect formulation, or in short: an endowment effect, is then given by a
collection of functions {gX}X⊆[m] that satisfy the above condition. An endowment environment
is given by a vector of endowment effects for the consumers E = (E1, . . . , En), where Ei is the
endowment effect of consumer i.

We discuss each effect {gX}X through the term gX(Z | X \Z) — the additional loss incurred
upon losing a subset Z of an endowed set X due to the endowment effect. In Definition 3.6 we
provide a partial order over all endowment effects, based on this loss.

The Identity and Absolute Loss endowment effects. Let us consider the formulation of
Babaioff et al. within our framework. The endowed valuation with respect to X is

vX(Y ) = α · v(X ∩ Y ) + v(Y \X | X ∩ Y ) = (α− 1)v(X ∩ Y ) + v(Y ).

For the case of α = 2 (which is the case that drives their positive results), this endowment effect
can be formulated in our framework by setting

vX(Y ) = v(X ∩ Y ) + v(Y ).

In this case, the gain function is defined by gX(X ∩ Y ) = v(X ∩ Y ). Thus, we refer to this
endowment effect as the Identity endowment effect, and denote it by EI = {gXI }X where gXI = v.
Note that the additional incurred loss is gXI (Z | X \ Z) = v(Z | X \ Z).

We are now ready to introduce a different endowment effect, that we refer to as the absolute
loss endowment effect. In this effect, the gain function with respect to an endowed set X is

gXAL(Z) = v(X)− v(X \ Z).

I.e., EAL = {gXAL}X . For this effect, it holds that the additional incurred loss is gXAL(Z | X \Z) =
v(Z). For subadditive consumers, this effect demonstrates a “stronger” loss aversion bias than
Identity with respect to the relation ≺, defined in Definition 3.6.

Consider adding the definition of ≺.

Proposition 1.1. For a consumer with a subadditive valuation v, it holds that EI ≺ EAL.

Intuitively, one can imagine that in the absolute loss effect, a consumer amplifies the loss of
a subset Z of an endowed set X by “forgetting” the fact that X \ Z remains at the consumer’s
hand.
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1.2 Existence of Equilibria and Welfare Approximation

In this section we present our existence and approximation results. Our approximation results
hold with respect to the optimal welfare according to the original valuations, and even with
respect to the optimal fractional allocation.3

Recall that Babaioff et al. prove that for the Identity endowment effect, every market with
submodular consumers admits an EI -endowment equilibrium that gives a 2-approximation welfare
guarantee.

For the larger class of XOS consumers, Babaioff et al. show that an endowment equilibrium
may not exist even with respect to an endowment effect α · EI = {α · g : g ∈ EI} for an
arbitrarily large α. This negative result may lead one to conclude that while the endowment
effect improves stability for submodular valuations, XOS markets may remain unstable even
with respect to endowed valuations. However, we show that this negative result is an artifact
of the specific formulation chosen by the authors. As established in the following theorem, the
stronger Absolute Loss endowment effect leads to existence and approximation results for markets
with XOS valuations.4

Theorem 1. [Theorem. 4.1] There exists an algorithm such that for every market with XOS
consumers, and every initial allocation S′ = (S′1, . . . , S

′
n) returns an EAL-endowment equilibrium

(S, p), such that SW (S) ≥ SW (S′).

The algorithm is a variant of the algorithm used by Fu et al. [2012]; Christodoulou et al. [2016].
A direct corollary of Theorem 1 is that for every market with XOS consumers, every optimal
allocation S can be paired with item prices p so that (S, p) is an EAL-endowment equilibrium.
Moreover, we show that every EAL-endowment equilibrium guarantees 1/2 of the optimal welfare:

Theorem 2. [Theorem. 3.5]: Every EAL-endowment equilibrium gives at least 1/2 of the optimal
welfare.

The theorem above shows that a stronger endowment effect enables extending the equilibrium
existence (and approximation) result from submodular valuations to XOS valuations. Can this
result be extended further?

One answer, though unsatisfactory, is yes! For example, consider an endowment effect that
inflates the value of a set linearly with its size; e.g., EPROP = {gX(Z) = |Z| · v(X) : X ⊆ M}.
We show in Section 6 that this effect leads to a sweeping equilibrium existence guarantee for
arbitrary valuations. Moreover, every optimal allocation can be paired with item prices to form
an EPROP -endowment equilibrium (Proposition 6.1). While this sounds as a strong result, this
effect inflates the value linearly in the set’s size, which may be as large as Ω(m). We believe that
such inflation is unreasonably high, and misses the whole point of the endowment effect.

Can we get a general positive result with a “reasonable” inflation? In Section 6 we show that
for any endowment effect with inflation up to O(

√
m), an endowment equilibrium may not exist

for (the strictly-larger-than XOS valuations) subadditive valuations (Proposition 6.2).

1.3 The Power of Bundling

We next study the power of bundling in settings with endowed valuations. A bundling B =
{B1, . . . , Bk} is a partition of the set of items M into k disjoint bundles. A competitive bundling
equilibrium (CBE) [Dobzinski et al., 2015] is a bundling B and a Walrasian equilibrium in the

3 Note that, by the First Welfare Theorem, an endowment equilibrium always gives the optimal welfare with
respect to the endowed valuations.

4 Note that “stronger” here is not in the sense of an increased value of α. Indeed, no finite α suffices for such
result.

4



market induced by B (i.e., the market where B1, . . . , Bk are the indivisible items). It is easy to
see that a CBE always exists (say, bundle all items together, and assign the grand bundle to the
highest value consumer for a price of the second highest value). However, while the WE notion
enjoys the first welfare theorem, guaranteeing that every allocation supported in a WE gives
optimal welfare, no such welfare guarantee applies with respect to CBE [Feldman and Lucier,
2014; Feldman et al., 2016; Dobzinski et al., 2015].

In this paper we introduce the notion of E-endowment CBE, which is a CBE with respect to
the endowed valuations, and provide algorithms for computing E-endowment CBEs with good
welfare, for any endowment effect E satisfying a mild assumption.

Equilibrium computation. Babaioff et al. showed computational barriers towards comput-
ing EI -endowment equilibria, and raised the following question (recall that α · EI denotes the
endowment effect that multiplies each gain function g ∈ EI by α):

Are there allocations that can be both efficiently computed and paired with item prices that
form an α · EI-endowment equilibrium for a small value of α?

The analogous question with respect to CBE and a particular endowment effect E would be:
are there allocations that can be both efficiently computed and paired with bundle prices that
form an E-endowment CBE. It doesn’t take long to conclude that this problem is trivial for any
endowment effect with non-negative gain functions (simply, allocated all items to the consumer
with highest valuation for the grand bundle). The interesting problem here would be to compute
a nearly-efficient CBE, rather than just any CBE5, and can be formulated as follows:

Are there approximately optimal allocations that can be both efficiently computed and paired
with bundle prices, that form an E-endowment CBE for some natural endowment effect E?

Note that for α · EI -endowment equilibrium, the two problems coincide, as any α · EI -
endowment equilibrium gives α approximation to the optimal social welfare.

We provide the following positive results, which essentially provide a black-box reduction from
the problem of computing approximately optimal endowment CBE for significant endowment
effects to the classical algorithmic problem of welfare approximation. This result applies to every
significant endowment effect — where the gain functions satisfy gX(X) ≥ v(X) for all X ⊆ M .
For example, one can easily verify that EI and EAL are significant with respect to all consumer
valuations.

Theorem [Black-box reduction for endowment-CBE]

1. [Thm. 7.4] There exists a polynomial algorithm such that for submodular valuations, and
every significant endowment effect E and initial allocation S′ = (S′1, . . . , S

′
n), computes an

E-endowment CBE (S, p), such that SW (S) ≥ SW (S′). The algorithm runs in polynomial
time using value queries.

2. [Thm. 7.5] There exists a polynomial algorithm such that for general valuations, and
every significant endowment effect E and initial allocation S′ = (S′1, . . . , S

′
n), computes an

E-endowment CBE (S, p), such that SW (S) ≥ SW (S′). The algorithm runs in polynomial
time using demand queries.

The proof of item 2 in the theorem above implies the following corollary:

5This is consistent with the literature on CBE, which has focused on the existence and computation of nearly-
efficiency CBEs Dobzinski et al. [2015]; Feldman and Lucier [2014].
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Corollary [Corr. 7.6] For every market, and significant endowment effect E , any optimal al-
location S can be paired with bundle prices p so that (S, p) is an E-endowment equilibrium.

We note that this result cannot be extended to all endowment effects within our framework.
In particular, for endowment effects such that for some β < 1 it holds that gX(X) ≤ β ·v(X) for all
X ⊆M , there are instances that admit no endowment CBE with optimal welfare, already for XOS
valuations (Proposition 7.8). For this subclass of endowment effects, we provide approximation
lower bounds as a function of the parameter β, for different classes of valuations (including XOS,
subadditive, and arbitrary; see Section 7).

1.4 Comparison to Related Work

Our work builds upon the recent work by Babaioff et al. [2018] that proposed the first formulation
for the endowment effect in combinatorial auctions. They show that every market with submod-
ular valuations admits an EI -endowment equilibrium that gives at least half of the optimal social
welfare.

Other relaxations of WE have been considered in the literature in an attempt to ameliorate
the non-existence problem of WE, and achieve approximate stability and efficiency for more
general valuation classes than gross substitutes.

Fu et al. [2012] considered a relaxed notion of WE, termed conditional equilibrium. A condi-
tional equilibrium is a pair of an allocation and item prices satisfying individual rationality, and
such that no consumer wishes to expand their allocation, but disposing of items is not allowed.
They showed that every conditional equilibrium has at least half of the optimal welfare. More-
over, every market with XOS valuations admits a conditional equilibrium, which can be reached
via a “flexible ascent auction”, an algorithm proposed by Christodoulou et al. [2016].6

A different relaxation of WE was considered by Feldman et al. [2015], where the utility
maximization condition is preserved, but market clearance is relaxed (i.e., items with positive
prices may be unsold). Using this notion, an equilibrium always exists (say, price all items at
some prohibitively large price), but such equilibria carry no approximation guarantees. For this
notion it is shown that even for simple markets with two submodular consumers, the social welfare
approximation guarantee cannot be better than Ω(

√
m).

Our results on endowment CBE (Section 7) should be compared with previous notions of
bundling equilibria [Feldman and Lucier, 2014; Feldman et al., 2016; Dobzinski et al., 2015].
In these settings, the market designer first partitions the set of items into indivisible bundles
B = {B1, . . . , Bk} (these are the indivisible items in the induced market), and assigns prices to
these bundles instead of the original items, and a CBE is a Walrasian equilibrium in the induced
market.

Dobzinski et al. [2015] showed that every market (with arbitrary valuations) admits a CBE
that gives approximation guarantee of Õ(

√
min{m,n}). Moreover, given an optimal allocation, a

CBE with such approximation can be computed in polynomial time. Furthermore, they provide
a polynomial time algorithm that computes a CBE with a Õ(m2/3) approximation guarantee.

This should be compared to Corollary 7.6 and Theorem 7.5 in this paper. Corollary 7.6 shows
that for a wide variety of endowment effects (including the one considered by Babaioff et al.), there
always exists an endowment CBE that gives the optimal welfare. Theorem 7.5 shows that for a
wide variety of endowment effects (including that of Babaioff et al.), given an arbitrary allocation
S, one can compute, in polynomial time, an endowment CBE with (weakly) higher welfare than
S. Thus, the problem of computing nearly-efficient endowment CBEs is effectively reduced to

6Our results imply that their approximation guarantee applies also with respect to the optimal fractional social
welfare. (To the best of our knowledge, this was not previously known.

6



the pure algorithmic problem of welfare approximation — a problem with vast literature (e.g.,
[Dobzinski et al., 2005; Lehmann et al., 2006; Dobzinski and Schapira, 2006; Feige and Vondrak,
2006; Feige, 2009; Feige and Izsak, 2013; Chakrabarty and Goel, 2010]).

A different notion of bundling equilibria was considered by Feldman et al. [2016]. This notion
is a relaxed version of CBE, where some bundles (with positive prices) may remain unsold.
Under this notion, for arbitrary valuations, given an arbitrary allocation S, one can compute, in
polynomial time, an equilibrium with welfare at least half of the welfare of S.

All the notions above consider a concise set of bundles, a price for each bundle, and an
additive pricing over sets of bundles. More general forms of bundle pricing, including non-linear
and non-anonymous pricing, lead to welfare-maximizing results, but are highly impractical (in
particular, they use an exponential number of prices) [Bikhchandani and Ostroy, 2002; Parkes
and Ungar, 2000; Ausubel and Milgrom, 2000; Lahaie and Parkes, 2009; Sun and Yang, 2014].

1.5 Summary

We propose a general principle-based framework for studying the endowment effect in combina-
torial markets. We provide both existence and efficiency guarantees of endowment equilibrium
(as defined by Babaioff et al.) for a wide range of endowment effects and consumer valuation
classes. Our main results are: (1) There exist natural endowment effects for which an endowment
equilibrium exists for XOS consumers; these equilibria guarantee 2-approximation to the optimal
welfare. In contrast, we show that for subadditive consumers, any endowment effect that inflates
at a “reasonable” rate does not suffice to guarantee endowment equilibrium existence. (2) For any
significant endowment effect, when allowing the seller to pre-pack items into indivisible bundles
(thus turning to CBE), given any initial allocation, one can efficiently compute an endowment
CBE with (weakly) higher welfare. This result implies that every market admits an optimal
endowment CBE. More importantly, it reduces the problem of computing an endowment CBE
to the pure algorithmic problem of welfare approximation.

1.6 Paper Organization

Section 2 presents some preliminaries on Walrasian equilibria, valuation classes and query mod-
els. The endowment effect framework is described in Section 3.1, followed by Section 3.2 that
establishes efficiency guarantees for endowment equilibria, and Section 3.3 which describes the
partial order over endowment effects. In Section 4 we provide existence results for endowment
equilibria, and in Section 7 we introduce the notion of endowment-Competitive Bundling Equi-
librium (CBE), and provide existence, approximation and computational guarantees with respect
to this notion. All missing proofs are deferred to the appendix.

2 Preliminaries

Consider a market with a set M of m items and n consumers. Each consumer i has a valuation
function vi : 2M → R+ that assigns a real value vi(X) for every subset of items X ⊆ M . As
standard, assume that valuations are normalized; i.e., vi(∅) = 0, and monotone (free-disposal),
i.e., for any Z ⊆ X, vi(Z) ≤ vi(X). An allocation is a partition of M to disjoint bundles
S = (S1, . . . Sn) where bundle Si is allocated to consumer i.

In this work we measure the quality of an allocation S by its social welfare SW (S) =∑
i∈[n] vi(Si). An item pricing is a vector p = (p1, . . . , pm) where pj is the price of item j.

Given an allocation S and item pricing p, consumer i’s quasi-linear utility is

ui(S, p) = vi(Si)− p(Si).
7



Given a price vector p and a set X, we use p(X) =
∑

j∈X pj .

Definition 2.1. (Walrasian Equilibrium) A pair of an allocation (S1, . . . , Sn) and a price vector
p = (p1, . . . pm) is a Walrasian Equilibrium (WE) if:

1. Utility maximization: Every consumer receives an allocation that maximizes her utility
given the item prices, i.e., vi(Si)−

∑
j∈Si

pj ≥ vi(X)−
∑

j∈X pj for every consumer i and
bundle X ⊆M .

2. Market clearance: All items are allocated, i.e.,
⋃
i∈[n] Si = M .

Valuation types. We define the classes of valuation functions considered in this paper, from
least to most general, except for unit demand valuations and budget additive valuations which
have no containment relation.

• Unit demand: if there exist m values v1, . . . , vm, so that v(X) = maxj∈X{vj}.

• Submodular: if for any X,Y ⊆M it holds that v(X) + v(Y ) ≥ v(X ∪ Y ) + v(X ∩ Y ).

• Fractionally subadditive (XOS): if there exist vectors v1, . . . vk ∈ RM so that for any X ⊆M
it holds that v(X) = maxi∈[k]

∑
j∈X vi(j).

• Subadditive: if for any X,Y ⊆M it holds that v(X) + v(Y ) ≥ v(X ∪ Y ).

Value and demand queries. The representation of combinatorial valuation functions is ex-
ponential in the parameters of the problem. A standard computational model in this setting is
an oracle access. We consider two standard oracle models, namely, value and demand oracles:

• A value query for valuation v receives a set X as input, and returns v(X).

• A demand query for valuation v receives a price vector p = (p1, . . . , pm) as input, and
returns a set X that maximizes ui(X, p).

3 Endowment Effect

3.1 Endowment Effect Framework

In the introduction, we present two principles that underlie the endowment effect, namely the
loss aversion principle and the separability principle. The loss aversion principle states that:

vX∪Y (X ∪ Y )− vX∪Y (Y ) ≥ vY (X ∪ Y )− vY (Y ) ∀X,Y ⊆M,

and the separability principle states that

vX(Y \X | X ∩ Y ) = v(Y \X | X ∩ Y ) ∀Y ⊆M.

In Lemma A.1 we show that the endowed valuation vX : 2M → R+ satisfies the separability
principle if and only if

vX(Y ) = v(Y ) + gX(X ∩ Y ),

for some function gX : 2X → R. In Lemma A.2 we show that the loss aversion principle implies
that gX satisfies gX(Z) ≤ gX(X) for every Z ⊆ X.

For simplicity of presentation, we also assume that the gain functions are normalized; i.e.,
for all X ⊆ M , it holds that gX(∅) = 0. This implies that the endowed valuations are also
normalized; i.e., vX(∅) = v(∅) + gX(∅) = 0. Our results can be generalized to non-normalized
gain functions.

Based on this characterization, the following definition follows.

8



Definition 3.1. An endowment effect E is a collection of gain functions gX : 2X → R for each
X ⊆ M , such that gX(Z) ≤ gX(X) for all Z ⊆ X. Given an endowment effect E, a valuation
function v : 2M → R+, and an endowed set X, the endowment valuation with respect to X is
given by

vX,E(Y ) = v(Y ) + gX(X ∩ Y )

For simplicity, when the endowment effect is clear in the context, we write vX instead of
vX,E . An endowment environment is given by a vector of endowment effects for the consumers
E = (E1, . . . , En).

We are now ready to define the notion of endowment equilibrium.

Definition 3.2. For an instance (v1, . . . , vn) and endowment environment E = (E1, . . . , En), a
pair (S, p) of an allocation S = (S1, . . . Sn) and a price vector p = (p1, . . . , pm) forms an E-
endowment equilibrium, if (S, p) is a Walrasian equilibrium with respect to (vS1,E1

1 , . . . , vSn,En
n );

i.e.,

1. Utility maximization: Every consumer receives an allocation that maximizes her endowed
utility given the item prices, i.e., for every consumer i and bundle X ⊆M ,

vSi,Ei
i (Si)−

∑
j∈Si

pj ≥ vSi,Ei
i (X)−

∑
j∈X

pj .

2. Market clearance: All items are allocated, i.e.,
⋃
i∈[n] Si = M .

We abuse notation and use E both for endowment effect and endowment environment when
all consumers are subject to the same endowment effect.

3.2 Efficiency Guarantees for Endowment Equilibria

Given an endowment environment E , we are interested both in the existence and the social wel-
fare of E-endowment equilibria. Walrasian equilibria are related to the following linear program
relaxation for combinatorial auctions, known as the configuration LP, (see e.g., [Bikhchandani
and Mamer, 1997]). Here, xi,T are the decision variables for every consumer i and set T ⊆M .

Maximize
∑

i∈[n]
∑

T⊆M xi,T · vi(T )
Subject to:

• For each j ∈M :
∑

i∈[n]
∑

T⊆M |j∈T xi,T ≤ 1.

• For each i ∈ [n]:
∑

T⊆M xi,T ≤ 1.

• For each i, T : xi,T ≥ 0

The existence of a Walrasian equilibrium turns out to be closely related to the integrality gap
of the configuration LP:

Theorem 3.3. [Nisan and Segal, 2006] An instance (v1, . . . , vn) admits a Walrasian Equilibrium
if and only if the integrality gap of the configuration LP is 1. Moreover, an integral allocation S
has payments p such that (S, p) is a Walrasian Equilibrium if and only if S is an optimal solution
to the LP.

The following proposition gives an approximation guarantee for every endowment equilibrium,
as a function of the gain functions. This is a natural generalization of [Babaioff et al., 2018,
Corollary 3.7]. Note that an additional requirement is that the gain functions are non-negative.

9



Proposition 3.4. Given an instance (v1, . . . , vn), let OPT be the value of the optimal fractional
welfare. For an endowment effect E, where gX ≥ 0 for all gX ∈ E, if (S, p) is an E-endowment
equilibrium, then the allocation S has welfare guarantee of at least

∑
i∈[n]

vi(Si) ≥
∑

i∈[n] vi(Si)∑
i∈[n]

(
vi(Si) + gSi

i (Si)
) ·OPT,

where gSi
i is the gain function corresponding to Endowi.

Proof. Since (S, p) is an E-endowment equilibrium, by Theorem 3.3, for any optimal fractional
solution {xi,T } of the LP w.r.t. the valuations (vS1,E1

1 , . . . , vSn,En
n ) it holds that∑

i∈[n]

vi(Si) + gSi
i (Si) =

∑
i∈[n]

vSi,Ei
i (Si) ≥

∑
i∈[n]

∑
T⊆M

xi,T · vSi,Ei
i (T ) ≥

∑
i∈[n]

∑
T⊆M

xi,T · vi(T ) = OPT,

where the first inequality is by optimality and the second is by non-negativity of the gain functions.
The proof follows by multiplying both sides by

∑
i∈[n] vi(Si) and rearranging.

An immediate theorem is the following:

Theorem 3.5. If (S, p) is an E-endowment equilibrium for instance (v1, . . . , vn), and for all vi
it holds that gSi

i (Si) ≤ vi(Si), then the social welfare of S is a 2-approximation to the optimal
fractional welfare.

Theorem 3.5 implies a 2-approximation guarantee for submodular consumers with ESOM
endowment effect, or more generally, with any of the endowment effects listed in the following
section.

3.3 Partial order over endowment effects

Recall that an endowment effect E is specified by a set of gain functions gX for every set X ⊆M .
We next define a partial order over the set of endowment effects. We discuss each endowment

effect {gX}X through the term gX(Z | X \Z) — the additional loss incurred upon losing a subset
Z of an endowed set X due to the endowment effect.

Definition 3.6. Fix a valuation function v, and two endowment effects E , Ê with respect to v.

• Given a set X, we write E ≺X Ê if for all Z ⊆ X, gX(Z | X \ Z) ≤ ĝX(Z | X \ Z).

• We write E ≺ Ê (and say that E is dominated by Ê, or Ê dominates E) if for all X ⊆ M
it holds that E ≺X Ê.

Add: For example, Identity and Absolute Loss.
The following theorem establishes the stability preservation property of the partial order. In

particular, that an endowment effect always preserves the endowment equilibria of endowment
effects dominated by it:

Theorem 3.7. [Stability preservation] Suppose (S, p) is an E-endowment equilibrium with respect
to instance (v1, . . . , vn), and let Ê be such that Ei ≺Si Êi for every i. Then, (S, p) is also an Ê-
endowment equilibrium.

The proof of Theorem 3.7 is obtained by applying Lemma 3.8 iteratively for each consumer.
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Lemma 3.8. For an instance (v1, . . . , vn), and an endowment environment E = (E1, . . . , En), let
(S, p) be an E-endowment equilibrium. For any consumer i, and endowment effect Êi, if Ei ≺Si Êi,
then (S, p) is also an (E1, . . . , Ei−1, Êi, Ei+1, . . . , En)-endowment equilibrium.

Proof. Let gSi
i ∈ Ei, and let ĝSi

i ∈ Êi. The pair (S, p) is an E-endowment equilibrium, therefore
for every Y ⊆M it holds that

vi(Si) + gSi
i (Si)− p(Si) ≥ vi(Y ) + gSi

i (Si ∩ Y )− p(Y ).

Rearranging,

vi(Si) + gSi
i (Si \ Y | Si ∩ Y )− p(Si) ≥ vi(Y )− p(Y ).

Since Ei ≺Si Êi, by Definition 3.6, the last inequality still holds when gSi
i is replaced by ĝSi

i . I.e.,

vi(Si) + ĝSi
i (Si \ Y | Si ∩ Y )− p(Si) ≥ vi(Y )− p(Y ).

Rearranging, we conclude that:

vi(Si) + ĝSi
i (Si)− p(Si) ≥ vi(Y ) + ĝSi

i (Si ∩ Y )− p(Y ),

i.e., that vSi,Êi
i (Si)− p(Si) ≥ vSi,Êi

i (Y )− p(Y ). It follows that Si maximizes consumer i’s utility,
as desired. Individual rationality follows by the fact that endowed valuations are normalized.

4 Existence of Endowment Equilibrium

The main theorem in this section is that for every instance with XOS valuations, there exists
an EAL-endowment equilibrium. Moreover, we devise a dynamic process that given an arbitrary
initial allocation, terminates in an EAL-endowment equilibrium with at least as much welfare as
that of the original allocation.

Theorem 4.1. There exists a natural dynamic process such that for every market with XOS
consumers, and every initial allocation S′ = (S′1, . . . , S

′
n) returns an EAL-endowment equilibrium

(S, p), such that SW (S) ≥ SW (S′).

Our proof goes through an interesting connection between endowment equilibrium and con-
ditional equilibrium. In Section 4.1 we explore this connection. In Section 4.2 we present the
proof of Theorem 4.1.

4.1 Endowment Equilibrium and Conditional Equilibrium

Our analysis draws upon an interesting relation between an endowment equilibrium and a con-
ditional equilibrium [Fu et al., 2012]. The definition of a conditional equilibrium follows.

Definition 4.2. [Fu et al., 2012] For an instance (v1, . . . , vn), a pair of allocation (S1, . . . , Sn)
and item pricing (p1, . . . pm) is a conditional equilibrium if for all i = 1, . . . , n,

1. Individual rationality:
∑

j∈Si
pj ≤ vi(Si)

2. Outward stability: For every X ⊆M \ Si, vi(X | Si) ≤
∑

j∈X pj

We first introduce the notion of inward stability. A set X is inward stable if for every set
Y ⊆M , the marginal utility of X \ Y is non-negative. Formally:
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Definition 4.3. Given a consumer with valuation v, and item pricing (p1, . . . pm), a set X ⊆M
is inward stable w.r.t. v and p if for every Y ⊆M it holds that p(X \ Y ) ≤ v(X \ Y | Y ).

Observation 4.4. If X is inward stable for consumer i, then there exists a utility-maximizing
set of items for consumer i that contains X.

In general, endowment and conditional equilibria are incomparable notions. The following
proposition shows that any endowment equilibrium that is also individually rational with respect
to the original valuations is a conditional equilibrium.

Proposition 4.5. For any instance (v1, . . . , vn), if a pair of allocation (S1, . . . , Sn) and item
prices (p1, . . . , pm) is an E-endowment equilibrium, and for all consumers i it holds that p(Si) ≤
vi(Si), then (S, p) is a conditional equilibrium.

Proof. Individual rationality p(Si) ≤ vi(Si) is given. It remains to show outward stability. For
any consumer i with endowment effect Ei, since (S, p) is an endowment equilibrium, it holds that
for every X ⊆M \ Si, vSi

i (Si)− p(Si) ≥ vSi
i (X ∪ Si)− p(X ∪ Si), i.e.,

gSi
i (Si) + vi(Si)− p(Si) ≥ gSi

i (Si) + vi(X ∪ Si)− p(X ∪ Si)

p is linear so p(X) ≥ vi(X | Si) as required,

In the other direction, for a conditional equilibrium to be an endowment equilibrium, it needs
to be inward stable with respect to the endowed valuations. In the following lemma we give a
sufficient condition for inward stability.

Lemma 4.6. Given a consumer with valuation v, an endowment effect {gX}X , and item pricing
(p1, . . . , pm), if a set X ⊆M satisfies

gX(Z)− p(Z) ≤ gX(X)− p(X) for all Z ⊆ X, (4)

then X is inward stable with respect to vX and p.

Proof. Fix any Y ⊆M . By monotonicity of v we have that:

vX(Y )− p(Y ) = v(Y ) + gX(X ∩ Y )− p(Y ) ≤ v(X ∪ Y ) + gX(X ∩ Y )− p(Y )

It is given that gX(Y ∩X)− p(Y ∩X) ≤ gX(X)− p(X). Combining the two inequalities above
implies that vX(Y )− p(Y ) ≤ v(X ∪ Y ) + gX(X)− p(X)− p(Y \X) = vX(X ∪ Y )− p(X ∪ Y ),
as required.

The following proposition shows that an allocation and prices that are both inward stable
with respect to the endowed valuations, and outward stable, form an endowment equilibrium.

Proposition 4.7. For any instance (v1, . . . , vn), if the pair of allocation (S1, . . . , Sn) and item
prices (p1, . . . , pm) is a conditional equilibrium, and the endowment environment E = (E1, . . . , En)
is such that for every consumer i, the gain function gSi corresponding to Ei satisfies

gSi(Z)− p(Z) ≤ gSi(Si)− p(Si) for all Z ⊆ Si, (5)

then (S, p) is an E-endowment equilibrium.
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Proof. Fix a consumer i and a set X ⊆ M . It is given in the proposition that the conditions of
Lemma 4.6 on vi with Si, Ei and p hold, therefore, vSi

i (X) − p(X) ≤ vSi
i (Si ∪ X) − p(Si ∪ X).

Since (S, p) is a conditional equilibrium, it holds that p(X \ Si)− vi(X \ Si | Si) ≥ 0. It follows
that

vSi
i (X)− p(X) ≤ vi(Si ∪X) + gSi(Si)− p(Si ∪X) + p(X \ Si)− vi(X \ Si | Si) = vSi

i (Si)− p(Si),

therefore, consumer i is utility maximizing. Finally, note that individual rationality follows by
considering the case X = ∅.

Note that Proposition 4.7 implies that every conditional equilibrium is also an EAON -endowment
equilibrium (see Proposition A.3 in Appendix A.2).

4.2 Proof of Main Result (Theorem 4.1)

In this section we show that the EAL-endowment effect leads to strong existence and efficiency
guarantees in combinatorial markets with XOS valuations. In particular, we provide a dynamic
process (Algorithm 1) that for every market with XOS consumers and initial allocation S, termi-
nates in an EAL-endowment equilibrium with at least as much social welfare as S.7 An immediate
corollary of our proof is that any optimal allocation S can always be paired with prices p such
that (S, p) forms an EAL-endowment equilibrium. Since gXAL(X) = v(X), Theorem 3.5 implies
that every EAL-endowment equilibrium gives at least a 2-approximation to the optimal (even
fractional) welfare.

We begin by recalling the definition of supporting prices [Dobzinski et al., 2005]. Given a
valuation v and a set X ⊆ M , the prices {pj}j∈X are supporting prices for v(X) if v(X) =∑

j∈X pj and for every Z ⊆ X, v(Z) ≥
∑

j∈Z pj . A valuation is XOS if and only if for all X ⊆M
there exist supporting prices for v(X) (see, e.g., [Dobzinski et al., 2005]).

The following lemma shows that for XOS valuations, the condition of Lemma 4.6 holds with
respect to the endowment effect EAL, and a set of supporting prices.

Lemma 4.8. Fix a consumer with an XOS valuation v. If (p1, . . . , pm) are supporting prices
w.r.t. v and X ⊆ M , then the gain function gX corresponding to EAL satisfies gX(Z)− p(Z) ≤
gX(X)− p(X) for all Z ⊆ X.

Proof. Observe that by definition of supporting prices, it holds that p(X \Z) ≤ v(X \Z) for any
Z ⊆ X. By definition of gX ∈ EAL, we have that gX(Z) = v(X) − v(X \ Z). Rearranging, we
conclude that

gX(X)− gX(Z) = v(X)− gX(Z) = v(X \ Z) ≥ p(X \ Z) = p(X)− p(Z),

as required.

The above lemma has an immediate implication. In [Fu et al., 2012] it was shown that in an
instance (v1, . . . , vn) of XOS valuations, for any welfare-maximizing allocation S, if one sets the
prices of items p in each Si to be the supporting prices with respect to vi and Si, then (S, p) is
a conditional equilibrium. Combining the last observation with Lemma 4.8 and Proposition 4.7,
we conclude the following:

Corollary 4.9. For every market with XOS consumers, every optimal allocation S can be paired
with item prices p so that (S, p) is an EAL-endowment equilibrium.

7Algorithm 1 is a modified version of the “flexible ascent auction” presented by Fu et al. [2012].
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We now show that given a starting allocation S′, one can run a modified version of the “flexible
ascent auction” from [Fu et al., 2012], that results in an EAL-endowment equilibrium (S, p) with
at least as much welfare as S′. Moreover, (S, p) is a conditional equilibrium, and SW (S) is at
least max{OPT2 , SW (S′)} (see Proposition 3.4).

That (S, p) is a conditional equilibrium follows by Proposition 4.5 and the fact that (S, p)
satisfies individual rationality with respect to the original valuations.

ALGORITHM 1: An EAL-endowment flexible ascent auction for XOS valuations.

Input: XOS valuations (v1, . . . , vn), allocation (S′1, . . . , S
′
n).;

Output: Allocation S1, . . . , Sn, prices p1, . . . , pm
Set S ← S′

Set p1, . . . , pm such that for all i ∈ [n] the prices {pj | j ∈ Si} are supporting prices for Si w.r.t. vi
while ∃i,X ⊆M such that vSi

i (X)− p(X) > vSi
i (Si)− p(Si) do

Si = Si ∪X
Sj = Sj \X ∀j 6= i
Set p1, . . . , pm such that for all i ∈ [n] the prices {pj | j ∈ Si} are supporting prices for Si w.r.t.
vi

end
return (S, p)

The main difference of Algorithm 1 compared to the flexible ascent auction is that in the end
of every iteration all the prices may change, not only the ones demanded in the current iteration.
Specifically, given that at some iteration consumer i, who was previously allocated Si, is now
allocated Si ∪ X for some X, then for all j such that Sj \ X ( Sj , the prices of Sj \ X may
change, so that the prices are supporting prices with respect to every consumer, and thus inward
stability is maintained. This property implies that restricting attention to deviations that take
the form of extending the current allocation is without loss.

The following lemma shows that the dynamics in Algorithm 1 are better-response dynamics.

Lemma 4.10. Let S and p be the allocation and price vector at the beginning of some iteration
in Algorithm 1. For the chosen consumer i, and her corresponding set X, it holds that vSi

i (Si ∪
X)− p(Si ∪X) > vSi

i (Si)− p(Si). I.e., consumer i performs a beneficial deviation.

Proof. At the end of every iteration, all prices are adjusted to be supporting prices for every
consumer. By chaining Lemma 4.6 and Lemma 4.8, we conclude that the allocation of every
consumer is inward stable. Therefore, vSi

i (Si∪X)−p(Si∪X) ≥ vSi
i (X)−p(X) > vSi

i (Si)−p(Si),
where the first inequality follows by inward stability, and the second inequality follows by the
design of the algorithm.

We next conclude that the welfare strictly increases as the algorithms progresses.

Proposition 4.11. At each iteration of Algorithm 1, the social welfare strictly increases.

Proof. At the beginning of every iteration, for every consumer i, the prices p are supporting prices
with respect to Si and vi. Therefore, p(Sj) = vj(Sj) for all j ∈ [n], which implies that p(M) =∑

j vj(Sj). Let i be the chosen consumer at the current iteration, and X be her corresponding
set according to the algorithm. Let Snew be the allocation obtained at the end of the iteration.
Then∑

j∈[n]

vj(S
new
j ) = vi(Si ∪X) +

∑
j 6=i

vj(Sj \X) = vi(Si) + vi(X \ Si | Si) +
∑
j 6=i

vj(Sj \X). (6)
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Lemma 4.10 together with Equation (3) gives that vi(X \ Si | Si) = vSi
i (X \ Si | Si) > p(X \ Si).

Combined with Equation (6) we get∑
j∈[n]

vj(S
new
j ) > p(Si)+p(X\Si)+

∑
j 6=i

vj(Sj\X) ≥ p(Si)+p(X\Si)+
∑
j 6=i

p(Sj\X) = p(M) =
∑
j

vj(Sj).

Proposition 4.11 implies that the algorithm terminates. The following proposition shows it
terminates at a conditional equilibrium.

Proposition 4.12. When Algorithm 1 terminates at allocation S and price vector p, (S, p) is a
conditional equilibrium.

Proof. When the algorithm terminates, by definition of the condition in the while loop, it holds
that for all i and X ⊆M \ Si,

vSi
i (X ∪ Si)− p(X ∪ Si) ≤ vSi

i (Si)− p(Si)

Rearranging, it follows that vSi
i (X | Si) ≤ p(X \Si). Combining with Equation (3) (separability)

implies outward stability. Individual rationality for each consumer follows by the fact that the
prices are supporting prices for each consumer.

With this, we have all the components needed to conclude the proof of Theorem 4.1.

Proof of Theorem 4.1. By Proposition 4.12 initiating the algorithm at S′ terminates at a condi-
tional equilibrium (S, p), such that (by Proposition 4.11) SW (S) ≥ SW (S′). Chaining Proposi-
tions 4.8 and Proposition 4.7, we get that (S, p) is an EAL-endowment equilibrium.

5 Sum-of-Marginals (SOM) Endowment Effect

In this section we introduce a new endowment effect, called Sum of Marginals, denoted ESOM .
The gain function of the ESOM endowment effect given an endowment X is given by

gXSOM (Z) =
∑
j∈Z

v(j | X \ j).

add g(X | X \ Z) and intuition.
The main theorem of this section is Theorem 5.2, showing that for submodular consumers

there always exists an ESOM -endowment equilibrium that gives 2-approximation to the opti-
mal welfare. Recall that Babaioff et al. establish the same result with respect to the Identity
endowment effect. Proposition 5.1 shows that ESOM is strictly weaker than EI , implying that
Theorem 5.2 strengthens the main result of Babaioff et al..

Proposition 5.1. For every submodular valuation v, it holds that ESOM ≺ EI .

Proof. Fix a set X ⊆ M , and let gXSOM ∈ ESOM and gXI ∈ EI . For all Z ⊆ X we need to
show that gXSOM (Z | X \ Z) ≤ gXI (Z | X \ Z). By the additivity of gXSOM , it follows that
gXSOM (Z | X \ Z) = gXSOM (Z). Therefore, it remains to show that gXSOM (Z) ≤ gXI (Z | X \ Z).

Rename the items in Z by 1, . . . , |Z|, and let Zj denote the set of items {1, . . . , j}. It holds
that

gXSOM (Z) =
∑
j∈Z

v(j | X \ {j}) ≤
∑
j∈Z

v(j | X \ Zj) = v(Z | X \ Z) = gXI (Z | X \ Z),

where the inequality holds by submodularity, and the last equality holds by definition of gXI .
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show that SOM and Identity are far from each other.
Add: approximation results (both to statement and to proof), and organize.

Theorem 5.2. Let (v1, . . . , vn) be an instance of submodular valuations. There exists an allo-
cation S = (S1, . . . , Sn) and item prices p = (p1, . . . , pm) so that (S, p) is an ESOM -endowment
equilibrium.

In our proof, we adjust the techniques of Babaioff et al. to our framework, and show that
their techniques essentially apply also to the weaker Sum-of-Marginals endowment effect, leading
to a stronger result.

We begin with the definition of local optimum.

Definition 5.3. [Babaioff et al., 2018] For an instance (v1, . . . , vn), an allocation (S1, . . . , Sn)
is a local optimum if ∪i∈[n]Si = M and for every pair of consumers i, i′ ∈ [n] and item j ∈ Si it
holds that vi(Si) + vi′(Si′) ≥ vi(Si \ {j}) + vi′(Si′ ∪ {j})

The following proposition (essentially [Babaioff et al., 2018, Claim 4.4] combined with indi-
vidual rationality) shows that for submodular valuations, the EI -endowment equilibria suggested
by Babaioff et al. are also conditional equilibria.

Proposition 5.4. Let (v1, . . . , vn) be an instance of submodular valuations, S = (S1, . . . , Sn)
be some locally optimal allocation, and p = (p1, . . . , pm) be item prices defined by pj = vi(j)(j |
Si(j)\{j}), where i(j) is the consumer i such that j ∈ Si. Then, (S, p) is a conditional equilibrium.

Proof. Individual rationality: fix consumer i, and order the items in Si in some order 1, 2, . . . , |Si|,
then vi(Si) =

∑
j∈Si

vi(j | {1, . . . j − 1}) ≥
∑

j∈Si
vi(j | Si \ {j}) = p(Si), where the inequality

follows by submodularity.
Outward stability: fix a consumer i and consider some X ⊆ M \ Si. Since S is a local

optimum, for every j ∈ X it holds that vi(j | Si) ≤ pj = vi(j)(j | Si(j) \ {j}). Order the items in
X in some order 1, 2, . . . , |X|, then

vi(X | Si) =
∑
j∈X

vi(j | Si ∪ {1, . . . j − 1}) ≤
∑
j∈X

vi(j | Si) ≤
∑
j∈X

pj

where the first inequality follows by submodularity.

The proof of Theorem 5.2 now follows by the definition of the endowment effect ESOM .

Proof of Theorem 5.2. Consider a locally optimal allocation S and the prices pj = vi(j)(j | Si(j) \
{j}) where i(j) is the consumer i such that j ∈ Si. By Lemma 5.4, it holds that (S, p) is a
conditional equilibrium. Moreover, for every consumer i, and for every Z ⊆ Si, it holds that

gSi(Z)− p(Z) =
∑
j∈Z

v({j} | Si \ {j})−
∑
j∈Z

v({j} | Si \ {j}) = 0 = gSi(Si)− p(Si).

Thus, by Proposition 4.7, (S, p) is an ESOM -endowment equilibrium. add approximation proof.

6 Beyond XOS Valuations

So far we’ve shown that the endowment effect can be harnessed to stabilize settings more general
than gross-substitutes, in particular up to XOS valuations. Can we harness stability via the
endowment effect further? Without any reasonable restriction on the endowment effect, this
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question can be answered affirmatively fairly easily. Specifically, for an endowment effect that
inflates the value of a set linearly in the number of items, we show that an endowment equilibrium
always exists. This result has a similar flavor to the observation made by Babaioff et al. [2018,
Proposition 3.4], showing that for any instance there exists a sufficiently large α such that en
α · EI -endowment equilibrium always exists. Yet, while the value of α required for their result
depends on the valuations of other consumers, our endowment effect is simpler, and does not
depends on others’ valuations. write the above sentences better.

handle i(j). consider replacing by ij and moving out of theorems.

Proposition 6.1. Let EPROP = {gX(Z) = |Z| · v(X) : X ⊆M}. Let (v1, . . . , vn) be an arbitrary
instance of valuations, S = (S1, . . . , Sn) be an optimal allocation, and p = (p1, . . . , pm) be item
prices, such that pj = vi(j)(Si(j)), where i(j) is the consumer i such that j ∈ Si. Then, (S, p) is

an EPROP -endowment equilibrium.

change X to Y in the following proof

Proof. W.l.o.g., all items are allocated in S. We need to show that for every i and X it holds
that vSi

i (Si)− p(Si) ≥ vSi
i (X)− p(X).

First note that by monotonicity of vi, it holds that

vSi
i (X)− p(X) = vi(X) + |X ∩ Si| · vi(Si)− p(X \ Si)− |X ∩ Si| · vi(Si)

= vi(X)− p(X \ Si)
≤ vi(X ∪ Si)− p(X \ Si) (7)

Let i(j) denote the consumer i for which j ∈ Si, then

vi(X ∪ Si)− p(X \ Si) = vi(Si) + vi(X \ Si | Si)−
∑

j∈X\Si

vi(j)(Si(j))

= vi(Si) + vi(X \ Si | Si)−
∑
i′ 6=i
|X ∩ Si′ | · vi′(Si′)

≤ vi(Si) + vi(X \ Si | Si)−
∑
i′ 6=i
|X ∩ Si′ | · vi′(Si′ ∩X | Si′ \X)

≤ vi(Si) + vi(X \ Si | Si)−
∑
i′ 6=i

vi′(Si′ ∩X | Si′ \X) (8)

where the first inequality follows by monotonicity, and the second inequality follows since equality
holds whenever |X ∩ Si′ | ≤ 1, and strict inequality holds otherwise.

Since S is an optimal allocation, it holds that vi(X \ Si | Si)−
∑

i′ 6=i vi′(Si′ ∩X | Si′ \X) ≤
0, otherwise reallocating X \ Si to consumer i strictly increases the welfare. Combining with
Inequalities (7) and (8), we conclude that

vSi
i (X)− p(X) ≤ vi(Si) = vSi

i (Si)− p(Si),

as required, where the last equality follows since p(Si) = gSi(Si).

We now show that for subadditive valuations, and endowment effects that inflate valuations
by a “reasonable” amount, an endowment equilibrium may not exist.

Proposition 6.2. For any number of items m ≥ 3, there exists an instance with identical items,
one subadditive consumer and one unit demand consumer, such that for any β ≤ O(

√
m), and any

endowment environment E that satisfies gXi (X) ≤ β · vi(X), for every consumer i and gXi ∈ Ei,
no E-endowment equilibrium exists.
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Proof. Consider the following instance. Consumer 1 is subadditive with valuation v1([m]) = 2,

v1(∅) = 0, and v1(X) = 1 otherwise. Consumer 2 is unit demand with valuation v2(X) =
√

2
m

for all ∅ 6= X ⊆ [m]. For any β satisfying m > 2(β + 1)2, consider an allocation where v1 gets all
items,

v
[m]
1 ([m]) = g

[m]
1 ([m]) + v1([m]) ≤ β · 2 + 2,

where the inequality follow by the assumption of the proposition. By individual rationality, it

must be that v
[m]
1 ([m])− p([m]) ≥ 0 therefore there exists an item j ∈ [m] such that pj ≤ 2(β+1)

m .
But then consumer 2 is not utility maximizing, because:

v∅2({j})− pj =

√
2

m
− pj ≥

√
2

m
− 2(β + 1)

m
> 0,

where the last inequality follows by the restriction on β.
Alternatively, consider an allocation where consumer 2 is allocated a non-empty set X, then

her value in the endowed valuation is

vX2 (X) = gX2 (X) + v2(X) ≤ (β + 1) · v2(X) = (β + 1) ·
√

2

m
< 1,

where the last inequality follows by the restriction on β. On the other hand, the marginal
contribution of set X to consumer 1 is at least 1. Therefore, this cannot be an endowment
equilibrium, since it is sub-optimal with respect to the endowed valuations.

To summarize, Proposition 6.1 shows that the endowment effect EPROP , which inflates the
valuation by a factor of O(m) guarantees existence of endowment equilibrium (and even endow-
ment equilibria with an optimal allocation). Proposition 6.2 shows that inflating the valuation
by a factor of O(

√
m) does not suffice for guaranteeing existence in general. Closing this gap is

an interesting open problem.
Note that endowment effects EI and EAL inflate the valuation by a factor of 2.

7 Bundling

In this section we study the role of bundling in market efficiency and stability. We assume that
the market designer partitions the set of items into indivisible bundles, and these bundles are
the items in the induced market. We show that under a wide variety of endowment effects, the
bundling operation can recover stability and maintain efficiency.

A bundling B = {B1, . . . , Bk} is a partition of the set of items M into k disjoint bundles
(∪j∈[k]Bk = M). When clear in the context, given a set of indices T ⊆ {1, . . . , k}, we slightly
abuse notation and write T to mean ∪j∈TBj .

The notion of competitive bundling equilibrium is introduced in Dobzinski et al. [2015]:

Definition 7.1. [Dobzinski et al., 2015] A Competitive Bundling Equilibrium (CBE) is a bundling
B = {B1, . . . , Bk} of M , a pair (S, p) of an allocation S = (S1, . . . , Sn) of the bundles to con-
sumers together with bundle prices p = (p1, . . . , pk) such that:

1. Utility maximization: Every consumer receives an allocation that maximizes her utility
given the bundle prices, i.e., for every consumer i and subset of bundles indexed by T ⊆ [k],
vi(Si)−

∑
j∈Si

pj ≥ vi(T )−
∑

j∈T pj

2. Market clearance: All items are allocated, i.e.,
⋃
i∈[n] ∪j∈SiBj = M .
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The natural combination of CBE and E-endowment equilibrium is simply a CBE with respect
to the valuations subject to the endowment environment E . Here again, given a bundling B, and

a set of bundles T , we abuse notation and write vT,E to denote v(∪j∈TBj),E .

Definition 7.2. (E-endowment CBE) An E-endowment Competitive Bundling Equilibrium (CBE)
is a bundling B = {B1, . . . , Bk} of M , a pair (S, p) of an allocation S = (S1, . . . , Sn) of the bun-
dles to consumers together with bundle prices (p1, . . . , pk) such that:

1. Utility maximization: Every consumer receives an allocation that maximizes her endowed
utility given the bundle prices, i.e., for every consumer i and subset of bundles indexed by
T ⊆ [k], vSi,Ei

i (Si)−
∑

j∈Si
pj ≥ vSi,Ei

i (T )−
∑

j∈T pj.

2. Market Clearance: All items are allocated, i.e.,
⋃
i∈[n] ∪j∈SiBj = M .

When clear in the context we abuse notation and specify an E-endowment CBE by a pair
(S, p) of an allocation S and pricing p. When doing so, we implicitly assume that the bundling
is B = {S1, . . . , Sn}.

Demand queries in reduced markets. Consider the market induced by bundling {B1, . . . , Bk}.
Given a valuation v and a price vector p = (p1, . . . , pk), a demand query returns a set of bundles
in arg maxT⊆[k] vi(T )−

∑
j∈T pj .

Our results in this section apply to endowment environments that consist of significant en-
dowment effects.

Definition 7.3. An endowment effect Ei is significant if for every X ⊆M , it holds that gXi (X) ≥
vi(X), where gXi is the gain function corresponding to Ei.

For example, the endowment effect considered in Babaioff et al.(EI) is significant, as well as
the absolute loss (EAL).

Our main results in this section are the following:

Theorem 7.4. There exists an algorithm such that for submodular valuations, and every signifi-
cant endowment effect E and initial allocation S′ = (S′1, . . . , S

′
n) computes an E-endowment CBE

(S, p), such that SW (S) ≥ SW (S′). The algorithm runs in polynomial time using value queries.

Theorem 7.5. There exists an algorithm such that for general valuations, and every significant
endowment effect E and initial allocation S′ = (S′1, . . . , S

′
n) computes an E-endowment CBE

(S, p), such that SW (S) ≥ SW (S′). The algorithm runs in polynomial time using demand
queries.

As a corollary of the proof of Theorem 7.5, we show that any optimal allocation can be paired
with bundle prices to form an E-endowment CBE.

Corollary 7.6. For every market, and significant endowment effect E, any optimal allocation S
can be paired with bundle prices p so that (S, p) is an E-endowment equilibrium.

7.1 Computation of Approximately-Optimal Endowment CBEs

In this section we give a black-box reduction from welfare approximation in an endowment CBE
to the pure algorithmic problem of welfare approximation. In particular, we show that for any
welfare approximation algorithm ALG, and any significant endowment environment E , there
exists an algorithm that computes an E-endowment CBE with the same approximation guarantee
of ALG.

For submodular valuations, this reduction makes a polynomial number of value queries. For
general valuations, it makes a polynomial number of demand queries.8

8The demand queries required are with respect to any induced market along the process.
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We begin by showing that given an allocation (S1, . . . , Sn), and any endowment environment
E , for the bundling B = {S1, . . . , Sn}, and the allocation S, together with prices pi ≤ gSi

i (Si), no
consumer i gains by discarding Si.

Lemma 7.7. For any instance (v1, . . . , vn), allocation S = (S1, . . . , Sn), endowment environment
E, and prices satisfying pi ≤ gSi

i (Si) for all i, it holds that for all i and A ⊆ [n] \ {i},

vSi,Ei
i (∪k∈ASk)−

∑
∪k∈A

pk ≤ vSi,Ei
i (∪k∈A∪{i}Sk)−

∑
∪k∈A∪{i}

pk

Proof. The endowed utility of consumer i from ∪k∈A∪{i}Sk is

vSi,Ei
i (∪k∈A∪{i}Sk)−

∑
k∈A∪{i}

pk = gSi
i (Si) + vi(∪k∈A∪{i}Sk)−

∑
k∈A∪{i}

pk

Since pi ≤ gSi
i (Si) the above is at least

vi(∪k∈A∪{i}Sk)−
∑
k∈A

pk ≥ vi(∪k∈ASk)−
∑
k∈A

pk = vSi,Ei
i (∪k∈ASk)−

∑
k∈A

pk

where the inequality is by monotonicity and the last equality is since i 6∈ A.

ALGORITHM 2: An algorithm for computing an E-endowment CBE for submodular valuations

Input: Allocation S1, . . . , Sn, submodular valuations v1, . . . , vn.;
Output: Allocation S1, . . . , Sn, prices p1, . . . , pn.
while true do

if ∃i, j ∈ [n] so that vi(Sj |Si) > vj(Sj) then
Si ← Si ∪ Sj

Sj ← ∅.
end
else

return (S1, . . . , Sn), p = (v1(S1), . . . , vn(Sn))
end

end

Change reductions from S to S′ rather than vice versa. throughout.
We are now ready to present the proofs of Theorem 7.4 (submodular valuations) and Theo-

rem 7.5 (general valuations). We begin with the proof of Theorem 7.4.
Update this proof. Note that the alg may need to compare more than 2n2 bundles, since it

may nee to query bundles that did not end up merging. Maybe forget about amortized analysis
altogether.

Proof of Theorem 7.4. We first claim that the social welfare strictly increases in every iteration of
the while loop. To see this, suppose consumers i, j are chosen in some iteration. Then, consumer
i is allocated Si ∪ Sj , and consumer j is left with nothing. By the design of the algorithm, this
only happens if vi(Si ∪ Sj) > vi(Si) + vj(Sj). Therefore, the total value of consumers i and j
strictly increased. Since other consumers’ allocations did not change, the social welfare strictly
increases.

We now prove that the algorithm runs in poly(n) time, using poly(n) value queries.
The algorithm begins with n bundles, and bundles only merge throughout the algorithm.

Thus, there can be at most 2n different bundles throughout the algorithm. Since n consumers
are queried, the algorithm uses at most 2n2 value queries throughout.
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Moreover, the algorithm runs in O(n4) time: each iteration requires O(n2) time, and a specific
bundle cannot be allocated to a specific consumer more than once. Since there are n consumers
and at most 2n different possible bundles, and each iteration either transfers a bundle from one
consumer to another, or merges two bundles, there will be at most 2n2 iterations.

Let S be the outcome of Algorithm 2. It remains to show that whenever allocation S satisfies

vi(Sj |Si) ≤ vj(Sj) for all i, j ∈ [n], (9)

the prices pi = vi(Si) set by the algorithm together with the allocation S form an E-endowment
CBE9.

The endowed utility of each consumer i in the outcome (S, p) is gSi
i (Si). Suppose by con-

tradiction that some consumer i is not (endowed) utility maximizing. Then, there exists a set
A ⊆ [n] so that i would prefer taking the bundles indexed by A, i.e.,

gSi
i (Si) < vSi

i (∪j∈ASj)−
∑
j∈A

pj ≤ vSi
i (∪j∈A∪{i}Sj)−

∑
j∈A∪{i}

pj

= gSi
i (Si) + vi(∪j∈A∪{i}Sj)−

∑
j∈A∪{i}

vj(Sj)

where the second inequality is by Lemma 7.7, which holds since Ei is significant. Suppose A is
ordered in some arbitrary way and denote by A<j all the elements in A that precede the j-th

bundle in A. Then by cancelling out gSi
i (Si), the above inequality can be rewritten as

0 < vi(∪j∈ASj |Si)−
∑

j∈A\{i}

vj(Sj) =
∑

j∈A\{i}

vi(Sj | ∪k∈{i}∪A<j
Sk)− vj(Sj) ≤

∑
j∈A\{i}

vi(Sj |Si)− vj(Sj),

where the last inequality follows by submodularity. Therefore, at least one summand in the
right-hand-side expression is positive, which contradicts (9).

The proof of Theorem 7.4 shows that for submodular valuations, it suffices to check in each
iteration the marginal contribution of a single bundle. For more general valuations, this is not
sufficient. However, the following theorem shows that the same type of reduction can be obtained
for general valuations, using demand queries.

Proof of Theorem 7.5. We claim that at each while iteration the welfare increases. Suppose at a
current iteration consumer i is re-allocated ∪j∈A∪{i}Sj , and consumers in A\{i} are allocated the
empty set. By definition of the algorithm this happens only if vi(∪j∈ASj)−

∑
j∈A pj > vi(Si)−0.

By monotonicity of vi, it holds that vi(∪j∈A∪{i}Sj) ≥ vi(∪j∈ASj), and by the way the prices
are defined in the algorithm (that is, pj = vj(Sj) for all j 6= i, and pi = 0), it follows that
vi(∪j∈A∪{i}Sj)−

∑
j∈A∪{i} vj(Sj) > 0. This difference is exactly the change in social welfare due

to the re-allocation of ∪j∈A∪{i}Sj to consumer i (and all j ∈ A \ {i} are allocated the empty set).
Since the allocation to consumers outside of A ∪ {i} did not change, the social welfare increases.

As in the proof of Theorem 7.4 the number of different bundles is at most 2n, and there
are n consumers, therefore there are at most 2n2 demand queries. Furthermore, as in the proof
of Theorem 7.4, the number of while iterations is at most O(n2), hence the algorithm runs in
polynomial time with a polynomial number of demand queries.

Let (S, p) be the outcome of Algorithm 3 (recall that pi = vi(Si).
10). For every i and A ⊆ [n]

it holds that

vi(Si) ≥ vi(∪j∈A∪{i}Sj)−
∑

j∈A\{i}

vj(Sj). (10)

9An almost identical proof shows that the prices pi = gSi
i (Si) produces the same result.

10An almost identical proof shows that the prices pi = gSi
i (Si) also suffice.
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ALGORITHM 3: An algorithm for significant E-endowment CBE for general valuations

Input: Allocation (S1, . . . , Sn), valuation functions (v1, . . . , vn).;
Output: Allocation (S1, . . . , Sn), prices (p1, . . . , pn).
flag = True
while flag do

flag = False
for i = 1, . . . , n do

pi = 0, pj = vj(Sj),∀j 6= i
A← arg maxS⊆[n](v(S)−

∑
j∈S pj)

if vi(A)−
∑

j∈A pj > vi(Si) then
Si ← Si ∪ (∪j∈ASj)
Sj ← ∅ ∀j ∈ A \ {i}.
flag = True

end

end

end
return (S1, . . . , Sn), p = (v1(S1), . . . , vn(Sn)).

The utility of each consumer in (S, p) is gSi
i (Si). Suppose by contradiction that some consumer

i is not utility maximizing, then there exists a set A ⊆ [n] so that

gSi
i (Si) < vSi,Ei

i (∪j∈ASj)−
∑
j∈A

pj ≤ vSi,Ei
i (∪j∈A∪{i}Sj)−

∑
j∈A∪{i}

pj

= gSi
i (Si) + vi(∪j∈A∪{i}Sj)−

∑
j∈A∪{i}

vj(Sj),

where the second inequality follows by Lemma 7.7, which holds since Ei is significant. By can-
celling out gSi

i (Si) in both sides of the obtained inequality, we get vi(∪j∈A∪{i}Sj)−
∑

j∈A∪{i} vj(Sj) >
0, which contradicts Inequality (10).

As a corollary, any a-approximation algorithm, together with access to demand queries, can
be used to compute a significant E-endowment CBE that has an a-approximation to the optimal
social welfare.

7.2 A negative result for a set of non-significant endowment effects

In this section we show that there are endowment environments (that are not significant) for
which Corollary 7.6 does not apply. Specifically, we show that for any β < 1, and endowment
environment E such that gXi (X) ≤ β · vi(X) for all i and X ⊆M , there exists an instance where
an E-endowment CBE with optimal social welfare does not exist. This is true even for XOS
valuations. The following proposition establishes upper bounds on the social welfare that can be
guaranteed in an E-endowment CBE, as a function of β. We say that an allocation S is supported
in an endowment equilibrium if there exist prices p such that (S, p) is an endowment equilibrium.

Proposition 7.8. Consider any β < 1, and let E be an endowment environment such that
gXi (X) ≤ β · vi(X) for all i. For every ε > 0, it holds that

1. There exists an instance such that no allocation with welfare better than 2−(β+ε)
3−2(β+ε)OPT can

be supported in an E-endowment equilibrium.

2. There exists an instance with subadditive consumers such that no allocation with welfare
better than 4(1+β+ε)

5+3(β+ε)OPT can be supported in an E-endowment equilibrium.
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3. There exists an instance with XOS consumers such that no allocation with welfare better
than 8(1+β+ε)

9+7(β+ε)OPT can be supported in an E-endowment equilibrium.

Proof. For the first statement, consider two identical items {s, t}, and two consumers. Consumer
1 has value 1 for a single item, and value x for two items. consumer 2 has value x for any non-
empty set. In an optimal allocation each consumer gets a single item, with social welfare 1 + x.
Let (p1, p2) be the consumers’ prices. Suppose w.l.o.g. that in the optimal allocation consumer
1 receives s and consumer 2 receives t. By Definition 3.1, for consumer 1 to accept price p1, it

must hold that p1 ≤ 1 + g
{s}
1 ({s}). For consumer 1 to not want to add the other item, it must

hold that 1 + g
{s}
1 ({s})− p1 ≥ x+ g

{s}
1 ({s})− p1− p2; that is, p2 ≥ x− 1. Similarly, for consumer

2 to accept price p2 it must hold that p2 ≤ x + g
{t}
1 ({t}), and to not prefer buying s at price

p1, it must hold that x + g
{t}
2 ({t}) − p2 ≥ x − p1. We can now write the following sequence of

inequalities:

x+ g
{t}
2 ({t})− (x− 1) ≥ x+ g

{t}
2 ({t})− p2 ≥ x− p1 ≥ x− (1 + g

{s}
1 ({s})).

By rearranging it follows that the constraints are satisfied only if g
{s}
1 ({s}) + g

{t}
2 ({t}) ≥ x − 2.

It is given that g
{s}
1 ({s}) + g

{t}
2 ({t}) ≤ β(1 + x). Therefore, if β(1 + x) < x− 2, i.e., if β < x−2

x+1
then the optimal allocation cannot be supported in an E-endowment equilibrium.

Set x = 2−β′
1−β′ . For any 0 < β′ < 1 we have that x > 2 and therefore 0 < x−2

x+1 < 1 and the

analysis above holds. Therefore, if β < β′ then the optimal allocation cannot be supported in
an E-endowment equilibrium, and the next best allocation gives a x

1+x = 2−β′
3−2β′ approximation to

the optimal welfare. The result follows by setting β′ = β + ε.
For the second and third statements, consider a setting with three identical items {s, t, w} and

three consumers. Consumer 1 has valuation (1, 1, 1 + m), consumer 2 has valuation (m,m,m),
and consumer 3 has valuation (a, a, a). We are interested in the case 1 ≥ m > a. Note that
consumers 2 and 3 are unit demand. In an optimal allocation each consumer gets one item, the
optimal social welfare is 1+m+a, and the second best allocation achieves social welfare of 1+m
(say, by giving all items to consumer 1). Suppose w.l.o.g. that in the optimal allocation consumer
1 receives s, consumer 2 receives t, and consumer 3 receives w. Each consumer i has a price pi
for her item. By Definition 3.1, for consumer 1 to be utility maximizing, she must not want to
buy the two other items for a price of p2 + p3 for a marginal increase of m, i.e., p2 + p3 ≥ m.

Consumer 3 must prefer buying over not buying, i.e. p3 ≤ a + g
{w}
3 ({w}). Consumer 2 must

prefer her item over w, i.e., m + g
{t}
2 ({t}) − p2 ≥ m − p3 ⇒ g

{t}
2 ({t}) ≥ p2 − p3. Therefore, we

have the following sequence of inequalities:

m ≤ p2 + p3 ≤ p3 + p3 + g
{t}
2 ({t}) ≤ g{t}2 ({t}) + 2(a+ g

{w}
3 ({w})) ≤ β ·m+ 2(β · a+ a),

where the last inequality follows from by the assumption that gSi
i (Si) ≤ β · vi(Si) for all i.

Rearranging, it follows that β ≥ m−2a
m+2a , therefore, if β < m−2a

m+2a then the optimal allocation cannot
be supported in an E-endowment equilibrium.

Set a = m(1−β′)
2(1+β′) , and conclude that if β < β′ < 1 then the optimal allocation cannot be an

allocation of an E-endowment equilibrium., and the next best allocation gives a 2/(2 + m(1−β′)
2(1+β′) )

approximation to the optimal welfare.
For m = 1, consumer 1 is subadditive, and it follows that if β < β′, then the next best

allocation is a 4(1+β′)
5+3β′ approximation to the optimal social welfare.

For m = 1/2, consumer 1 is XOS, thus if β < β′, then the next best allocation is a 8(1+β′)
9+7β′

approximation to the optimal social welfare. The results follow by setting β′ = β + ε.
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In particular, for β → 1, the above shows that for XOS valuations, if gSi
i (Si) ≤ (1− ε) ·vi(Si),

then there is no E-endowment equilibrium with optimal social welfare.
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George Christodoulou, Annamária Kovács, and Michael Schapira. 2016. Bayesian combinatorial
auctions. Journal of the ACM (JACM) 63, 2 (2016), 11.

Shahar Dobzinski, Michal Feldman, Inbal Talgam-Cohen, and Omri Weinstein. 2015. Welfare
and revenue guarantees for competitive bundling equilibrium. In International Conference on
Web and Internet Economics. Springer, 300–313.

Shahar Dobzinski, Noam Nisan, and Michael Schapira. 2005. Approximation algorithms for
combinatorial auctions with complement-free bidders. In STOC. ACM, 610–618.

Shahar Dobzinski and Michael Schapira. 2006. An improved approximation algorithm for combi-
natorial auctions with submodular bidders. In Proceedings of the seventeenth annual ACM-
SIAM symposium on Discrete algorithm. Society for Industrial and Applied Mathematics,
1064–1073.

Uriel Feige. 2009. On maximizing welfare when utility functions are subadditive. SIAM J.
Comput. 39, 1 (2009), 122–142.

Uriel Feige and Rani Izsak. 2013. Welfare maximization and the supermodular degree. In Proceed-
ings of the 4th conference on Innovations in Theoretical Computer Science. ACM, 247–256.

Uriel Feige and Jan Vondrak. 2006. Approximation algorithms for allocation problems: Improving
the factor of 1-1/e. In null. IEEE, 667–676.

Michal Feldman, Nick Gravin, and Brendan Lucier. 2015. On welfare approximation and stable
pricing. arXiv preprint arXiv:1511.02399 (2015).

Michal Feldman, Nick Gravin, and Brendan Lucier. 2016. Combinatorial walrasian equilibrium.
SIAM J. Comput. 45, 1 (2016), 29–48.

Michal Feldman and Brendan Lucier. 2014. Clearing markets via bundles. In International Sym-
posium on Algorithmic Game Theory. Springer, 158–169.

24



Hu Fu, Robert Kleinberg, and Ron Lavi. 2012. Conditional equilibrium outcomes via ascending
price processes with applications to combinatorial auctions with item bidding. In Proceedings
of the 13th ACM Conference on Electronic Commerce. ACM, 586–586.

Faruk Gul and Ennio Stacchetti. 1999. Walrasian Equilibrium with Gross Substitutes. Journal
of Economic Theory 87, 1 (1999), 95–124.

Daniel Kahneman, Jack L Knetsch, and Richard H Thaler. 1990. Experimental tests of the
endowment effect and the Coase theorem. Journal of political Economy 98, 6 (1990), 1325–
1348.

Daniel Kahneman, Jack L Knetsch, and Richard H Thaler. 1991. Anomalies: The endowment
effect, loss aversion, and status quo bias. Journal of Economic perspectives 5, 1 (1991), 193–
206.

Alexander S Kelso Jr and Vincent P Crawford. 1982. Job matching, coalition formation, and
gross substitutes. Econometrica: Journal of the Econometric Society (1982), 1483–1504.

Jack L Knetsch. 1989. The endowment effect and evidence of nonreversible indifference curves.
The american Economic review 79, 5 (1989), 1277–1284.

Sébastien Lahaie and David C Parkes. 2009. Fair package assignment. (2009).

Benny Lehmann, Daniel Lehmann, and Noam Nisan. 2006. Combinatorial auctions with decreas-
ing marginal utilities. Games and Economic Behavior 55, 2 (2006), 270–296.

John A List. 2003. Does market experience eliminate market anomalies? The Quarterly Journal
of Economics 118, 1 (2003), 41–71.

John A List. 2011. Does market experience eliminate market anomalies? The case of exogenous
market experience. American Economic Review 101, 3 (2011), 313–17.

Noam Nisan and Ilya Segal. 2006. The communication requirements of efficient allocations and
supporting prices. Journal of Economic Theory 129, 1 (2006), 192–224.

David C Parkes and Lyle H Ungar. 2000. Iterative combinatorial auctions: Theory and practice.
(2000).

Ning Sun and Zaifu Yang. 2014. An efficient and incentive compatible dynamic auction for
multiple complements. Journal of Political Economy 122, 2 (2014), 422–466.

Richard Thaler. 1980. Toward a positive theory of consumer choice. Journal of Economic Behavior
& Organization 1, 1 (1980), 39–60.

Amos Tversky and Daniel Kahneman. 1979. Prospect Theory: An Analysis of Decision under
Risk. Econometrica (1979).
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A Appendix

A.1 Missing lemmas and propositions.

Lemma A.1. Equation (3) holds if and only if vX(Y ) = v(Y )+gX(X∩Y ) for some gX : 2X → R.

Proof. By definition of marginal valuation it holds that

vX(Y \X|X ∩ Y ) = v(Y \X|X ∩ Y )

if and only if

vX(Y )− v(Y ) = vX(Y ∩X)− v(Y ∩X).

Letting gX(Y ∩X) ≡ vX(Y ∩X)− v(Y ∩X) completes the proof.

Lemma A.2. Any endowment effect E satisfies the loss aversion inequality (Inequality (2)) if
and only if every gX ∈ E is weakly monotone, i.e., gX(Z) ≤ gX(X) for all Z ⊆ X.

Proof. For any X,Y ⊆M it holds that

vX∪Y (X ∪ Y )− vX∪Y (Y ) ≥ vY (X ∪ Y )− vY (Y ) ⇐⇒
v(X ∪ Y ) + gX∪Y (X ∪ Y )− (v(Y ) + gX∪Y (Y )) ≥ v(X ∪ Y ) + gY (Y )− (v(Y ) + gY (Y )) ⇐⇒

gX∪Y (X ∪ Y )− gX∪Y (Y ) ≥ gY (Y )− gY (Y ) = 0

Note that the last inequality is equivalent to weak monotonicity of gX∪Y .

Proposition A.3. For any instance (v1, . . . , vn), a conditional equilibrium (S, p) is also an
EAON -endowment equilibrium.

Proof. Observe that for gSi ∈ EAON and for all Z ( Si it holds that gSi(Z) − p(Z) = −p(Z) ≤
0 ≤ vi(Si)− p(Si) = gSi(Si)− p(Si) where the second inequality follows by individual rationality
in a conditional equilibrium. Proposition 4.7 completes the proof.

A.2 Additional propositions

Corollary 5.2 and Theorem 4.1 imply that for XOS valuations, EAL 6≺ EI . The following is a
slight strengthening:

Proof of Proposition 1.1. Fix X ⊆M , need to show that for all Z ⊆ X, gXI (Z|X\Z) ≤ gXAL(Z|X\
Z).

gXI (Z|X \ Z) = gXI (X)− gXI (X \ Z) = v(X)− v(X \ Z) ≤ v(Z)

Where the last inequality follows by subadditivity. On the other hand

gXAL(Z|X \ Z) = gXAL(X)− gXAL(X \ Z) = v(X)− (v(X)− v(X \ (X \ Z)) = v(Z),

as required.

The following proposition shows that EAON is the strongest endowment effect in some class
of endowment effects.

Proposition A.4. For every valuation v, and every endowment effect E so that for all X ⊆M ,
it holds that gX(X) ≤ v(X) and gX ≥ 0, then E ≺ EAON .
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Proof. Fix a set X ⊆ M , and let gX ∈ E and gXAON ∈ EAON . For any Z ( X, it holds
that gXAON (Z|X \ Z) = gXAON (X) − gXAON (X \ Z) = gXAON (X) = v(X). On the other hand,
gX(Z|X \ Z) = gX(X) − gX(X \ Z) ≤ gX(X) ≤ v(X) where the first inequality follows by
gX ≥ 0, and the second is given in the proposition.

Proposition A.5. Let EPROP = {gX(Z) = |Z| · v(X) : X ⊆M}. For any instance (v1, . . . , vn),
there exists an EPROP -endowment equilibrium.

Proof. Let consumer i be the consumer that maximizes the value of the grand bundleM . Consider
the allocation of giving the grand bundle M to the consumer i, together with price vi(M) for
each item.

Let us see that this pair of allocation and prices is an EPROP -endowment equilibrium.
The utility of consumer i is gMi (M) + vi(M) − m · vi(M) = vi(M). Moreover, for any set

X (M , the utility of consumer i is

vMi (X)− |X| · vi(M) = vi(X) ≤ vi(M),

therefore, consumer i does not wish to deviate. For any other consumer j, the utility from X ⊆M
is

v∅j (X)− |X| · vi(M) = vj(X)− |X| · vi(M) ≤ 0.
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