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Abstract: 
Convolutional neural networks (CNNs) are broadly used in numerous applications such as: computer vision, image classification and many more. While CNN models achieve state-of-the-art accuracy, they require heavy computational resources which cannot be affordable by every platform. Limited performance capabilities, system cost and energy consumption, such as those in edge devices, are all catalysts for development of computational optimizations for neural networks. In this study we introduce VELCRO: ValuE Locality based CompRessiOn algorithm for neural networks. VELCRO is a novel method to compress general-purpose neural networks which are deployed for a small subset of focuses tasks. Although this study is focused on CNNs, VELCRO can be used for compression of any deep neural network. It should be noted that VELCRO does not aim at compressing the network memory footprint but rather reducing the computational requirements. VELCRO relies on the property of value locality, which suggests that activation output elements exhibit values in proximity thorough the inference process when the network is used for specialized tasks. VELCRO consists of two stages: a pre-processing stage which identifies activation function output elements with high degree of value locality; and a compression stage which replaces these elements with their corresponding arithmetic average values. As a result, VELCRO does not only save the computation of the replaced activations but also avoids the processing of their corresponding output feature map elements. Unlike common neural network compression algorithm which require computationally intensive training process, VELCRO introduces relatively moderate computational requirements. Our experimental analysis indicates that when CNNs are employed for specialized tasks they introduce a significantly high degree of value locality relative to the general-purpose case. In addition, our experiments show that VELCRO can achieve a compression saving ratio in the range of 13.5% up to 30% with no degradation in accuracy. Finally, our experimental observations also indicate that when VELCRO is used with relatively low compression target it can accomplish a significant accuracy improvement of 2-20% for specialized tasks CNNs.
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1. Introduction
Convolutional neural networks (CNNs) are broadly employed by numerous computer vision applications such as autonomous systems, healthcare, retail, security and many more. Over time, CNN models processing requirements and complexity have significantly increased. For example, AlexNet [44], which was introduced in 2012, has 8 layers, while ResNet-101 [45], which was released in 2015, uses 101 layers and requires approximately 7-fold computational throughput [55]. The increasing model complexity in conjunction with large datasets, used for model training, have enabled CNNs to demonstrate phenomenal performance for various computer vision tasks [46]. Typically, large and complex networks have the capability to further extend the capacity to learn complex image features and properties. The growing model size of CNNs and the requirements for heavy processing power have become a major deployment challenge for migrating CNN models into mobile, IoT and edge applications. Such applications incur limited computational and memory resources, energy constraints and system cost; and in many cases, cannot rely on cloud infrastructure computational resources due to privacy, online communication network availability and real-time considerations.
Compression of CNN models, while maintaining fairly reasonable performance loss, can significantly contribute to enable their deployment by variety of edge systems. Such compression can potentially reduce computation requirements, save energy, reduce memory bandwidth and storage requirements, and speedup the inference time. Various techniques have been suggested to compact CNN models. Pruning is one of the most common methods for CNN optimization [1, 2, 26], which exploits the property of CNNs tendency to be heavily over-parameterized [47]. Pruning allows trading off degradation in model prediction accuracy with model size by removing weights, output feature maps, or filters that have a minor or no contribution to the inference of a network. Quantization [11-14] is another common technique which attempts to further compress network size by reducing the number of bits used to represent values of weights, filters and output feature maps with minor accuracy impact. These methods and other compression approaches are discussed in more details in Section 2. 
In this paper we focus on machine learning models which are employed for specialized tasks. Specialized neural networks have recently become common not only for edge devices but also for datacenters [48-50]. Unlike general-purpose neural networks which are employed for a diverse range of classification tasks, specialized neural networks are used for a small number of specific classification tasks. For example, a CNN model which is used for vehicles detection does not utilize its animal classification capabilities [49]. Another example is related to offline video analytics [49] which is processed by a specialized CNN model, and only in the cases when the model has a low level of confidence the corresponding frames are sent to a general-purpose CNN. 
As part of this study, we introduce VELCRO: ValuE Locality based CompRessiOn algorithm. VELCRO is a novel compression method for deep neural networks which have been originally trained for a large set of diverse classification tasks but are deployed for a smaller subset of specialized tasks. Although this work is focused on CNN models, VELCRO can be used for compression of any deep neural networks. The main principle of VELCRO is based on the property of value locality. Value locality is a new property introduce by this study in the context of neural network. It suggests that the range of values exhibited by activation function output elements is in proximity thorough the inference process when the network is used for specialized tasks. VELCRO consists of two stages: a pre-processing stage, which identifies activation output elements with high degree of value locality; and a compression stage which replaces these activations with their corresponding arithmetic average values. Thereby, VELCRO avoids not only the computation of these activation elements but also their related Output Feature Map (OFM) elements. Unlike common neural network compression algorithm which require quite heavy computations for back propagation training, VELCRO presents fairly low computational requirements. For our experimental analysis we use three CNN models ResNet-18 [45], MobileNet V2 [54], and GoogleNet [51] with the ILSVRC-2012 (ImageNet) [52] dataset to examine compression capabilities and model accuracy impact. 
We summarize the contribution of this paper as follows:
1. We introduce the notion of value locality in the context of deep neural network which are used for specialized tasks. 
2. We present VELCRO a novel method that exploits value locality for the compression of neural networks which are deployed for specialized tasks. 
3. VELCRO introduces a fast compression process and avoids heavy computations of back propagation training, which is used by traditional compression approaches such as pruning.
4. VELCRO can be straightforwardly used in conjunction with other compression methods such as pruning and quantization.
5. Our experiments indicate that:
a. VELCRO can achieve a compression saving ratio of computations in the range of 20-27.7% for ResNet-18, 25-30% for GoogleNet and 13.5% to nearly 20% for MobileNet V2 with no impact on the model accuracy. 
b. VELCRO can also accomplish a significant accuracy improvement of 2-20% for specialized tasks CNNs given relatively small compression saving target. 
	The remainder of this paper is organized as follows: Section 2 reviews previous works. Section 3 introduces our proposed method and algorithm. Section 4 presents our experimental result. Finally, Section 5 summarizes our conclusions and suggests future research directions.
2. Prior works
Many recent studies have proposed various techniques to optimize CNNs computations, reduce redundancy, and improve their computational efficiency and memory storage. As part of this section, we describe the following related methods: pruning, quantization, knowledge distillation, deep compression, CNN folding, and ablation.
Pruning is one of the most common methods used for CNN optimization that was first introduced by [1, 2, 26]. The concept of pruning, which is inspired by neuroscience, relies on the assumption that among the network parameters some are redundant and may not contribute to the network performance. Various pruning techniques [1, 3-7] suggest removing activations, weights, output feature maps, or filters that have minor or no contribution to an inference process of an already trained network. Thereby, pruning can significantly reduce the network size and the number of computations. Traditional pruning techniques typically require a fine-tuning training on the full model which may involve a significant computational overhead [59]. Pruning techniques can be classified into unstructured and structured classes. Unstructured pruning does not impose any constraints on the activations or weights with respect to the network structure, i.e., individual weights or activations are removed by replacing them with 0. Structured pruning [20], on the other hand, restricts the pruning process to a set of weights, channels, filters, or activations. While structured pruning incurs limitations on the sparsity that can be exploited in the network due to its coarse pruning granularity, unstructured pruning can utilize a broader scope of the available sparsity. On the other hand, unstructured pruning may involve additional overhead for representing the pruned elements and may not always fit parallel processing elements such as GPUs. The process of pruning is typically performed by ranking the network elements in accordance with their contribution. The rank can be determined by using various functions such as the L1 or L2 norms [21-24] of weights, activations or other metrics [31]. Pruning of activations requires dynamic mechanisms to monitor activation values, since activation importance may depend on the model input. For example, [56] employs reinforcement learning to prune channels, and [57, 58] leverages CNN output feature map spatial correlation to predict and prune zero-value activations. Further pruning techniques based on weights magnitude were recently introduced by [27-29] which demonstrated that computation efficiency and network scale can be improved significantly. Various gradual pruning approaches [25], given memory footprint and computational bounds, were studies by examining the accuracy and size tradeoffs. Neuron Importance Score Propagation (NISP), introduced by [30], suggested performing neurons pruning jointly based on a unified goal. Other approaches such as, random neurons pruning and random grouping of weight connections into hash buckets were introduces by [32-33]. Pruning based on Tylor expansion criterion [39] focuses on transfer learning by optimizing a network trained to a large dataset of images into a smaller and more efficient network specialized in subset of classes. Their pruning method performs an iterative back propagation pruning by removing feature maps with least level of importance. Ref [39] compared their pruning method performance using various criterions such as weight pruning, using l2 norm, and activation pruning, using mean, variance, mutual information and Taylor expansion criterion. Their observations indicate that output feature map (OFMs) importance decreases with layer depth and every layer has feature maps with both high and low degree of importance. CURL pruning method was introduced by [60] for residual CNN compression when relying on a small datasets which can represent specialized tasks.
Quantization methods attempt to reduce the number of bits used to represent values of weights, filters and output feature maps from 32-bit floating point to 8-bit or less with a minor model accuracy while simplifying computational complexity. Employing quantization methods lower than 8 bits, however, is not trivial, due to the quantization noise leading to degradation in model accuracy. Quantization-aware training (QAT) techniques use training process for quantization in order to reduce quantization noise and recover model accuracy [8-10]. QAT can be limited when the training process cannot be employed due to lack of availability of datasets or lack of computational resources. Various fixed-point and vector quantization methods, introduced by [11-14], presented tradeoffs between network accuracy and quantization compression ratios. A combination of pruning and quantization was introduced by [15]. Post-training quantization (PTQ) methods [16-19] can avoid these limitations by searching for the optimal tensor cutting values to reduce quantization noise after the network model has been trained.
Knowledge distillation is another machine learning optimization introduced by [34] and [35]. The idea of knowledge distillation relies on a process of transferring knowledge from a large machine learning model into a smaller compact model which mimics the original model (instead of being trained on the original dataset) in order to obtain a competitive performance. Such system consists of three main elements: knowledge, algorithm for knowledge distillation and a teacher-student model. A broad survey of knowledge distillation is presented by [36].
Deep compression was introduced in [37] and consists of a three-stage pipeline: pruning, trained quantization and Huffman coding which operate simultaneously to optimize model size. The first stage prunes the model by learning the important connections, the second stage performs weights quantization and sharing and finally the last stage uses Huffman coding. Ref [38] extended the deep compression idea and introduced the once-for-all (OFA) network. The OFA can be installed under diverse architectural constraints and configurations, such as performance, power and cost. The OFA approach introduces the progressive shrinking techniques which generalizes pruning. While pruning shrinks the network width, progressive shrinking operates on four dimensions: image resolution, kernel size, depth and width thereby achieving higher level of flexibility.
FoldedCNN [50] is another approach to optimize CNNs for specialized inference tasks. Unlike compression techniques, FoldedCNN does not aim at compressing the CNN model, but rather attempts to increase the inference throughput and hardware utilization. The FoldedCNN approach suggests CNN model transformations to increase their arithmetic intensity when processing a large batch size without increasing processing requirements. 
Additional studies have attempted to understand the internal mechanisms of CNNs and their contribution to classification tasks. Ref. [40-41] have created visualized images based on the OFMs of different layers and units from CNN models. Their findings indicate that OFMs act as feature extractors which detect pattern, textures, shapes, concepts and various elements related to the classified images. Ablation techniques have been used by [42] to further quantify the contribution of OFM units to the classification task. Their findings indicate that elements which are selective to certain classes may not necessarily impact overall model performance when excluded from the network. The impact on ablation on subset of classes has been further studies by [43]. They have found that single OFM unit ablation can have a major impact on the model accuracy for subset of classes and thereby suggested different various methods to measure the importance of internal OFM units to specific classification accuracy. These observations provide the motivation for this study by suggesting that when the CNN model is used for specialized tasks, we can eliminate unrelated computations and as a result compress the model with minimal impact on classification accuracy.
3. Method and Algorithm
Our proposed VELCRO compression algorithm relies on the fundamental property of value locality. We start our discussion by first presenting qualitative and quantitative aspects of value locality. Next, we present the proposed forward propagation compression algorithm for specialized neural networks. 
3.1. Value Locality of Specialized CNNs
The principle of our proposed compression method for specialized CNNs is based on the property of value locality. Value locality suggests that when a CNN model runs specialized tasks, the activation tensor output values will be in proximity through the inference process of images. The rational behinds this theory relies on the assumption that the inferred images, which already have a certain level of similarity, will exhibit common features such as patterns, textures, shapes and concepts. Thereby, the intermediate layers of the model will produce relatively similar values in certain vicinity. The property of value locality is demonstrated in Figure 1, which illustrates the activation function output tensors in a given convolution layer k and channel c. In this example, the set of elements, A(m)[k][c][i][j] for images m=0, 1, …, N-1, in the activation tensor exhibit values in proximity through the inference process of the images.
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Figure 1. Value locality: The activation function output tensor elements in convolutional layer k, channel c, and coordinates i and j exhibits values in proximity through the inference process of images 0 to N-1. The variance tensor, V, is used a measure for the degree of value locality.
For every convolution layer k, we define a variance tensor V[k], where every element, V[k][c][i][j], in the variance tensor is defined by the following equation:
	V[k][c][i][j] = Var(A[k][c][i][j]) = E(A[k][c][i][j]2)-E(A[k][c][i][j])2 =,
	(1)


Where c is the channel index and i and j are the element coordinates.
We use the variance tensor as a measure to quantify the proximity of values for every activation tensor element A[k][c][i][j]. Thereby, a small value of V[k][c][i][j] suggests that the corresponding activation element exhibits high degree of value locality. Our proposed compression algorithm leverages such activation elements for compression. In Section 4 we present experimental analysis on the distribution of the variance tensor for various specialized CNN models
3.2. VELCRO Algorithm for Specialized Neural Networks 
The VELCRO algorithm consists of two stages: preprocessing and compression: 
1. Preprocessing stage: In this stage, VELCRO performs an inference using the original CNN model on images from the specializes task training dataset. During this stage, the variance tensor is calculated based on Equation 1 for each activation output in every convolution layer in the CNN model. Since the preprocessing stage of VELCRO relies on inference only, it involves a significantly smaller computational overhead with respect to traditional compression methods which employ heavy back propagation training process which can in the duration from a few up to hundreds of hours [61]. 
2. Compression stage: The compression stage uses a tuple of threshold values as a hyperparameter, which is provided by the user. Each threshold element in the tuple corresponds to an individual activation function in every convolution layer. The threshold value of every layer represents the percentile of elements in the variance tensor which their corresponding activation elements will be compressed by the algorithm. All the elements in the activation tensor with variance in the percentile of the threshold will be replaced by a constant equal to their corresponding arithmetic average. All other activation elements will remain unchanged. The result of replacing activation function output elements by constant values will avoid not only the activation computation but also the computation of their related Output Feature Map (OFM) elements. In fact, the compression saving of every layer is determined by the corresponding threshold value, thereby the user can determine the overall compression saving ratio, C, for the model through the threshold tuple as indicate by the following equation:
	,
	(2)


where the tuple T={T0, T1, … TK} represents the threshold values for the activation in every convolution layer. In addition, ck, wk and hk represent the number of channels, width and height of the activation function output tensor in convolution layer k respectively.  
The complete and formal definition of the algorithm is described in Algorithm 1. 
A simple example which demonstrates the operation of the VELCRO algorithm is illustrated in Figure 2. In this example, the activation output tensor in convolution layer k is shown for a training set of N=3 images. The dimensions of the activation tensor are ck=1, wk=3 and hk=3. The VELCRO preprocessing stage performs inference on the training dataset and at the end of this stage a variance tensor, V[k], and an average tensor, B[k], are created. The hyperparameter threshold value for layer k is defined in this example as Tk=0.33, i.e., the three elements in activation function output tensor with the lowest variance (illustrated in red color) will be replaced with their corresponding arithmetic average values. The rest of elements remain unchanged. The outcome of the VELCRO compression stage is shown in the compressed activation function output tensor, , where the computation of three elements (illustrated in green color) have been replace by the constant values which correspond to their arithmetic average. 
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Figure 2. An example of VELCRO preprocessing and compression stages.
























	Algorithm 1:  VELCRO algorithm for specialized neural networks

		Input: A CNN model, M, with K activation function outputs (each in a different convolution layer), N training images and a threshold tuple, T={T0, T1, … TK} where 
	Output: A compressed CNN Model, MC.

	Preprocessing stage
	Step 1: Let A[k] be the activation function output tensor in convolution layer k and let A(m)[k] be the corresponding activation tensor values at the inference of image m, , where the dimension of the tensors A[k] and A(m)[k] is  and ck, wk and hk represent the number of channels, width and height of the tensor at convolution layer k respectively.

Step 2: For every , , and :
	Let the tensors S and K be initialized such that: S[k][c][i][j] =0, and Q[k][c][i][j]=0,

Step 3: For every image :
	Perform inference by model M on image m.
For every convolution layer :
	For every , , and ,
	Let the tensors S and Q be: 
	S[k][c][i][j] = S[k][c][i][j] + A(m)[k][c][i][j],
	Q[k][c][i][j] = Q[k][c][i][j] + (A(m)[k][c][i][j])2,
	
	Step 4: Let B[k] be the arithmetic average tensor in convolution layer k such that every tensor element is:

For every , , and ,

	Step 5: Let V[k] be the variance tensor of convolution layer k such that every tensor element is:

For every , , and 

	Compression stage:
	Step 6: For every convolution layer :
		Let p(x,Y) be the percentile function of element x in tensor Y. p returns the percentile value for x with respect to all elements in tensor Y.

	Let the tensor  be such that:
	
For every , , and 

	Step 7: Let the compressed CNN model, MC be such that every activation function output tensor A[k] is replaced with  for every convolution layer .




4. Experimental Results and Discussion
Our experimental study consists of a comprehensive analysis on both value locality and the performance of various CNN models when used for specialized tasks. First, we describe our experimental environment, next we introduce value locality experimental measurements, and last, we present the performance of VELCRO compression algorithm.
4.1. Experimental Environment
Our experimental environment is based on PyTorch [53], the ILSVRC-2012 dataset (also known as “ImageNet”) [52, 53], and ResNet-18, MobileNet V2, and GoogleNet CNN models [40, 51, 54] with their PyTorch pretrained models. The specializes tasks which are used for our experimental analysis are summarized in Table 1. Our experiments examine five groups of specialized tasks. The groups of Cats-2, Cats-3 and Cats-4 include 2, 3 and 4 classes from the ILSVRC-2012 dataset respectively, while the group of Dogs and Cars include 4 classes each. Through our experimental analysis we do not make any modification on the first layer of the model. Skipping the first layer is a common approach which has been updated by many studies [].	Comment by Freddy Gabbay: Gil Please review and add reference
Table 1. Specialized tasks summary
	Specialized tasks
	ILSVRC-2012 Classes

	Cats-2
	Egyptian cat, 
Persian cat


	Cats-3
	Egyptian cat
Persian cat
Cougar


	Cats-4 (Cats)
	Egyptian cat
Persian cat
Cougar
Tiger cat


	Dogs
	English setter
Siberian husky
English springer
Scottish deerhound


	Cars
	Beach wagon
Cab
Convertible
Minivan



4.2. Value Locality Experimental Analysis
As part of our experimental analysis, we present the distribution of the variance tensor elements in every layer (skipping the first layer) as a measure to quantify the proximity of activation function output values. Figure 3 illustrates the variance tensor elements distribution for selected activation function outputs in convolution layer 1, 3, 7, 10, 14 in ResNet-18. The distribution is illustrated for the group of classes Cats-2, Cats-3 and Cats-4 which include 2, 3, and 4 classes of cats from the dataset. The group “all” refers to a mixture of all ILSVRC-2012 dataset classes and represents the case when the CNN model is employed for general tasks. It can be clearly observed that when the CNN model is used for specialized tasks (Cats-1, -2 and -3) the distribution of the variance tensor elements is shifted towards the zero with respect to the distribution when the model is used for general tasks (all). Thereby, it indicates that the CNN model exhibits closer proximity of values, i.e., a high degree of value locality, for specialized tasks. Another important outcome which is observed in Figure 3 is that the 3 group of specialized tasks behaves similarly regardless of the number of classes. The distribution of variance tensor elements in all resenet-18 layers is presented in Appendix A Figure 10 which exhibits similar behavior to the distribution presented herein. 
Figure 4 illustrates the same experimental analysis, this time for GoogleNet CNN model for selected layers 1, 6, 12, 21, 32, 38, 47, 51 and 56. The results of variance tensor elements for GoogleNet show very similar behavior to ResNet-18. When the model is used for specialized tasks the variance distribution shifts left with respect to the general-purpose usage, thereby exhibiting a high degree of value locality. The distribution in all GoogleNet layers is presented in Appendix A Figure 11. Similar experimental analysis for Mobilenet V2 layers 1, 6, 12, 19, 28, 30 and 35 is presented in Figure 5 and the distribution in all MobileNet V2 layers is presented in Appendix A Figure 12. Our observations indicate that when MobileNet V2 is used for specialized tasks, the degree of value locality is lower relative to ResNet-18 and GoogleNet. Our results indicate that the shift of the variance tensor elements distribution is smaller with respect to the other CNN models. These observations conform to the fact that MobileNet V2 is considered a highly compact network with respect to ResNet-18 and GoogleNet, thereby the potential leveraging of value locality is lower. 
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Figure 3. ResNet-18 variance tensor elements distribution in layers 1, 3, 7, 10, 14 and 16 for specialized tasks: All ImageNet classes, cats-2, cats-3 and cats-4.

[image: ]
[image: ]
Figure 4. GoogleNet variance tensor elements distribution in layers 1, 6, 12, 21, 32, 38, 47, 51 and 56 for specialized tasks: All ImageNet classes, cats-2, cats-3 and cats-4.
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Figure 5. Mobilenet-V2 variance tensor elements distribution in layers 1, 6, 12, 19, 28, 30 and 35 for specialized tasks: All ImageNet classes, cats-2, cats-3 and cats-4.

Figure 6, 7 and 8 extend our experimental analysis for additional groups of specialized tasks: Dog and Cars, each include 4 classes from the ILSVRC-2012 dataset and the group of Cats corresponds to the group Cats-4. The presented results provide further support to our observations in Figures 3-5. It can be clearly observed that for the specialized tasks, the variance tensor elements distribution shifts towards the zero relative to the distribution when the model is used for general tasks (all) in all the examined CNN models and in the majority of the activation function outputs in all convolution layers. Similar to the results presented in Figure 5, we also observe that MobileNet V2 is able to leverage value locality but in a smaller magnitude with respect to ResNet-18 and GoogleNet. 
These experimental results provide indications which support our expectations that CNN models which are used for specialized tasks will exhibit a high degree of value locality. The experimental results for all layers of all models are presented in Appendix A Figures 13-15. The complete experimental results for all layers exhibit similar behavior to the distribution presented in Figures 6-8.
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Figure 6. ResNet-18 variance tensor elements distribution in layers 1, 3, 7, 10, 14 and 16 for specialized tasks: Cats, Dogs, Cars and all ImageNet classes. 
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Figure 7. GoogleNet variance tensor elements distribution in layers 1, 6, 12, 21, 32, 38, 47, 51 and 56 for specialized tasks: Cats, Dogs, Cars and all ImageNet classes.
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Figure 8. MobileNet V2 variance tensor elements distribution in layers 1, 6, 12, 19, 28, 30 and 35 for specialized tasks: Cats, Dogs, Cars and all ImageNet classes.
4.3. Compression Algortihm Performance
As part of our experimental analysis, we examine the compression saving ratio of VELCRO algorithm on three groups of the specialized tasks: cats, cars and dogs which have been presented in Table 1. Figures 9 (a), (b) and (c) presents the top-1 prediction accuracy versus the compression saving ratio for cars, dogs and cats respectively. The experimental analysis is performed on ResNet-18, GoogleNet and MobileNet V2 CNN models. For every given compression saving ratio, we have examined different threshold values and have chosen those that introduce the highest top-1 accuracy. The tuples of threshold values used are summarized in Appendix B. Table 2 summarizes the maximum compression saving ratio for every group of specialized tasks and every CNN model which achieved the same accuracy as the original uncompressed model.
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(c)
Figure 9. ResNet-18, GoogleNet and MobileNet V2 accuracy results versus compression saving ratio for specialized tasks: (a) Cars, (b) Dogs and (c) Cats. 
Our experimental observations indicate that VELCRO can achieve a compression saving ration of 20.00-27.73% in ResNet-18, while in GoogleNet it achieves 25.46-30% saving. The higher compression saving ratio in GoogleNet can be explained by the fact that GoogleNet employs smaller number of kernels which are aimed to detect area-specific features which are distributed across the inferred images. Thereby it can explain why GoogleNet is able to better leverage value locality when the network is employed for special tasks. MobileNet V2, on the other hand, achieves smaller compression saving ratio in the range of 13.50-19.76% for the examines specialized tasks. These observations comply with our previous measurements of the distribution variance tensor elements which implied that the potential of leveraging value locality in MobileNet V2 is smaller relative to the other examined CNNs. This can be explained by the fact that MobileNet V2 is much more compact CNN model with respect the other examined CNNs and thereby introduces lower potential to leverage value locality.
Table 2. Maximum compression saving ratio achieved while keeping the same accuracy of the original uncompressed CNN model
	Specialized tasks
	ResNet-18
	GoogleNet
	MobileNet V2

	Cats
	27.73%
	30.00%
	13.50%

	Dogs
	27.70%
	25.46%
	19.76%

	Cars
	20.00%
	27.70%
	16.8%



It should be noted that VELCRO does not aim at compressing the network memory footprint but rather reducing the computational requirements. Thereby, when comparing VELCRO to pruning approaches the comparison should consider computation aspects rather than the number of parameters in the network. A comparison of VELCRO algorithm versus other pruning approaches is summarized in Table 3:
	Compression method
	Networks
	Specialized
 tasks
	Training 
required
	Computation 
speedup 
	Accuracy loss

	Tylor criterion [39]
	AlexNet
	Yes
	Yes
	1.9X
	0.3%

	CURL [60]
	MobileNet V2
ResNet-50
	Yes
Yes
	Yes
Yes
	3X
4X
	Up to 4%
Up to 2%

	Deep 
compression [15]
	Various CNN models
	No
	Yes
	3X
	None

	Weights and connection learning [3]
	AlexNet
	No
	Yes
	3X
	None

	VELCRO
	ResNet-18
GoogleNet
MobileNet V2
	
Yes
	
No
	1.25-1.38X
1.38-1.42X
1.15-1.24X
	None
None
None


Table 3. Maximum compression saving ratio achieved while keeping the same accuracy of the original uncompressed CNN model

Although VELCRO achieves smaller computation speedup with respect to pruning approaches for both specialized CNNs and general-purpose ones, VELCRO offers a compression process requires significantly smaller computational resources. While back propagation training which required by is in the range between a few up to hundreds of hours [61], VELCRO involves a preprocessing stage which is faster by few of order of magnitude. 
As part of our experimental analysis, we examined the output value of the activations which have been compressed by VELCRO. Table 4 presents the percentages of compresses activation elements with value of zero out of all the compresses activation elements. The presented results in Table 3 corresponds to the compression saving ratios in Table 2, i.e., when the network achieves maximum compression with no accuracy loss. In ResNet-18 the portion of compressed zero values is in the range of 0.08-0.31% and in GoogleNet the range 0.56-0.64%. MobileNet V2 exhibits as significantly higher portion of compressed zero values in the range of 10.48-14.91%. The fact that MobileNet V2 is much more compact model with respect to the other CNNs can explain why it exhibits a high ratio of compressed zero values. These results imply that VELCRO introduces an additional scope of compression with respect to pruning which aim to remove weak connections of zero.  
Table 4. Percentages of compressed activation elements with value of zero out of all compressed activation elements 
	Specialized tasks
	ResNet-18
	GoogleNet
	MobileNet V2

	Cats
	0.08%
	0.56%
	14.91%

	Dogs
	0.20%
	0.63%
	10.48%

	Cars
	0.31%
	0.64%
	12.00%



Another important observation which is concluded from Figures 9 (a), (b) and (c) is that when VELCRO is used with relative moderate compression ratio it achieves a significant accuracy increase. The results are presented in Table 5 which summarizes the maximum top-1 accuracy achieved by VELCRO. These results can be explained by the fact that a relatively moderate level compression can help the network leverage value locality to strengthen connections which increases the probability of favoring the prediction off classes which are part of the specialized tasks. 
Table 5. The maximum top-1 accuracy increase achieved by VELCRO with respect to the uncompressed model when used for specialized tasks. 
	Specialized tasks
	ResNet-18
	GoogleNet
	MobileNet V2

	Cats
	13.00%
	20.00%
	3.50%

	Dogs
	8.50%
	11.00%
	2.50%

	Cars
	4.00%
	15.00%
	4.50%



5. Conclusions
We have presented VELCRO: ValuE Locality based CompRessiOn algorithm. VELCRO introduces a new compression approach for general-purpose deep neural network which are deployed for a small subset of specialized tasks. We have introduced the notion of value locality in the context of specialized tasks neural network and have shown that CNNs which are used for specialized tasks, exhibit a high degree of value locality. Our experimental analysis indicates that VELCRO can leverage value locality to compress the network and save 20-30% of the computations in ResNet-18 and GoogleNet and up to 20% in MobileNet V2. Our experimental analysis also indicates that VELCRO can achieve a significant accuracy improvement of 2-20% given relatively small compression saving target. One of the main advantages of VELCRO is that it presents a fast compression process which is based on inference rather than using back propagation training which involves heavy computational processing. 
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Figure 10. ResNet-18 variance tensor elements distribution for specialized tasks: All ImageNet classes, cats-2, cats-3 and cats-4.
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Figure 11. GoogleNet variance tensor elements distribution for specialized tasks: All ImageNet classes, cats-2, cats-3 and cats-4.
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Figure 12. MobileNet V2 variance tensor elements distribution for specialized tasks: All ImageNet classes, cats-2, cats-3 and cats-4.
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Figure 13. ResNet-18 variance tensor elements distribution for specialized tasks: Cats, Dogs, Cars and all ImageNet classes.[image: ][image: ][image: ][image: ][image: ][image: ]
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Figure 14. GoogleNet variance tensor elements distribution for specialized tasks: Cats, Dogs, Cars and all ImageNet classes.
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Figure 15. MobileNet V2 variance tensor elements distribution for specialized tasks: Cats, Dogs, Cars and all ImageNet classes.
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