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Abstract 

We present an analytical, numerical, and experimental investigation of the deformations induced on a 
free liquid-air interface and a lubricated elastic sheet as a result of dielectrophoretic forces. We consider 
the case of interdigitated electrodes in two-dimensions and provide numerically validated closed-form 
solutions for the electric field and force distribution on the elastic sheet. Coupling these forces with the 
elasticity equation for the sheet and Reynolds' equation for the fluid, we provide solutions for the spatio-
temporal evolution of deformation. We demonstrate experimentally the creation of such deformation on 
an oil-air interface and provide quantitative measurements using digital holography. We believe the 
concept and model provided may be useful for applications requiring dictated deformations such as 
adaptive optics and soft robotics.  

1. Introduction

The ability to deform an elastic interface into a desired pattern has potential use in a wide range of 
applications, such as reconfigurable lab-on-a-chip devices1, soft robotics2, and adaptive optics3. A variety 
of mechanisms can be considered for achieving such elastic deformations, including piezoelectric, 
magnetic and pneumatic actuators. Fluidic-based actuation, i.e. where deformation is induced by a liquid 
in contact with the elastic sheet, is of particular interest as it allows deformations to be achieved without 
adding active elements to the elastic interface, and can thus also be used to deform liquid-liquid or liquid-
gas interfaces. Furthermore, the two-way coupling of the dynamics of the fluid with those of the elastic 
interface can lead to an interesting flow patterns and novel instability phenomena.  

The majority of studies on the deformation of a lubricated elastic sheet considered pressure-driven or 
gravity-driven flows4–6. Recently,  work by Boyko et al7 suggested the use of non-uniform electroosmotic 
flow as a mechanism for the creation of internal pressure gradients driving elastic deformations8,9. 
However, the pressures that could be obtained in such systems scale linearly with the electric field, leading 
to relatively low pressures.  

Dielectrophoresis (DEP) is the behavior of dielectrics materials (insulators) due to the presence of a non-
uniform electric field. DEP forces scale with the electric field squared, and have been demonstrated to be 
an effective method for manipulating discrete objects, particularly particles10–12 and cells13,14. Brown et 
al15 showed that DEP forces formed by a non-uniform electric field result in deformations of oil-air 
interface for thin films of oil. By using energy methods, they describe the dependence of the periodic 
amplitude of the deformations at steady state as a function of the fluids properties, fluid height and 
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electrodes geometry16. However, to the best of our knowledge, no model exists for the dynamics of an 
elastic sheet due to DEP forces. 

In this work, we present a theoretical model and experimental demonstration for the deformations of an 
elastic sheet suspended on a thin liquid layer due to an electric field established by electrodes at its 
surface. We provide an analytical expression for the electric field in a 3-layer configuration consisting of 
the liquid, elastic sheet, and air. Using the electric field, we analytically compute the force distribution on 
the sheet through Maxwell’s stresses. Coupling this force with the viscous flow and elastic deformation in 
limits of small deformation and negligible inertial effects, we obtain an analytical solution for the 
deformation of the sheet in time. We use this expression to study the effects of permittivity, conductivity, 
electrode geometry, and electric frequency on the resulting deformation. We use digital holographic 
microscopy for real-time monitoring of deformations induced by an interdigitated electrode array covered 
by a film of oil, demonstrating the phenomenon and enabling characterization of the deformations in 
support of the theoretical model.  

2. Anaytical and numerical investigation

2.1. Problem formulation and governing equations 

As illustrated in Figure 1, we study the dynamics of an elastic sheet with length ml , thickness mh and 

electric permittivity mε suspended on top of a thin layer viscous fluid of density ρ , viscosity µ , electric 

permittivity fε , subjected to  DEP forces. The liquid rests on a rigid surface patterned with interdigitated 

electrodes of length el  and edge-to-edge gap gl . We use a Cartesian coordinate system whose origin 

coincides with the surface of the plate. We assume that the thickness of the electrodes is negligible, so 
the electrode surface is considered to be at 0y = . The electrical actuation of the electrodes generates a 
force on the sheet, and consequently, the elastic sheet is deformed. The elastic deformation is coupled to 
the viscous fluid flow in the chamber, giving rise to flows and pressure distributions. We define the gap 

between the rigid surface and the sheet (the fluid film thickness) as 0( , ) ( , )h x t d x t h= + 

 

  , where ( , )d x t



  is 

the induced deformation and 0h  is the initial height. The fluid velocity and pressure are respectively 
ˆ ˆux vy= +u    and p .  
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Figure 1. Schematic illustration of the investigated configuration. A thin liquid film is confined between a lower rigid 
plate containing interdigitated electrodes and an elastic sheet. The other side of the sheet is in contact with air. 
Actuation of the electrodes is expected to result in deformation of the elastic sheet.  

We use l  and 0h  to scale the horizontal and the vertical coordinates,  ( , )u v′ ′  t′ , and p′  to denote the 
characteristics velocities, time and pressure, respectively.  The governing equations of the fluid flow under 
the assumption of a shallow geometry 0( / 1)h l ε=  , a small reduced Reynolds number 

2(Re / 1)r u lε ρ µ′=   and a small Womersley number ( )2
0( / 1)Wo h tρ µ ′=   are the lubrication 

equations given by the continuity equation 

(2.1) 0∇ ⋅ =u

 , 

and the momentum equation in the x  and y  directions, 

(2.2) 
2

2 , 0p u p
x y y

µ∂ ∂ ∂
= =

∂ ∂ ∂
  

  

. 

The velocity boundary conditions on the bottom (rigid) surface are ( ) ( )
0

, 0,0
y

u v
=
=



 corresponding to no 

penetration and no-slip conditions. On the upper (elastic) surface, we also require no-slip and set a 
kinematic condition for the vertical velocity,  ( ) ( ), 0, /

y h
u v h t

=
= ∂ ∂







 , according to the deformations of the 

sheet under the assumption of small deformations17. The solution of equation (2.2) yields a Poiseuille flow 
profile where the pressure is not known. Substituting it into equation (2.1) and integrating with respect 
to y  and using the velocity boundary conditions we obtain the well-known Reynolds equation, 

(2.3) 
3

12
h h p
t x xµ

 ∂ ∂ ∂
=  ∂ ∂ ∂ 

 





 

 . 

The governing equation of the deformation of the elastic sheet is derived by considering an infinitesimally 
small segment of the sheet, using the linear and angular momentum equations and assuming that the 
deformations of the membrane are much smaller than the characteristic length over which the 

deformation changes, ( )d l

 . The resulting equation is the transverse displacement of a beam18,
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(2.4) 
4 2 2

4 2 2m e m
d d dB T g f

x x t
ρ ρ∂ ∂ ∂

− + − + =
∂ ∂ ∂

  


 



 

. 

The first term on the LHS represents the bending term, where ( )23 /12 1Y Y mB E I E h ν= = − , YE  is Young’s 

modulus of the matter, I  is the moment inertia of the cross-section of the elastic sheet and ν  is the 
Poisson’s ratio. The second term on the LHS represents the tension term, where ( / )Y mT E h xυ= ∂ ∂

  , υ   is 
the longitudinal displacement. The third term is the gravity force where mρ  is the mass density per unit 

length, and the last term ef   represents the external forces exerted on the sheet in the y-direction that 
can be further decomposed into two terms: the fluid pressure, p , and the forces due to the electric field 

in the system i.e. DEPf . The term on the RhS is the solid inertia. 

In our analysis, we consider the cases in which the solids inertia and the gravitational force are negligible, 
and therefore equation (2.4) becomes,  

(2.5) 
4 2

4 2 DEP
d dp B T f

x x
∂ ∂

= − −
∂ ∂

 


 



 

. 

The derivatives of the deformation in space or time are equal to the fluid thickness derivative through the 

simple relation between them, 0( , ) ( , )h x t d x t h= + 

 

  . Accordingly substituting equation (2.5) to equation 
(2.3) yields the viscous-elastic equation for the deformation, 

(2.6) 
3 4 2

4 212 DEP
d h d dB T f
t x x x xµ

  ∂ ∂ ∂ ∂ ∂
= − −   ∂ ∂ ∂ ∂ ∂  

   


 



   

. 

To obtain a linear viscous-elastic equation we require the deformation to be much smaller than the initial 
fluid thickness, ( ) 0,d x t h




  and obtain 

(2.7) 
3 26 24
0

6 4 212
DEPh fd d dB T

t x x xµ
 ∂∂ ∂ ∂

= − − 
∂ ∂ ∂ ∂ 

  

 



  

. 

We normalize equation (2.7) with the following parameters, 
2
lx x=  where ,e gl l l= + 0 ,y yh=

0 ,d dh= 0 ,h hh= , DEP DEPt tt f f f′ ′= =

 , and we obtain,

(2.8) 
3 26 4 2
0

2 4 6 2 4 2

32 16
12 3

DEPh t fd B d T d t f
t l l x l x x

ε
µ µ
′   ′ ′ ∂∂ ∂ ∂

+ − + = − ∂ ∂ ∂ ∂ 

 

 , 

the characteristics time and DEP force will be determined later. Both terms inside the parentheses are 
restoring terms, and the working regime of the system can be determined by performing scaling analysis 
on those terms. We define 22 /B Tlδ =    as a nondimensional parameter representing the ratio between 
the bending and the tension in the system. For 1δ  , the bending dominates over tension and we can 
neglect the tension term, whereas for 1δ    we are in tension regime. The characteristic time scale can 
be obtained by balancing the dominant term with the temporal term, yielding  
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(2.9) 
3

3 3

3 3,
4 8T B

l lt t
T B
µ µ
ε ε

′ ′= =
 

,

where ,T Bt t′ ′  are the tension and bending time scales respectively, and for the general case where 

( )1Oδ ≈  we can work with either of the time scales. Equation (2.8) has a sixth order spatial derivative 

and a first-order time derivative, hence, we need six boundary conditions and one initial condition. The 
initial condition is zero deformation at 0t = .  As shown in Figure 1, the system is a closed chamber with 
rigid walls at the two boundaries.  Therefore, we require that at the boundary there will be no 
deformation, 0d =  , no moments, 2 2/ 0d x∂ ∂ =

 , and zero volume flux which through an integration of 
the velocity profile with respect to y  dictates / 0p x∂ ∂ =  . We express the last condition in terms of the 
deformation by applying / x∂ ∂  on equation (2.5) and substituting the pressure derivative. In summary, 
the BCs are, 

(2.10) 
2 4 2

2 4 20, 0, 0, at 0, and 0DEP m
d d dd B T f x l t

x x x x
 ∂ ∂ ∂ ∂

= = − − = = ≥ ∂ ∂ ∂ ∂ 

  

 
 





   

. 

Finally, we need to express the actuating force inducing the deformations. The governing equation of the 
force density on a dielectric subjected to an electric field was first derived by Helmholtz and is known as 
the Korteweg-Helmholtz body force19, 

(2.11) 2 21 1
2 2f iE Eερ ε ρ

ρ
 ∂

= − ∇ + ∇ ∂ 
f E      , 

 where E , fρ , iε , ρ  are the electric field, the free charge density, the electric permittivity and  the mass 

density respectively. The first term of the force is simply the Coulomb force on free charges which, since 
we assume our system to be electroneutral everywhere, is negligible. By assuming incompressibility of 
the liquid, the last term, the electrostriction is be negligible as well. Therefore, the only dominant term is 
the second one, which also vanishes everywhere except for at the interfaces between the liquid, elastic 
sheet, and air.  In order to obtain this force, we must first solve for the distribution of the electric field. 

2.2. Electric field solution 

2.2.1. Analytical solution 

To obtain the force field applied on the membrane, we first solve the electric field distribution inside the 
system. Figure 2a presents a schematic description of the problem, consisting of three distinct regions 
having different permittivities – the liquid, the membrane, and the air. We solve the Laplace equation for 
the electric potential in these three regions. Separation of variables yields a solution of the type  

(2.12) ( ) ( ) ( ), ,
0
cos exp exp , { , , }i n i n n i n n

n
k x A k y B k y i fluid membrane airφ

∞

=

 = + − = ∑     

    
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where , ,, ,i n i n nA B k  are determined from the boundary and continuity conditions. The conditions that 

relate the different areas are the continuity of the electric potential and the displacement field, 

(2.13) , / /i j i i j jy yφ φ ε φ ε φ= ∂ ∂ = ∂ ∂   

  , 

at the liquid-sheet and air-sheet interface, 0 0; my h y h h= = +  , wherein the indices i and j indicate the 
liquid and the membrane for the lower interface and the membrane and the air for the upper interface. 

On the left boundary, we prescribe symmetry condition, / 0xφ∂ ∂ =

  and on the right boundary we 

prescribe anti-symmetry condition, 0φ = . Far from the electrodes, for y →∞ , we require that the electric 

potential vanishes, 0φ = , and at the electrodes surface, 0y = , we assume a fixed potential 
distribution20,  

(2.14) ( ) ( ) ( )
0

0
0

0 / 2

2 / 2 / 2 / 2
e

e g e e g

V x l
x

V l l x l x l l
φ

< <=  + − < < +





 

 . 

 It is convenient to scale the system using the following parameters 

( )

( )

0 0

0 0

, , , , ,

2, , , , 1 , ,
2 2

m a
in in in in mf am

f m

n n e e g e m m

V A B A B V R R

l lx x y y k k l l l l h l h l
l

ε εφ φ
ε ε

α α α α

= = ⋅ = =

= = = = = − = =

  



 

 , 

where 0, ,e mα α α are constants defining the ratios between the different length scales of the problem. 

,am mfR R  are the ratios between the air and membrane permittivity and the membrane and liquid 

permittivity. We note that for the purpose of the electric field solution,  we normalize the y  coordinate 
with the length scale of the x  coordinate, l . This will simplify the electric potential and field solutions. 
The non-dimensional solution then takes the form 

(2.15) ( ) ( ) ( )
0
cos exp expi n in n in n

n
k x A k y B k yφ

∞

=

= + −  ∑ ,

And the electric field distribution is obtained from the potential using the relation ( ),x yE E φ= −∇ , 

(2.16) 
( ) ( ) ( )

( ) ( ) ( )

0

0

cos exp exp

cos exp exp

x n n in n in n
n

y n n in n in n
n

E k k x A k y B k y

E k k x A k y B k y

∞

=

∞

=

=  + −  

=  − −  

∑

∑
 . 

Figure 2b and 2c present the resulting non-dimensional equipotential lines and electric field lines, 
respectively.  For clarity of presentation, the images present four solution domains which have been 
‘stitched’ together in accordance with the boundary conditions. 
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Figure 2 – Analytical solution of the electric potential in a three-layer structure (liquid, membrane, air), generated by 
an array of periodic electrodes immersed in the liquid. (a) Schematic of the problem formulation showing one cell of 
the infinite array of electrodes along with key parameters and boundary conditions for the solution. The lower area 
(fluid) the middle (membrane) and the upper (air) have electric permittivities of fε , mε and aε , respectively. The 

non-dimensional fluid and membrane thickness are 02α , and 2 mα , and the non-dimensional electrode length and

gap are eα , and 1 eα−  respectively. The boundary condition on the left side is periodicity and on the right side is 
symmetry. At y=0 there is a prescribed potential distribution given by the electrodes, and far from the electrodes, the 
field vanishes. (b,c) Electric potential and electric field distributions of the analytical solution, shown over four cells 
joined together for better illustration of the solution. The x  and y axes are normalized by the length of one cell,

( ) / 2e gl l+ . The ratio of permittivities between the membrane and the fluid is 0.2mfR =  and for the membrane 

and the air is 0.4amR = . The lengths of the electrode and of the gap between the electrodes are equal, 0.5eα =

and the normalized fluid and membrane thickness are respectively 0 1 / 4α = , and 1/ 20mα = .

2.2.2. Numerical solution 

To validate our analytical solution, we also solve the Laplace equation using an in-house finite difference 
numerical simulation based on the Jacobi scheme for elliptic equations,  

(2.17) 
( ) ( )1 2

, 1, 1, , 1 , 12

1
2 1

k k k k k
i j i j i j i j i jφ φ φ β φ φ

β
+

− + − +
 = + + + +

. 

where the ,i j  subscripts denote the spatial indices in the x and y-axes, respectively, and the k
superscript represents the iteration number. /x yβ = ∆ ∆  and ,x y∆ ∆  are the spatial steps in x and y-
direction respectively. For simplicity, we chose 1β =  and solve for the case of 0mα = .  

 We interface the three domains through the boundary conditions (2.13), with continuity of the 
displacement field taking the form  

(2.18) , 1 , 1
, 1

in in

in

k k
af i j i jk

i j
af

R
R

φ φ
φ + −+

=
+

. 
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Table 1 - Summary of the numerical scheme for different y locations. The general scheme valid almost everywhere except one row 
below the interface, one row above the interface and the interface itself. The scheme solves for the entire domain (not including 
the boundaries). 

y  location Numerical scheme 
1inj j= −  

, 1 , 11
, 1 1, 1 1, 1 , 2

1
4 1

in in

in in in in

k k
af i j i jk k k k

i j i j i j i j
af

R
R

φ φ
φ φ φ φ + −+

− − − + − −

 +
= + + + 

+  

inj j=
1, 1 1, 1 1, 1 1, 11

, , 1 , 1
1
4 1 1

in in in in

in in in

k k k k
al i j i j al i j i jk k k

i j i j i j
al al

R R
R R

φ φ φ φ
φ φ φ+ + + − − + − −+

− +

 + +
= + + + 

+ +  
 

1inj j= +  
, 1 , 11

, 1 1, 1 1, 1 , 2
1
4 1

in in

in in in in

k k
af i j i jk k k k

i j i j i j i j
af

R
R

φ φ
φ φ φ φ+ −+

+ − + + + +

 +
= + + + 

+  
  

1, , 1in in inj j j j≠ − +  1
, 1, 1, , 1 , 1

1
4

k k k k k
i j i j i j i j i jφ φ φ φ φ+

− + − + = + + +    

We use first-order forward finite difference for the derivative of the potential in the air and backward 
finite difference for the fluid. inj  represents the index value of the interface in the y  direction and is 

defined as 02 / 1inj yα ∆ + . afR  represents the permittivity ratio between the air and the fluid. We 

summarize the complete scheme without the boundary conditions in Table 1. 

As illustrated in figure 3a, for further simplification of the numerical solution,we define our domain as 
consisting of two adjacent cells, thus replacing the Neumann condition which would have been required 
at the symmetry plane (marked as ‘3’) with a Dirichlet condition on the other external face (marked as 
‘2’). Table 2 lists the boundary conditions on each of the boundaries.  The initial potential distribution is 
set to zero everywhere except on the first boundary as shown in Table 2. The scheme is then solved 
iteratively to convergence. 

Table 2 - Dirichlet boundary conditions after the extension of the numerical domain. Boundary 1 is the electrode surface, 
boundaries 2 and 4 are the right and left edges respectively and boundary 3 is the air potential far from the electrode. 

Boundary No indexes Electric potential  

1 1,j i= ∀   ( ) ( )

( ) ( )

1 / 1 ; 1
1;
1 / 1 ; 1

x a x a
a x a

x a a x
φ

 + − − < < −


= − < <
 − − < <

2 , xj i N∀ =  0φ =

3 ,yj N i= ∀  0φ =

4 , 1j i∀ =  0φ =
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We define the convergence criterion as, 1 1/k k ke φ φ φ+ +

∞ ∞
> − , where the infinite norm is defined as 

1, 2, ,
1 1 1

max , ,...,
n n n

j j m j
j j j

A A A A
∞

= = =

 
=  

 
∑ ∑ ∑ .

The result of the numerical simulation is in good agreement with the analytical solution, as shown in Figure 
3. Figure 3b and 3c present a side-by-side comparison of the analytical and numerical solution of the
potential field for a 121x301 grid with electric permittivity ratio between the air and the fluid, 0.2afR = . 

Equal electrodes length, electrodes gap, and fluid thickness, 0 0.5eα α= =  and convergence criterion, 
810e −= , showing excellent qualitative agreement. Figure 3d presents the potential distribution at the 

fluid-air interface at 02y α=  showing also excellent quantitative agreement.  The analytical expression 
for the electric field, (2.12), is thus validated and we can use it to calculate the DEP force an elastic 
membrane.  

Figure 3 – Numerical simulation of the electric potential distribution in two neighboring cells. The membrane 
thickness is equal to zero, 0mα = . The fluid thickness, the electrodes length and the electrodes gap are equal,

0 0.5eα α= = , and the electric permittivity ratio between the air and the fluid is 0.2af am mfR R R= = . (a) Schematic 

of the computational domain used for the simulation. The boundary numbering corresponds to the boundary 
conditions as listed in Table 2, the blue line represents the potential distribution on the bottom (at 0y = ) where at 

the electrode surface 1φ = . (b,c) analytical and numerical solution of the electrical potential shown over two cells 
joined together for easier visualization.  (d) Comparison of the analytical and numerical potential distributions at the 

liquid-air interface ( )02y α=  . The relative error between the analytical and numerical model is less than 1%. 

2.3. DEP forces on the elastic sheet 
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After solving for the electric field distribution, we need to derive an expression for the force on the 
membrane, the RHS of equation (2.8). As we mentioned in section 2.1 the body force vanishes almost 
everywhere except at the interfaces of the membrane. Figure 4a presents the control volumes that 
contain the upper and lower interfaces of the membrane. For convenience, the integral around each of 
the edges can be replaced through the divergence theorem by an equivalent surface integral on the edges 
of the control volume over an equivalent tensor, the Maxwell stress tensor,  

(2.19) 
2ij i j ij k kT E E E Eεε δ= −  . 

After integration we obtain 

(2.20) ( ) ( )( ) ( ) ( )( )( )
0 0 0 0

2 2 2 21 1 1
2 m m

DEP f x m y mf m x a y amy h y h y h h y h h
f x E E R E E Rε ε ε ε+ ++ +

+ += = = =

 = + − + + −     


   

 , 

where 
0

x y h
E

+=
 represents, for example, the x-direction component of the electric field at the upper 

interface of the membrane that is exposed to the air. Figure 4b presents the normalized DEP force 

distribution on the membrane ( )2 2
0/ 4 /DEP DEP af f V lε=  .

Figure 4 – DEP force distribution on the membrane. (a) Schematic illustration of one cell of the system. We define 
two infinitesimally thin control volumes at the interfaces of the membrane. By integrating the stress tensor on the 
surface of the two control volumes, we derive the DEP force on the membrane. Outside of the control volume on the 
membrane, the force is equal to zero due to the uniformity of the permittivity in each region. (b) Normalized force 
distribution on the membrane at the y-direction. The force is a function of the different permittivities, the thickness 
of the fluid film, the thickness of the membrane and the applied voltage. However, the direction of the force is 
determined only by the permittivities, in this case f m aε ε ε> > , and as expected from (2.20) the force is positive

everywhere. 

2.4 Free surface deformations 

Once we have an expression for the DEP force at the interface, consider the limit case of a free surface 
configuration ( )0mα =   of n  cells, each / 2l   in length. The solution we obtained for the electric field and

therefore also for the DEP force valid for an infinite number of electrodes, accordingly the forces at the 
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edges aren’t accurate. Hence, to simplify the solution, we consider two empty cells for each side of the 
chamber and considered the force there to be zero. We can simplify our governing equation, (2.8), by 
defining the membrane tension to be the fluid surface tension T γ= , dropping the bending term 0B = , 

and substituting in the previously derived expression for the tension time scale 3

3
4T

lt
T
µ
ε

′ =


. Our equation

now takes the form of 

(2.21) 
2 24

0
4 2

a DEPV fd d
t x l x

ε
γε

∂∂ ∂
+ = −

∂ ∂ ∂
. 

Figure 5 – Analytical results showing the DEP force distribution on an air-fluid interface having a permittivity ratio of 
2 / 5afR = . The non-dimensional height of the fluid is 0 1 / 2α = , and the length of the chamber is 21 cells. The

electrode denoted by the black lines on the x-axis. The blue line is the DEP force distribution inside the chamber and 
the red line is the second derivative of the DEP force, which serves as the source term for the elastic equation (2.21) 
when the non-dimensional is set to one.  

We assume that the fluid start at rest, i.e. ( ), 0 0d x t = =  and that the fluid pressure is zero at the edges21,
i.e. the side walls of the chamber are open and connected to big reservoirs such that, fluid can flow in and 
out. At the boundaries, we require no deformation, and using equation (2.5) and substituting the pressure 
and the force we obtain zero spatial derivative of the deformation at the edges. In summary, the boundary 
conditions are, 

(2.22) 
2

20, 0, at 0, and 0dd x n t
x
∂

= = = ≥
∂

. 

The general solution using the Green function22 for this equation using such homogenous boundary 
conditions is given by 

(2.23) ( ) ( ) ( ) ( ) ( )
0 0 0

, , , , , ,
n t n

id x t f G x t d G x t d dξ ξ ξ ξ τ ξ τ ξ τ= + Φ −∫ ∫ ∫ . 
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if  is the initial deformation that in our case is zero so the left integral vanishes. Φ  is the source term of 

the equation which in our case is ( ) ( ) ( )2 2 2
0/ /af x V lε γε Φ = − ∂ ∂ ⋅   , and the Green function itself is given

by 

(2.24) ( ) ( ) ( ) ( )4

1

2, , sin sin expm m m
m

G x t t
n

ξ λ ξ λ ξ λ
∞

=

= −∑ ,

where m
m
n
πλ =  are the eigenvalues of the problem. By substituting the DEP force and the Green 

function, (2.24), to equation (2.23) we obtain the general solution for the deformations of the fluid-air 
interface, 

(2.25) ( )
( )

( ) [ ] [ ]( )

4 4

4 25

24 21 0 0
2 5

2 1916 1 e 1 sin sin sin

,
cosh sinh

m t
n

af

af afm

m m m xn

n

R
n n n

d x t
m m R R

π

α α

π π π

π π π

∞

=

−         − − − +               
+−

=∑ . 

Figure 6 presents the deformation  ( ),d x t  for 2 / 5afR = , 0 1 / 4α = , 21n = , and 2
0 / 1aV lε γε = , using the 

first 50 terms of the series. For the singular term at m n= ,  we derived the limit of m n→  and added it to 
the sum. The form of the exponential term (scaling to the fourth power of the wave number) in (2.25) 
provides insight on the dynamic behavior of the deformation. The short waves account for the 
deformations at short times while the long waves account for the deformations at much longer times. 

Figure 6 – Analytical results showing the deformation of the fluid-air interface due to DEP actuation. (a) The spatial 
deformations of the interface at different time points. At short times high wave numbers dominate the deformation, 
while long times are dominated by low wave numbers. (b) The maximum magnitude of deformation along with the 
chamber as a function of time. The system reaches a steady state at 410t ≈  

3.Experimental investigation

3.1 Chip fabrication 
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Figure 7a shows a typical device containing three independent microfluidic chambers defined by 
structured SU8 layer. Each chamber comprises an interdigitated electrode array electrically insulated by 
a dielectric layer, with different width of the electrodes and different gaps between them. The electrodes 
are connected to an external power supply through the electrical pads located at one edge of the device. 
Figure 7b shows the microfabrication process flow. All the microfabrication steps are performed in a clean 
room of class 1000. We used double-polished 4” borofloat glass (WRS materials) wafers as a substrate. 
We define the metal structures by a lift-off process, depositing a sandwiched metal layer of 15 nm Ti - 30 
nm Pt - 15 nm Ti by physical evaporation (BAK501, Evatec AG). We use two layers of titanium to improve 
the adhesion of the metal layers to both the substrate and the dielectric; the platinum layer is used 
because it is resistant to hydrofluoric acid (HF) and acts as a stopping layer during the etching process for 
opening the electrical connections (see below). The final metal thickness is 60 nm.  We then deposit 500 
nm of silicon oxynitride (SiON) followed by a deposition of 100 nm of silicon dioxide (SiO2) as a dielectric 
layer by plasma-enhanced chemical vapor deposition (PECVD). We then expose the electrical pads by 
etching the dielectric over them by using HF. Finally, we deposit a 40 μm-thick layer of SU8 (SU8 1060, 
Gersteltec) by spinning it for 40 s at 700rpm and define the lateral walls of the microfluidic structure by a 
standard lithographic step (3). We dice the wafer to singulate the devices with dimensions of 
approximately 2 × 1 cm.  

Figure 7. Device fabrication. (a) Image of a typical device used in this work. The device is composed of a substrate 
patterned with integrated electrodes and several independent microfluidic chambers. The interdigitated electrodes 
cover the total area of each chamber and are connected through conducting lines to pads at the perimeter of the 
device, providing an interface to the power supplies. We insulate the electrodes by a dielectric layer while leaving the 
electrical pads exposed. We use a layer of SU8 to define the lateral walls of each microfluidic chamber. (b) Schematic 
of the microfabrication process flow. 1. We define the metal structures (15 nm Ti / 30 nm Pt / 15 nm Ti) on a glass 
substrate by a standard lift-off process. 2. We deposit a dielectric layer via PECVD. 3. We open the electrical 
connections (the pad electrodes) by wet or dry etching. 4. Using a lithography step we define the microfluidic 
chambers with a 40 μm thick layer SU8 photoresist.  

3.2. Experimental setup 

We measure free-surface deformations of low viscosity silicone oil (317667, SIGMA-ALDRICH) in response 
to DEP forces, for different actuation voltages. We use interdigitated electrodes where the width of each 
one of them is 20 mµ  and the gap between them is 180 mµ . The electrodes array covered by a thin 
dielectric layer form a 7.5 mm X 7.5 mm open chamber geometry on top of which we place 1 lµ  of the 
dielectric fluid. The electric potential on the electrodes is generated by a high-voltage power supply (2410, 
Keithley). To spread the fluid over the chamber we apply a 400 V potential difference between the 

(a) 
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electrodes until the fluid wets the entire chamber and then turn off the voltage. The final thickness of the 
oil is approximately 18 um. To deform the liquid-air interface we apply again a potential difference 
between the electrodes and observe the deformations. We measure the deformations using reflection 
digital holographic microscope (DHM-R1000, Lyncee tec) from above, creating a hologram image by 
interference between the reference beam and the reflected beam from the object. We extract the 
topographic information of the surface from the phase image of the interference pattern.  

3.3 Experimental results 

Ideally, the deformation would be measured by measuring the reflection from the liquid-air interface.  
However, stronger reflections are obtained from the bottom glass surface. We, therefore, focus on the 
glass surface, and the information collected by the DHM corresponds to the change in phase as light 
travels through the liquid which has a higher index of refraction than the air. Figure 8 presents the results 
of the experiments for different applied voltages, where the black lines on Figure 8b indicate the location 
of the electrodes. The minimum deformation is obtained precisely above the electrode’s center, as 
predicted by the theory. The deformation shows non-linear behavior with the applied voltage, though 
weaker than the E^2 behavior expected from theory.  For example, changing the voltage from 200V to 
250V results in an amplitude increase in a factor of 1.7. This might be due to the non-linearity of equation 
(2.6) where the deformation is not so small compare to the initial fluid thickness or the distribution of the 
electric field that changed as a result of the fluid-air interface deformations and therefore the DEP force 
changed too which are not accounted for in the model. 

Figure 8. Experimental measurements of the fluid-air interface in response to the electric field established by
interdigitated electrodes (a) Topographic image of the interface at 250 V. The wavelength of the deformation is equal 
to the pitch of the electrodes, 200 mµ . The maximum deformation is obtained above the gaps between the 
electrodes.  (b) The deformation along the center of the membrane perpendicular to the electrodes, for different 
voltages. 
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