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"טובים השניים מן האחד אשר יש להם שכר בעמלם.
 גם אם יפלו האחד יקים את חברו ואלו האחד שיפול ואין שני להקימו. ...                                                                    ואם יתקפו האחד השניים יעמדו נגדו והחוט המשולש לא במהרה ינתק"

(מתוך קהלת ד')
“Two are better than one; because they have a good reward for their labour.
 For if they fall, the one will lift up his fellow: but woe to him that is alone when he falleth; for he hath not another to help him up…
And if one prevail against him, two shall withstand him; and a threefold cord is not quickly broken”
(From Ecclesiastes 4)
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Thesis Abstract
We studied several aspects of stability, instability and chaos which coexist in motion of the 3-body problem. Our study carried us from the vastness of the extrasolar systems to the simple toy-model,  the driven pendulum, which mimics the dynamic behavior of  celestial systems under resonance.

Our desire for a deeper understanding in this wide and interesting field led us to conduct three related researches
· The first research is associated to the prevailance of MMRs (mean motion resonances)  in  extrasolar systems. Our published article (Koriski & Zucker 2011) investigated the possible effect of the elapsing time on the long-term survivability of MMR  . In this research, we have tested a hypothesis that MMRs tend to suffer evolutionary disruption hence destined to get destabilized and disrupted. Under this assumption,  we expect to see lower abundance of MMRs around older stars hence we compared the prevalence of period commensurabilities exhibited in multiplanetary extrasolar systems vs. published age estimates of their host stars (derived by the chromspheric activity method).
We found that the typical life expactancy of planetary systems in a 2/1 period commensurability, the most common MMR among known extrasolar system, is around 4 Gyr. This age is significantly younger from all other, commensurable and non commensurable systems. Therefore we suggested that the phenomenon of, at least, the 2/1 MMR is not generally everlasting. 

Intrigued by those findings we later found out that several studies (e.g. Thommes 2008) support the hypothesis that MMRs are vulnerable. These studies suggested that disruption of MMR configurations may be the result of cataclismic events of close encounters with massive objects or interaction with a remnant planetesimal  that eventually induced dynamical instability.
In response to these perceptions, our inquisitiveness guided us to find out if the decay of MMRs in planetary systems may also be a mere evolutionary  outcome of the physics and dynamic characteristics of the system themselves without the need of  “deus ex machina” in the sense of external forces. As a possible cause for the MMR desruption we suggested the chaotic nature of the 3-body systems.

·  The second research: After raising the hypothesis that the reason for MMRs decay may be related to the chaotic underlying dynamics of  3-body systems  , we decided to better understand the action patterns of the 3-body problem on stable and on chaotic motion.   In order to refine and simplify the problem, we investigated those feature using the periodically driven pendulum, the toy-model  to the behavior of 3-body systems in MMR. Practically, we decided to choose the instantaneous energy of the pendulum as a measure to the physical condition of the system. The outcome of the  study were typical statistical  patterns regarding the distribution of the peak-to-peak and trough-to-trough of the energy time series, generated by the pendulum. Those findings, in addition to their scientific importance, supplied us with the tools to continue our research regarding the chaos effects on MMRs survivability.

Equipped with those new statistical insights we followed to our next research:
·  In our third research we investigated the probability and the typical time series in which the driven pendulum is able to cross different energy levels that are high enaugh to disrupt MMRs. This time we subjected the pendulum to a uniqe driving force that we formulated in the general structure of the 3-body disturbing function. We found that the the series of the energy-crossing times, per each  of the energy levels, is exponentialy distributed. In addition we show that the averaged time is a function of the driving force amplitude. Those findings tell us that a 3-body system , initially in a stable MMR  state,  can become chaotically unstable and, after sufficient time may loose its MMR state. The probability for the destinction of MMR and the elapsed time needed for this event to happen  depends, primarily, on the amplitude of perturbation generated by and upon the system masses.
In conclusion, the three studies support our primar hypothesis that the destruction of MMR configurations can be an evolutionary phenomenon, completely dependent upon  the internal features of the 3-body problem and does not, necessarily, relay on external forces or events. This conclusion is also valid to mature 3-body planetary systems that are free of significant, primordial, external forces (e.g. interaction with the protoplanetary gas disk, collision with a remnant planetesimal)
Note: Due to the large amount and variety of information upon which we rely in our study, we elaborate on the scientific information that is relevant to all the studies, in the following General introduction. The information that is relevant only for a specific study is embodied in the relevant study.
1 General introduction
1.1  The 3-body problem and its disturbing function 

The three-body problem (Fig.1.1) describes the motion of a point mass 
[image: image3.wmf]m

  under the gravitational influence of two other masses, 
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 and 
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 where 
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 (Murray & Dermott 1999, Ketchum, Adams & Bloch 2013).
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Figure. 1.1 The 3-body problem

Unlike the analytical two-body problem in which two bodies rotate about their mutual center of mass in elliptic trajectories, adding an additional body makes the problem nonintegrable hence without analytic solution. The common method of solving the problem is numerically by separating the system into two binaries, where the inner binary contains the massive body 
[image: image8.wmf]M

and the inner minor body 
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while the outer binary contains the outer minor 
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and the two body system 
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 (i.e., their center of mass). The energy exchange between the inner and outer binaries is described by an argument called the disturbing function which is the extra potential energy contributed by one of the secondary masses:

Since our research is dealing with a mathematical formulation for the pendulum driving force that aims to simulate the Legendre-polynomials expansion of the disturbing function, we will follow by a comprehensive, step-by-step, review of how the expansion is made. This review is mainly based on C.D Murray and S.F. Dermott (1999) book “Solar System Dynamics”.
The disturbing function for 
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(1.1.1)
 and, similarly, for
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(1.1.2)
where 
[image: image16.wmf]G

is the gravitational constant, 
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Applying the cosine rule for angle 
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 (i.e. the angle between the two radius vectors 
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hence,
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Or, when written in the Legendre-polynomials expansion
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Where 
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Referring to Eqs. (1.1.1, 1.1.2), since
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(1.1.6)

and for the outer body
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 (1.1.7)
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Figure. 1.2 Orbital elements: 
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 are, respectively, the true anomaly, argument of periastron, longitude of ascending node, semi-major axis and inclination

Since we want to work with the orbital elements (Fig. 1.2), the term 
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  is implemented,
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where 
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 and 
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 are the semi major axis of the inner and outer minor bodies respectively,

hence Eq. (1.1.7) takes the form, 
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(1.1.9)

To generalize the problem for three dimensions hence to integrate the inclinations of the external and internal orbits, Murray and Dermott 1999 utilized Kaula (1961) & Kaula (1962) methods and wrote Eq. (1.1.9) in terms of the orbital elements,
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 where,
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Where,
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and, 
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are the Hansen coefficients,
where,
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When,
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and, when
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The disturbing function due to the exterior secondary,
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, is given by,
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(1.1.17)

The above method is one of the methods for full expansion of the disturbing function. Nevertheless, another method, using the Laplace coefficients is also widely used.

Furthermore, we can simplify the problem by distinguishing between its direct and indirect parts,
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and 
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The direct part,
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 was derived from the direct term of the disturbing function hence when fixing the origin of the coordinate systems is at the center of mass


while
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and, 
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          (1.1.22)

are derived from the indirect terms of the disturbing function due to the external (E) and Internal (I) perturbers, respectively.

These two indirect terms exist only if we choose to locate the origin of the coordinate system not in the center of mass. 

For the simplicity, we will assume that the origin lies in the center of mass and we will continue only with the direct term
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An expression for 
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as an infinite Taylor series in 
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and by using the Laplace coefficients is given by,
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where
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 are the true longitudes of the inner and outer minor bodies respectively,
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 are Laplace coefficients that can be expressed as a uniformly convergent series in 
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To write the disturbing function while using the orbital elements instead of Cartesian coordinates, the following equations are being used,
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and,
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In addition,
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and, similarly,
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Using Eq. (1.1.28) and Eq. (1.1.29) we can rewrite Eq. (1.1.24) as,
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 where 
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 are, respectively, the true longitude, mean longitude, longitude of periastron, argument of periastron, longitude of ascending node, true anomaly, semi-major axis, eccentricity, and inclination of the internal and the external orbits.

The full expansion of the direct part of the disturbing function, Eq. (1.1.23), is of course infinite. Nevertheless, most studies use only low ordered expansions.

The following example is a second order expansion, hence an addition of the zero, first and second arguments,
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Where
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 is an arbitrary integer, and 
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 denotes a differential operator which acts on the Laplace coefficients,
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Eventually after some algebraic modifications and simplification, the direct part can be written as
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Finally, Dermott & Murray (1999) formulated a new expression for the disturbing function that has both, the advantages of the Kaula (1961, 1962), Eqs. (1.1.10) and (1.1.17) combined with the Laplace coefficients, Eq. (1.1.23),
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where the expression,
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 in Eq.1.1.17, has been simplified and transformed here to
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Hence the disturbing functions describing the perturbation of the system by one of the minors, in this example by the external mass
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, (i.e.  Eq.1.1.6), has the general form, 
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where 
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 is a function of the semi major axes (
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 respectively. As we described in Eq.1.1.34, the general form of each of the infinite number of arguments 
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 is a linear combination of all the longitudes of the 3-body system
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Or, in the shorter form,
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where,
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and 
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 are integers which obey d'Alembert relation,
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For reasons to be explained on section 1.2, the argument 
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 of Eq. (1.1.45) is named the “resonance argument”.
According to Eq. (1.1.11) and Eq. (1.1.16), the lowest orders in the eccentricity and inclination terms are,
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Hence, we can evaluate argument 
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 as,
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where 
[image: image140.wmf]()

f

a

is a function of the Laplace coefficients and can be expressed as a uniformly convergent series in 
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Being the amplitude of each term in the disturbing function, argument 
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 is often called the “strength” of the function.
It is evident that the lowest power of 
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in a specific term is equal to or greater than the absolute value of the coefficient 
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 of
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. In addition, the lowest power of 
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Using Eq. (1.1.17), Eq. (1.1.18), Eq. (1.1.20), Eq. (1.1.23) and Eq. (1.1.49), we can now rewrite the lowest order of the expanded disturbing function (Eq.1.1.18) 
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Since 
[image: image157.wmf],',

ees

 and 
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 are all lower then 1, researchers tend to neglect high power terms in the disturbing functions expansion and consider only the low power ones which are more dominant.
This tendency is clearly demonstrated in the case of the planar, circular, restricted three-body problem where Eq. (1.1.50) is reduced to  
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 (1.1.51)
It is evident that since the value of 
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 is also the order of the expansion; the higher is the expansion order the lower is the “strength”
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.

In general, the arguments that contain mean longitudes, 
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 and 
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 are of short periods and their long-run perturbing effect is minor since they tend to average to zero. Hence, in most cases, the arguments that are more effective are those who contain the secular, low frequency longitudes, 
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 and,
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.

Nevertheless, there are cases on which the mean longitudes have a significant contribution upon the perturbation. This cases occur when the system is exact or in near mean-motion-resonance, an issue that will be discussed on the next section. 
1.2 The mean motion resonance

In general, resonance occurs when two frequencies are in a simple numerical ratio. In case of MMR within the 3-body problem, the two minor masses 
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 and 
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  revolve around the primary 
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, (Fig.1.1), with orbital periods that are close to a ratio of two small integers (e.g., Beaugé et al. 2008). This ratio is called period commensurability (PC) and calculated by
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Where 
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 and 
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 are the mean motions of the minors 
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and 
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 respectively (i.e., their average angular velocities) and 
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The relevancy of the resonance argument to this situation is that in case of MMR, the variations in time of the argument (i.e.
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) are very small and, regarding exact resonance,
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To better understand Eq. (1.2.1) we should look at the variation of the resonance argument is given by the derivation of Eq. (1.1.45) 
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Since
[image: image178.wmf]'

Î

&

, and 
[image: image179.wmf]Î

&

 as well as the variations of the secular longitudes are relatively small, we can say that in exact MMR 
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Hence, in MMR
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If we consider only the planar, circular, restricted case in which we have no inclinations for both secondaries (i.e.
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) and circular orbit for the outer secondary (i.e.
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) we can write Eq.1.2.3 as,
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Using Eq. (1.1.44) for this case and using d’Alembert relations,
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We can finally write Eq.1.2.4 as in Eq. (1.2.1),
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Spatially, the MMR phenomena force the two orbiting objects to meet repeatedly, on the same orbital longitudes. Thus, the gravitational perturbation generated by and upon the resonating celestial bodies, as reflected by the disturbing function, induces changes in the orbital elements, mostly on the semi major axis, eccentricity and inclination. The orbital evolution of the perturbed masses is quantified by the Lagrange planetary equations. These equations depict the variations on each of the six orbital elements (i.e. 
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These changes are often small. However, the MMR perturbation due to the frequent conjunctions may add up coherently and if the forcing frequency commensurates or nearly commensurates with the natural frequency of oscillation of the responding elements it will produce large-amplitude, long-period response (de Pater & Lissauer 2001) that can either provide stability or provoke chaos and destruction. This issue will be further discussed on chapter 1.3. 

Though the presence of PC is necessary to the existence of MMR, PC alone is not a sufficient condition for establishing the existence of MMRs and to constitute a true resonance one or more of the infinite resonance arguments
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, Eq. (1.1.45), in the disturbing function should be fixed or undergoes small librations. This is because in inclined and elliptic trajectories, the instantaneous position in space of the celestial bodies depends not only on the values of the mean longitudes (
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) which evolve much slower than the mean longitudes hence cause secular variations.  In the opposite case, when the system is out of MMR, all 
[image: image194.wmf]j

 arguments circulate. (e.g. Malhotra 1998; Adams et al. 2008; Mardling 2008; Lecoanet et al. 2009; Mustill & Wyatt 2010).

The order of the resonance as well as the order of the disturbing function expansion is the absolute value of the sum of 
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For instance, when the ratio of the two secondaries is 
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This order tells us how many successive conjunctions occur before the two bodies will meet again on the same spatial longitudes. Hence if the order
[image: image201.wmf]q

equals 1, each conjunction occurs at the same longitude and if the order 
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 equals 2 the two bodies will meet on the same longitude every second conjunction (Murray and Dermott 1999). 

As already mentioned on chapter 1, the argument 
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 is the “strength” of each individual term in the expansion of the disturbing function.

If we reduce Eq. (1.1.49), (i.e.
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to a simple case of the planar, circular, restricted problem when the body in the external orbit is perturbing an inner minor of negligible mass, the strength of the disturbing function will be, 
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(1.2.7)

Hence the strength of the disturbing function depends on the order of resonance 
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 or, in the more general form, on the value of
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. Since the value of the eccentricity 
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 is usually lower than one, the lower is the resonance order-the higher is the strength and the perturbation asserted on the inner body. 

Since in case of MMR, 
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will have secular motion albeit the high frequency of the mean longitudes.
In conclusion, on case of low order MMR, the total effect of the long-period variations of 
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 on the disturbing function, especially when the amplitude 
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  is large, will result in considerable perturbations.

We should mention that besides MMR, planetary systems exhibit more types of resonances, for example:

· Secular resonance: occurs when the frequency of variation of the longitude of periastron (
[image: image217.wmf]v

) or longitude of the node (
[image: image218.wmf]W

), of the perturbed body, becomes nearly equal to one of the eigenfrequencies of the perturbing body's system (Carruba et al. 2005; Murray & Dermott 1999).

· Spin-orbit resonance:  occurs when there is an integer or a near-integer ratio between the spin period of a satellite and its orbital period. In this case, a significant spin-orbit coupling may occur. e.g., the spin-orbit resonance of the earthly moon. (Murray & Dermott 1999).

MMRs occupy a relatively small volume of phase space nevertheless it is, evidently, a common phenomenon in planetary systems. As shown in figure 2, it appears among planets, moons and asteroids within our Solar System (e.g., Malhotra et al. 2008; Chiang et al. 2007), as well as in extrasolar systems. 
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Figure. 1.2.1. Mean motion resonance in the Solar System (Malhotra 1998)

The on going effort to detect extra solar planetary  system yielded over 1,300 systems , about 40% of them have multiple planets. Many planets have jovian masses that are located relatively close to their stars with 8-10 days orbital periods. A significant amount of all known multiplanetary systems exhibit period commensurabilities that might indicate the presence of low order MMRs.  The majority of which in 2/1 and by descending order in 3/2, 5/2, 3/1, 4/1 and 4/3 ((the online exoplanet orbit data base, Wright et al. 2011a; Antoniadou 2016).
 Just to mention few of the studies regarding MMRs in exoplanets,  Laughlin and Chambers (2001) using N-body integrations of orbital parameters based on a best fit solution to Keck and Lick data , showed that the two planets orbiting GJ 876 are librating about  the 2/1 MMR . In a similar way other systems were found to posses MMRs, e.g., 55 Cnc in 3/1 (Zhou et al. 2004) and HD82943 in 2/1 (Lee et al. 2006). Wright et al. (2011b) showed that the frequency of MMRs in planetary systems (one in three at that time) is too high to be regarded as random. This result suggests that scattering and migration mechanisms, similar to those who generated MMRs in the Solar System, are also relevant for extrasolar systems.
What are the possible  origins of MMR configurations ?

Protoplanets can migrate into MMR configurations due to large scale changes in their planetary orbit. According to numerous studies, this change can occur via three basic physical mechanisms.

· Gas disk migration: According to this model, planets, once embedded in the protoplanetary gas disk, underwent a differential convergent orbital migration as a result of the energy and angular momentum exchange between the planets and the gas disk (e.g., Kley 2004; Papaloizou & Szuszkiewicz 2010; Ketchum, Adams & Bloch 2011). This is considered the main mechanism responsible for entering the MMR configuration, and especially the 2/1 and 3/1, before the dissipation of the protoplanetary gas disk (e.g., Snellgrove et al. 2001; Lee & Peale 2002; Lee et al. 2009; Kley et al. 2004, Thommes 2005; Pierens & Nelson 2008; Raymond et al. 2008). 

· Planetesimal driven migration: This type of migration becomes effective after the dissipation of the gas disk. It can make planets move into and out of MMR configurations due to their interaction with an outer planetary disk. (Thommes et al. 2008, Fernandez & Ip 1984; Hahn & Malhotra 1999; Ida et al. 2000; Gomes et al. 2004, 2005; Kirsh et al. 2009). 

· Planet-Planet scattering: occurs when an initially unstable system of 
[image: image220.wmf]N

 planets is evolving under the mutual planet-planet gravitational forces (e.g., Raymond et al. 2008).  It will evolve chaotically until planets start crossing each other's orbit and be ejected from the system. The planets that are not ejected will migrate closer to the star as a consequence of energy loss (Rasio & Ford 1996; Weidenschilling & Marzari 1996; Lin & Ida 1997) and form MMR configurations.

In addition to these mechanisms Zhang et al. (2010) suggest a hybrid mechanism of both scattering and collision for the formation of a 2/1 librating–circulating resonant configuration presumably formed in the planetary system's early stages of dynamical evolution.

1.3  Stability and instability of a 3-body system in MMR
1.3.1  Causes and origins of instability 
The stability of the general 3-body system depends on the amount of energy exchanged between the orbiting masses. If the energy is high enough the system becomes unstable in the sense that eventually one of the bodies will be diverted and thrown away out of the system (Mardling 2008) or be eliminated after a collision with another body.
Considering the circular, restricted, 3-body problem there are two important criterions for stability (Nakamura & Yoshida 1992, Deck et al. 2013) : 
· The Hill Stability criterion outlines the region of possible motion hence we can estimate if the massless particle can undergo a close encounter with one of the major bodies and practically get captured by it or escape the system completely. Marchal & Bozis (1980) extnded the Hill criterion to the general 3-body problem as well.  
· The Lagrange Stability tells us if the orbit of the massless body can suffer considerable changes due to the  repeated gravitational interaction with the other bodies in the system, a change that can eventually lead to a collision or ejection of the negligible mass
As said on the previous chapter, the gravitational perturbation generated by and upon the 3-body masses may be stronger if the system is in MMR. The reason for that phenomenon lies in the fact that when a system is not in MMR, each conjunction of the two minor bodies occurs around a different celestial longitude hence all resonance argument of the disturbing function circulates and the gravitational forcing is negligible.  The case is different when a system is in MMR. In this situation, perturbation may add up coherently and, eventually induce major changes in the orbital elements (mostly on the semi major axis, eccentricity and inclination) and cause close encounters or even eject the perturbed body out of its current orbit.  Koriski & Zuker (2011), in a statistical study based on observations and Barnes, R. et al. (2015) in a study based upon numerical models, suggest that systems with MMR may be systematically younger than those without hence, generally, MMR may be a passing phenomenon because it provokes instability of celestial systems. In the previous chapter, we discussed the destabilization potential of MMR due to accumulation of perturbations in the repeated conjunctions.

The major aspect of MMR, vis-a-vis our studies, is that by influencing planets orbital parameters it plays an ambigous role in the long-term evolution of planetary system. Theoretically, the orbital changes, induced by MMR, can lock a planetary object in a stable quasi-periodic orbit for substantially long time or alternatively, distort the object motion and eject it completely out of the system or drive it into the capture zone of one of the other system masses. Hence, MMR is an intriguing phenomenon that can either support stability of planets motion and protect it against close encounters and collisions or, on the other hand, intensify the gravitational perturbations and induce instability and destruction of orbits (Asghari et al. 2004, Malhorta et al.). 

Bois et al (2003) demonstrate this ambiguous function of MMR by presenting the subtleties of the necessary initial configuration conditions under which the extrasolar system HD 160691, with two minors 
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 and 
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 orbiting star 
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 , will stay stable:

· Regarding the MMRs, the planets should be in a 2/1 commensurability.

· Regarding the configuration, the system should have a configuration of 
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 hence the minors 
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 and 
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 are initially positioned at their apastrons.
 This initial spatial configuration combined with the 2/1 MMR ensures that after one revolution of the inner planet 
[image: image227.wmf]b

, planet 
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 is at its periastron and after one more revolution the planets are again near their apastron. Hence, under these terms, the MMR is maintaining long-term orbital stability by hminimizing the magnitude of perturbations exerted on each planet by the other one  and by reducing the probability of close encounters.
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Figure. 1.3.1.1 Stable (A) and unstable (B) close encounters in a 3-body system.

In conclusion, regarding the system configuration, MMR can provoke instability if it forces the two bodies to pass each other when the inner mass,
[image: image230.wmf]m

, is at its apastron and the outer,
[image: image231.wmf]'
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, is at its periastron, Fig. (1.3.1.1 B), a celestial configuration that provides a significant forcing. Nevertheless, in an inverted configuration Fig. (1.3.1.1 A), MMR may support stability if it guarantees repeated encounters at the largest possible distance where the gravitational perturbation is minimal.

Once establishing an MMR configuration, the planets might be trapped and stay locked in it. The MMR trap usually occurs when the planet's energy and angular momentum added by the MMR, equals and thus compensates for the energy and angular momentum loss due to external dissipation. It  may even survive the tidal interaction between the planets and the gaseous protoplanetary disk that carried the planets to its current location. (Mustill & Wyatt 2010).  Nevertheless, there are mechanisms that are able to disrupt the MMR so planets initially locked in resonance might migrate out of their resonance configurations. Studies about stability and evolution of MMR offered different mechanisms that could provoke instabilities and disrupt the resonance.
Adams et al. (2008), followed by Lecoanet et al. (2009) showed that the turbulence effects in the protoplanetary gas disk, due to magnetorotational instability, could compromise resonant configurations. Hence, if turbulence is present, only a small percentage of the extrasolar systems that produced MMR configurations during the systems early life will retain their resonances over typical disk lifetimes of  
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 .

Hadjidemetriou (2002) studied the issue of stable and unstable resonances. He showed, in particular, that a planetary system in a 2/1 resonance is unstable if  the outer planets mass is smaller than the inner one.  Others, (Adams et al. 2008; Leconanet et al. 2009; Rein & Papaloizou 2009a) showed that strong stochastic forcing, resulting from turbulences within the protoplanetary disk, can affect and disrupt MMRs.

Thommes et al. (2008) and and Gomes et al. (2005)  raised the possibility that the violent breakup of closely-packed, resonantly-locked planets is a common evolutionary phenomenon in many planetary systems. Hence sytems, currently observed to be in MMRs, represent only the survivors of a much larger, primordial, resonating population. They showed that interaction with a gas disk may create young planetary systems stabilized by MMRs but, on longer timescales, after the gas with its dumping effect is gone, the gravitational effect of the remnant planetesimal disk pulls these configurations apart, eventually inducing dynamical instability. These istabilities may have caused the Late Heavy Bombardment (LHB) of asteroids in our Solar System once Jupiter and Saturn crossed thiere mutual 2/1 MMR. 
1.3.2 Chaotic  instability

Another phenomenon that provokes instability arises from the chaotic nature of the 3-body system. (Lecar et al. 2001). 

Chaotic behavior is a feature of nonintegrable
 problems that include the 3-body problem. It is characterized by evolution of motion which is extremely sensitive to initial conditions. Hence there is no complete analytical solutions to the problem and we can not predict the future state of the system even if we have all the forces acting on it now.  The magnitude of the chaos in the system is frequently determined by the maximum Lyapunov Characteristic Exponent (LCE), a quantitative measure of the divergence rate of two nearby phase-space trajectories (Murray & Dermott 1999).

When the motion is chotic, the evolution of the phase-space distance 
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Where 
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 is the distance between the trajectories at time 
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 and 
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 is the maximum Lyapunov characteristic exponent (Fig.1.3.2.1).
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Fig. 1.3.2.1. Divergence of two particles in phase-space

The elapsed time for this e-folding separation is called the Lyapunov time (
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T

).

Chaos in a dynamical system does not imply that the system is disordered, but rather a deterministic dynamical system
 that behaves in an irregular manner (Malhotra et al. 2001).
It is also important to notice that chaotic behavior does not, necessarily, imply system instability and we should not confuse "chaos" with "instability" (Bois et al. 2003). 

In Poincaré mapping
 the meaning of "chaotic" is a dynamical behavior that is not quasi-periodic and it does not necessarily mean that the system will eventually disintegrate. Nevertheless, chaos can provoke instability if it induces such a change of orbital parameters that will eventually result in significant perturbations due to a close encounter with a massive planet.
Besides the Lyapunov time criterion, several analytical tools were developed to describe the chaotic behavior in planetary systems.

· The 
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law (Wisdom 1980; Duncan et al. 1989) was developed for the circular planar restricted 3-body problem and offers a criterion for the perturbed test particle to be in a chaotic orbit. The law states that a test particle with semi major axis 
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 will have a chaotic orbit, where 
[image: image244.wmf]m

 is the perturber mass 
divided by the 
total mass of 
the system (primary plus perturber) and 
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is the perturber 
semi major axis.

· Lecar et al. (1992a; 1992b) ran numerical integration of Solar-System-polynomials dynamics and provided a relation between the Lyapunov time (
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) and the event time (
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). The event time is the time it takes a small body (e.g., a main-belt asteroid) to increase its eccentricity until it crosses the orbit of a planet and probably collides with it and be removed from the system. The relation between the two quantities is given by
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where 
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is the orbital period of the main perturbing body and 
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are coefficients fitted for the particular system.

· Following Lecar et al. (1992a; 1992b) , Murray & Holman (1997) developed analytical expression to quantify the time it takes a Solar System small body to be removed from the system due to a close encounter: 
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 (1.3.2.4)                                                    where 
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The identification of specific orbits as chaotic becomes clear once observing the Poincaré surface of sections map. While the MMR orbits are represented as points along smooth closed curves called "islands", Fig.(1.3.2.2.a), chaotic orbits are represented by points that fill a whole area of the phase space, Fig.(1.3.2.2.b) . A further examination of the Poincaré map reveals that some of the chaotic orbits have a tendency to "stick" to the edges of the MMR "islands". This phenomenon demonstrates a fundamental characteristic of chaotic behavior 
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 chaotic orbits might "disguise" as regular ones for relatively long timescales. In accordance, numerical simulations showed that planets will stay near their current orbits during the whole Solar System life-time and even much more, although they follow chaotic orbits. For instance, the escape time of Uranus out of the solar system due to chaotic motion is 
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 years (Murray & Holman 1999).
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Figure. 1.3.2.2.   a) Poincaré surface of section of a 3rd. order MMR shows three smooth curves (“islands”). The number of islands is equivalent to the order of resonance.  b) Chaotic trajectories are represented as regions of dots that stick to the resonance islands

Today, there is no more doubt that chaotic behavior does exist in our Solar System. Murray & Holman (1999) confronted the analytic theories that earlier claimed that the Solar System is stable and, using numerical integrations, showed that our Solar System is almost certainly chaotic. Indeed, according to numerical integrations, planetary objects in our Solar System exhibit a chaotic behavior (e.g., Murray & Holman 1997; Laskar 1989; Laskar 1990; Quinn et al. 1991). The result of over 
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 integration of the entire Solar System indicates that the system is chaotic, with a Lyapunov timescale of 
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 (Sussman & Wisdom 1992).
Tsiganis et al. (2005) concluded that 
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 of the main belt objects follow chaotic orbits with Lyapunov times 
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but many of them are defined as being in a stable chaos, i.e., having chaotic orbits that, albeit generating significant changes in orbital parameters, do not result in close approaches among the planets, hence do not induce a significant instability.
A 3-body system in MMR can undergo large scale chaos. When in MMR, at least one resonance argument in the disturbing function is librating. If only one resonance argument librates and all the others circulate, the system is at a stable resonance but if there are more than one librating arguments they may force each other in a phenomenon known as resonance overlap which provokes chaotic motion and may destabilize the system (Laskar 1990; Mardling 2008; Murray & Dermott 1999). The extent of chaos depends on the stochasticity  parameter 
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, which is a function of the separatrix width divided by the phase space distance between resonances. For small 
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 the chaos  is small but for 
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 the region close to the MMR  zone is primarily chaotic. 

An orbit that librates one part of the time and rotates on the other must cross the separatrix and is hence chaotic. This type of dynamical behavior in which the resonance angle of a planetary system

continuously executes series of  librations and circulation cycles is also known as “nodding”.

Ketchum, Adams & Bloch (2013) , studied this type of irregular dynamics regarding exoplanetary systems which orbit in or near MMR. 

Using full numerical integrations of the planetary systems and model equations, they showed that these systems can exhibit nodding behavior which often occurs when a small body is in an external MMR with a larger planet. They conclude that this phenomenon can be important for interpreting observations of transit timing variations (TTV), where the existence of smaller bodies is inferred through their effects on larger, observed transiting planets. 

The chaotic effects on the 3-body system can be relatively slow in case of a phenomena called the chaotic diffusion. It exists in celestial systems with high-order MMRs and causes very slow but systematic changes of orbital elements. The elements, and especially the eccentricity and inclination, tend to drift systematically and, eventually, gain substantial values (e.g., Morbidelli 2001; Tiscareno & Malhotra 2009; Gozdziewski & Migaszewski 2009).
The notion that planetary particles undergo chaotic diffusion is rather new and was discovered once computers could cope with long term numerical integrations. Until the 1990's, short-term integrations regarding the evolution of small planetary objects (e.g., in the Kuiper Belt) presented either rapid instabilities or stable systems. Long term integrations (
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 timescales) pointed towards a slow evolution of proper eccentricities and/or inclinations of Solar System bodies, caused by overlapping MMRs between the small objects and one or two planets. This slow but consistent drift can eventually eject and remove the object out of its orbit (and subsequently from its MMR region) due to close encounters with massive planets. It may have removed asteroids from the main belt and from Kuiper belt and can generate planet-planet scattering in the solar and extra-solar systems.
Tiscareno & Malhotra (2009) ran a numerical integration that showed that chaotic diffusion caused by MMR overlapping, forced Kuiper Belt objects out of their MMR region in 
[image: image269.wmf]~4Gyr

. Wisdom (1987) described the chaotic nature of the gaps in the asteroids main belt and showed that the presence of a chaos in the 2/1 and 3/1 resonance zones are the reason to the anomaly of the lack of objects at the 2/1 resonance in contrast to the accumulation of objects at the 3/2 resonance (Fig.1.3.2.3). According to Wisdom (1987), the chaos generates high eccentricities (
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) that will force asteroids, orbiting near this region, to cross Mars orbit and to be ejected out of orbit and from the resonance zones, due to close encounters/collisions . This phenomena can also provide an explanation to the continuous delivery of asteroid debris from the asteroid belt to Earth. 
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Figure. 1.3.2.3.  Comparison of the actual distribution of asteroids near the 3/1 MMR with the outer boundaries of the chaotic zone. Circles denote TRIAD asteroids and Crosses denote Palomar-Leiden asteroids (Wisdom 1987).

Tsiganis et al. (2005) present possible chaotic behavior in another part of the Solar System, the Jupiter Trojans. Using the SWIFT package (Levinson & Duncan 1994) they ran numerical integrations representing dynamical changes of 
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on a specific Trojan population with chaotic orbits (using Lyapunov time in the order of 
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). Using the experimental data they showed that 
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of these Trojans exhibit unstable orbits over the Solar System age while 
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 of the Trojans undergo a stable chaotic motion  (i.e., chaotic orbits that do not provoke instability during the 
[image: image276.wmf]4.5Gyr

of the numerical run). 
Most of the studies investigated chaos and chaotic diffusion behavior of small bodies (e.g., asteroids) which could be regarded as test particles. Nevertheless, a first article regarding the chaotic diffusion of planetary orbits was presented by Laskar (1994). Later on, Laskar (2008) performed a statistical analysis over more than thousand different 
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 integrations of the secular equations
. The paper presented, for each planet in the Solar System, the probability for the eccentricity to obtain large values via chaotic diffusion. The results showed that on a 
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 timescale the four terrestrial planets might undergo a chaotic diffusive process while the outer, giant, planets do not show significant diffusion.
Chaos is most probably common in extrasolar planets as well. The ever growing operational and technological effort made in recent years in order to discover new planetary systems yields substantial information about the planets dynamical behavior. The accuracy of the data regarding orbital elements enables us, for the first time, to better investigate the coexistence of MMR and chaos in those remote systems. 

Antoniadou (2016)  utilized  numeric model of 3-body problem and oferred methology  of finding stable, nonchaotic, regions in phase space  where extra solar planets in MMR  should be hosted to gurantee long-term stability. He  apply this process to co-orbital motion and systems HD 82943, HD 73526, HD 128311, HD 60532, HD 45364 and HD 108874.

Gayon et al. (2008), using Frequency Map Analysis (FMA), Mean Exponential Growth of nearby Orbits (MEGNO
, Cincotta & Simó 2000) and the SYMBA numerical integrator (Duncan et al. 1998),  showed that the five planets orbiting around 55 Cnc represent a case of stable chaos.

 Bois et al. (2003) applied the MEGNO and FLI
 (fast Lyapunov indicator) techniques to find the conditions that ensure dynamical stability to the HD 160691 system (Figure.1.3.4).
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Figure. 1.3.2.4. Example of (a) two dimensions and (b) three dimensions stability maps for the HD 160691 extrasolar system formed with the MEGNO tool. In (a), filled and open circles indicate stable orbits while small dots, not surrounded by circles, indicate highly unstable orbits. In (b), the peaks indicate the magnitude of instability. The <Y> is the MEGNO indicator characteristic value (Bois et al. 2003).

1.4 The driven pendulum
                        [image: image280.jpg]



Figure. 1.4.1 The simple pendulum

As mentioned on chapter 1.3, the behavior of each one of the arguments,
[image: image281.wmf]j

, within the disturbance function, reveals whether the system is in a state of mean motion resonance (MMR) (hence named the “resonance arguments”). (Murray & Dermott 1999; Mardling 2008). When at least one of the resonance arguments librates with small amplitude around a specific angle we say that the system is in MMR.

The kinematics of each of the resonance arguments that constitutes the Legendre expansion of the disturbing function can be simulated by a simple pendulum forced by a periodic force.

The simple pendulum consists of a mass-less rigid rod of length 
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, attached to a frictionless pivot point, and a point mass suspended at the end of the rod (Fig.1.4.1).  The motion of that pendulum is described by equation of the form 
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where 
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 is the pendulum angular displacement from its downward equilibrium position and 
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 is the small angle frequency that equals
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.
We can explain the similarity between the pendulum motion and the resonance argument motion by deriving the equatiom of motion of the argument in the case of a the planar, circular, restricted problem,
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The second time derivative of  the resonance argument 
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 in Eq.1.4.2, assuming a negligible change in the mean-motion of the perturber, hence 
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(1.4.3)
If we neglect the small contribution of 
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where 
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and  
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therefore
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Hence, 
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which is identical to the simple pendulum equation form (i.e., Eq.1.2.1),
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When,
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         (1.4.9)
We should note that in case of odd order resonance, the stable motion of the pendulum is around 
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The pendulum obeys an energy conservation law and the energy is defined by: 
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The separatrix is the border in phase-space that separates between the two possible motions of the pendulum: the libratory motion, where the pendulum oscillates with amplitudes 
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 and the circulatory motion in which the amplitude moves unbounded.

 (Mardling 2008, Murray & Dermott 1999).

The equation that describes the separatrix in 
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 For convenience, we choose the zero energy to correspond to the separatrix. 

 Hence in our study a negative energy implies librations and a positive energy – circulations (Fig.1.4.2).
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Figure. 1.4.2 Lower diagram: Pendulum libratory and circulatory trajectories in phase-space (
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) with four corresponding energy values: Pendulum at still, lower vertical position (
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), at the separatrix (
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) and Circulation (
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). The separatrix is drawn in red lines. The points 
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are hyperbolic fixed points, unstable to small angular displacements while the origin point 
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 is a fixed-point stable to small displacements.

Upper diagram: The four potential energies on an Energy versus pendulum amplitude (
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)

If we expose the simple pendulum to a driving force, the system will cease to be energy preserving and its energy level and the motion will be influenced by the amplitude, frequency and phase of the driving force. For instance, in our 2nd research, (i.e. “Peak-to-Peak Distance Statistics of Energy Time Series in the Periodically Driven Pendulum”), we applied a periodic forcing of the form:
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where 
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 and 
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 were, respectively, the driver amplitude and frequency and 
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 is a randomly chosen phase shift.
To demonstrate the evolution of the pendulum motion as a function of its instantaneous energy level, we integrated Eq. (1.4.12) with initial conditions of 
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 under fixed, arbitrary, driver frequency, amplitude and phase shift.  As shown in Fig. (1.4.3), by changing the driver amplitude,
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, we regulated the level of mean energy in the system.
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Figure. 1.4.3.    Mean-energy (
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) vs. periodic driver amplitude (
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) for 
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For small enough amplitude, the system mean energy stays negative and the pendulum maintains its initial librating state. Upon increasing the driver amplitude, the pendulum mean energy also increases and the phase-space trajectories come closer to the separatrix. This is where the motion becomes irregular (and possibly chaotic). 

In this irregular state, occasionally the system crosses the border between the negative and positive energy levels. Hence in this interval the behavior is more complex and unstable in the sense that it is neither purely librating nor circulating but exhibits a mixed composition of both modes of motion (Fig.1.4.4). Despite the irregular behavior, this type of motion is not random but deterministic (Chirikov 1979, Hilborn 1994, Murray & Dermott 1999, Gonzalez, Reyes & Suarez 2002, Mardling 2008, Celletti 2010).
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Figure. 1.4.4. The Blue trajectory displays the chaotic, libratory-circulatory, trajectory of a driven pendulum in phase-space, (Angular velocity 
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 Vs the amplitude
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). The separatrix is drawn in red. The motion starts at 
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and occasionally crosses the separatrix borders from the libratory to the circulatory region and vice versa

The described evolution of the driven pendulum argument,
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, simulates the behavior of a librating resonance argument 
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 of a 3-body system in MMR when it is being disturbed by one or more librating resonance arguments with commensurabilities,
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 , that overlap that of
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. When an overlap exists, the energy exchange between the two binaries is carried out efficiently enough to provoke chaos of such magnitude that will break the resonance and destabilize the 3-body system. Hence existence of resonance overlap serves as a diagnostic test and criterion for strong chaos and instability expressed by the transition of the resonance angle motion from libration to circulation that indicates chaotic motion (e.g. Laskar 1990).

For that reason, the driven pendulums are commonly used as toy-model to investigate dynamic behavior and general laws of other, more complex, nonlinear chaotic systems (Butikov 2002), and in particular, celestial dynamics phenomenon such as the spin-orbit coupling (Celletti 2007) or the near resonance behavior of three-body celestial systems. The latter issue is discussed in detail in our studies.
1.5 Algebraic mapping

Since the driven pendulum, as well as the 3-body problem, is a nonlinear system, its motion cannot be solved analytically; hence, numerical methods are in use. These numerical methods are based upon “algebraic mappings” where the continuous motion is divided to time steps,
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, is mapped from the previous step,
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A rather simple, one dimensional, mapping is the “Logistic map”. This mapping was originally developed to simulate biological growth of animal population and later was recognized as an efficient tool for the study of chaos, 

[image: image338.wmf]1

(1)

nnn

xAxx

+

=-





(1.4.13)
where , for 
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 the trajectory of the logistic map is stable and periodic but for 
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 the trajectoy becomes chaotically unstable. (We will come back to the logistic map on our 2nd. study)
Another useful mapping is the “standard map” which is an algebraic mapping of the driven pendulum. Its formulation is as follows.

A Hamiltonian of this simple pendulum can be written as
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where 
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 and 
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 are, respectively, the action and angle variables.
Hence
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and
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After subjecting the simple pendulum to an oscillating perturbing force we have
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(1.4.17)
The approximation of the right part of the equation was achieved under the assumption that the cosine term is applied only at discrete intervals.

Applying the Dirac 
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function to simulate an impulse of the exerted force every 
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, we finally obtain a new Hamiltonian form,
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for which, the equation of motion are,
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and
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Integration of the above equations brings,
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and,
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Applying time steps of 
[image: image354.wmf]2

p

 for each iteration, the discrete solutions for the driven pendulum is given by the 2-dimension set
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(Hilborn 1994; Murray & Dermott 1999).

The parameter 
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 is referred to as the “perturbing parameter” and measures the nonlinearity of the system.

The standard map was already studied in many works since it was first presented by B. V. Chirikov in his famous article " A universal Instability  of Many  Dimensional Oscillator Systems" (1979).

When an external dissipative force is acting on the system the standard map takes the form of the “generalized dissipative standard map”,
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where parameter 
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 is called the “dissipative parameter” , i.e. when 
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 the system is conservative.

(Celletti.A, 2007  ).
To demonstrate the behaviour of  the standard map we will made a slight modification to Eqs. (1.4.25-1.4.26) and integrate the following equations,
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Figure (1.5.1) presents the result of the integration for 
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Figure. 1.5.1.  The evolution of 
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 moves from stable periodic motion to periods biforcations and, eventualy, to chaotic behaviour.
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 Study preface
In the current study we wanted to see if MMRs are an ever lasting phenomena  or whether MMRs configurations tend to break down during time as was suggested in several studies (e.g. Gomes et al. 2005; Thommes et al. 2008). We decided to check this ambiguity by measuring the average age of systems with MMR against the average ages of systems that lack MMR. If MMRs tend to vanish  , we would expect to see a shortage of MMRs around older stars. We  found out that only stars hosting planets in a 2/1 period commensurability were statistically significantly younger. All other PCs do not seem to show such an age relation, nevertheless these results are significant evidence to support the claim that MMRs are not eternal.
Study abstract
We present preliminary though statistically significant evidence that shows that multiplanetary systems that exhibit a 2/1 period commensurability (PC) are in general younger than multiplanetary systems without commensurabilities, or even systems with other commensurabilities. An immediate possible conclusion is that the 2/1 mean-motion resonance in planetary systems tends to be disrupted after typically a few Gyrs.
Note: for scientific introduction, please refer to chapters 1.1-1.3 of the General introduction
2.1 The sample

We first built a sample of stars hosting known multiplanet systems, using the publicly available exoplanet orbit database that Wright et al. (2011a) have put up online. In order to make our sample as homogeneous as possible, we considered only planets that were detected by radial velocities, around stars of spectral types F, G, or K. Thus, we excluded most of the known transiting planets (except those detected first through radial velocities), pulsar planets, planets detected in direct imaging, planets around M stars, and the solar system planets.
Next, we identified those systems that exhibited PCs. We included in our definition of commensurabilities integer ratios larger than 1, with a denominator less than 6, i.e., the ratios 2/1, 3/1, 3/2, 4/1, 4/3, 5/1, 5/2, 5/3, and 5/4. In order to tag two periods as commensurate, we defined a "normalized commensurability proximity" (NCP) score defined by 
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where 
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 is the actually measured period ratio and 
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Next we had to introduce an age estimate for the stars in our sample. Stellar ages are notoriously difficult to estimate. Soderblom (2010) reviewed and compared several age estimation approaches. There are two approaches that dominate the literature. The first uses the stellar activity, as estimated by the H and K lines of singly ionized calcium in the stellar spectrum. The second places a star on model isochrones on the Hertzsprung–Russell diagram. Both methods, as well as the less frequently used methods, are strongly model dependent and suffer many drawbacks and pitfalls.
For the sake of sample homogeneity, we decided to focus purely on one approach. Furthermore, Figure 8 in the paper by Soderblom (2010) shows that besides a prevailing systematic shift between isochrone ages and chromospheric activity ages, it seems that isochrone ages might lose their sensitivity for stars younger than about 2 Gyr. Thus, we decided to use in our study only chromospheric activity ages based on the calcium H and K emission lines. To avoid non-uniformities in the interpretation of observations, we extracted the chromospheric activity ages only from large surveys we found in the literature, and not from papers that presented analysis of individual stars. Our use of chromospheric activity ages is also another reason for excluding M stars from our sample, as M stars are notorious for having variable activity (Soderblom 2010).
Table 2.1 presents the resulting sample of commensurate planetary systems, including the relevant commensurability ratios and the NCP values. The table also lists the chromospheric activity ages we found in the literature and the average age we computed from these values. Table 2.2 lists the systems that did not pass our criterion for PC (
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) and their relevant ages. In both tables, we also included systems for which we did not find any chromospheric activity age in any large published survey. In total, our sample conveniently includes 15 age estimates for commensurate systems and 15 for non-commensurate systems.
Table 2.1
The Sample of Commensurate Multiplanetary Systems
	HD
	HIP
	Other Names
	Commensurabilities
	Normalized Commensurability Proximity
	Published Ages (Gyr)
	Reference
	Mean Age (Gyr)

	9826
	7513
	υ And
	5/1
	0.058
	6.31, 5.32, 6.23, 7.26
	1,2,3,4
	6.28

	10180
	7599
	... 
	4/1, 5/1, 5/2, 3/1, 3/1
	0.087, 0.022, 0.014, 0.014, 0.055
	6.46
	5
	6.46

	37124
	26381
	GJ 209
	2/1
	0.048
	3.89, 3.33, 4.72
	1,2,3
	3.98

	40307
	27887
	GJ 2046
	2/1, 5/1
	0.061, 0.052
	... 
	... 
	... 

	45364
	30579
	... 
	3/2
	0.007
	4.87
	5
	4.87

	60532
	36795
	GJ 279
	3/1
	0.000
	... 
	... 
	... 

	69830
	40693
	GJ 302
	4/1
	0.094
	4.68, 6.36, 6.43, 6.1
	1,3,4,6
	5.89

	73526
	42282
	... 
	2/1
	0.004
	5.59
	2
	5.59

	75732
	43587
	55 Cnc
	3/1
	0.010
	6.46, 5.5, 6.44, 3.43, 8.7
	1,2,3,5,6
	6.11

	82943
	47007
	... 
	2/1
	0.002
	4.07, 3.08, 5.10
	1,2,3
	4.08

	... 
	... 
	BD +20 2457
	5/3
	0.021
	... 
	... 
	... 

	90043
	50887
	24 Sex
	2/1
	0.029
	... 
	... 
	... 

	108874
	61028
	... 
	4/1
	0.063
	7.41, 7.26
	1,2
	7.33

	115617
	64924
	61 Vir
	3/1
	0.075
	6.31, 5.90, 6.62, 6.1
	1,3,4,6
	6.23

	128311
	71395
	GJ 3860
	2/1
	0.017
	0.39, 0.43
	2,4
	0.41

	155358
	83949
	... 
	5/2
	0.084
	5.32
	3
	5.32

	160691
	86796
	μ Ara
	2/1
	0.035
	6.41, 3.31, 6.5
	2,5,6
	5.41

	181433
	95467
	GJ 756.1
	5/2
	0.087
	... 
	... 
	... 

	183263
	95740
	... 
	5/1
	0.011
	8.13, 7.38
	1,3
	7.75

	200964
	104202
	... 
	4/3
	0.008
	... 
	... 
	... 

	202206
	104903
	... 
	5/1
	0.076
	2.04, 2.95
	2,7
	2.49
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References. (1) Wright et al. 2004; (2) Saffe et al. 2005; (3) Isaacson & Fischer 2010; (4) Maldonado et al. 2010; (5) Rocha-Pinto & Maciel 1998; (6) Mamajek & Hillenbrand 2008; and (7) Arriagada 2011.
Table 2.2
The Sample of Non-commensurate Multiplanetary Systems
	HD
	HIP
	Other Names
	Published Ages (Gyr)
	Reference
	Mean Age (Gyr)

	9446
	7245
	... 
	... 
	... 
	... 

	11964
	9094
	GJ 81.1A
	9.55, 9.56
	1,2
	9.55

	12661
	9683
	... 
	7.41, 7.05, 7.05
	1,2,3
	7.17

	... 
	14810
	... 
	7.77
	3
	7.77

	38529
	27253
	... 
	4.90, 5.09, 6.73
	1,2,3
	5.57

	47186
	31540
	... 
	2.72, 8.13
	5,7
	5.43

	74156
	42723
	... 
	7.24, 7.38, 7.54
	1,2,3
	7.39

	... 
	40967
	BD -08 2823
	... 
	... 
	... 

	95128
	53721
	47 UMa, GJ 407
	6.03, 6.03, 6.10, 4.93, 4.4
	1,2,3,4,6
	5.50

	125612
	70123
	... 
	4.23
	3
	4.23

	134987
	74500
	23 Lib, GJ 579.4
	7.76, 7.32, 8.12
	1,2,3
	7.73

	147018
	80250
	... 
	3.16
	7
	3.16

	168443
	89844
	GJ 4052
	8.51, 5.90, 8.19
	1,2,3
	7.53

	169830
	90485
	... 
	7.24, 4.95
	1,2
	6.09

	187123
	97336
	... 
	6.31, 5.33, 6.59
	1,2,3
	6.08

	190360
	98767
	GJ 777A
	7.76, 7.09, 8.6
	1,2,6
	7.82

	215497
	112441
	... 
	... 
	... 
	... 

	217107
	113421
	... 
	7.41, 7.32, 8.19
	1,2,3
	7.64


Note. For references, see Table 1.
2.2 Statistical tests

The mean chromospheric activity age of the commensurate systems in our sample is 5.213 Gyr, while that of the non-commensurate systems is 6.577 Gyr. This difference of 1.36 Gyr hints that resonant systems tend to be younger on average. In order to test this hypothesis, we adopted the most simple approach of the permutation test (Good 1994). Thus, we repeatedly drew a random assignment of the ages to the two samples, effectively ruining any correlation that may exist between age and commensurability. For each such random assignment we recalculated the mean age difference. We used 106 random assignments, among which 20,650 yielded an age difference larger than 1.36 Gyr. This implies a statistical significance of p = 0.021.
The main advantage of the permutation test approach is in avoiding the need to assume any special assumptions about the distribution of the samples. However, one may still argue that using the mean values is prone to strong influence by the extreme values in each sample. An alternative is to use the median instead, which is more robust to extreme values. The median age of the resonant systems is 5.59 Gyr and that of the non-resonant systems is 7.17 Gyr, with a difference of 1.58 Gyr. We repeated the permutation test, this time obtaining 17,178 out of 106 values larger than the actual value. Thus, the permutation test for the medians leads to a somewhat more significant result, with a significance of p = 0.017.
The results we have presented above are only marginally significant. They do seem to point to a tendency of the commensurate systems to be younger than the non-commensurate ones, but their statistical significance is not that high. Further examination of the sample shows that the tendency we see may be attributed only to the 2/1 PC systems. Close examination of Table 1 hints that the subset of the 2/1 PC systems (HD 37124, HD 73526, HD 82943, HD 128311, and μ Ara) seem to possess lower ages. The additional two 2/1 PC systems HD 40307 and 24 Sex do not have an age estimate and thus do not contribute to the statistical significance. Since the number of 2/1 PC systems is much smaller than the total number of PC systems, it is not immediately obvious that this result is statistically significant. We repeated the tests we performed earlier, this time dividing the sample into 2/1 PC systems, and all the rest. This new division clearly enhances the statistical significance: the "difference in means" test now yields p = 0.007 (6745 out of 106) and the "difference in medians" test gives p = 0.004 (4178 out of 106). The actual age difference is 2.40 Gyr for the difference of the means and 2.15 Gyr for the difference of the medians.
Further tests we have performed showed that the rest of the commensurate systems did not exhibit any significant age difference compared to the non-commensurate systems.
2.3 Conclusion

The results we presented in this study support the claim that the phenomenon of MMR, which manifests itself as PC, is not generally ever lasting. The actual numbers we obtained suggest that a typical life expectancy of a 2/1 MMR is around 4 Gyr. For the other families of resonances we cannot assert at this stage any statistically significant claim, probably because no other category is as populated yet as the 2/1 category.
The above conclusion is extremely simplistic. It does not take into account the details of the orbits involved in the resonance, such as mass ratios or eccentricities. It is also prone to large and significant uncertainties, which are known to plague stellar age estimates. However, the scarcity of the current data set does not allow for a more detailed and refined analysis.
Our results suggest that the 2/1 resonance stands out among all the resonances. This may very well be the case, as Pierens & Nelson (2008) have claimed. It might be that the orbital evolutionary history of the 2/1 resonance is unique and different from that of all the other resonances. In fact, Pierens & Nelson (2008) also singled out the 3/2 resonance as another preferred outcome of the resonance trapping scenario. Our analysis may support this, as the only 3/2 PC system in the sample (HD 45364) is indeed younger than average (4.87 Gyr). Since there is currently only one system in this category, we chose not to include this claim in our tests, even though it would have surely improved the statistical significance.
In order to explain the scarcity of 2/1 PC among the older systems, one needs to invoke some mechanism to disrupt them. Thus, our results agree with the claim by Thommes et al. (2008) that breakup (maybe violent) of resonantly locked planets is a common evolutionary step of planetary systems. The fact that non-2/1 resonances seem to survive may hint that their formation is an outcome of a much later stage in the evolution of planetary systems. In order to test this possibility, it is essential to perform much more long-term dynamical studies of resonant systems, lasting a few Gyrs and more.
In order to further explore the issue of survivability of MMRs, we need also to refine our knowledge of multiplanetary systems. Specifically, we should compile a more comprehensive data set of stellar ages for the multiplanetary systems. Hopefully, with the advent of the recent planet finding missions, such data will become more abundant.
The results we presented in this study are only a preliminary attempt to test whether the issue of survival of MMRs is worth exploring with the tools of stellar age estimates. Apparently, the existing data partly corroborate the hypothesis we presented in Section 1, and the 2/1 PC indeed tends to be found in younger systems. This may very well be another window into the understanding of planetary orbital evolution.
This research was supported by the Israel Science Foundation—The Adler Foundation for Space Research (grant no. 119/07). This research has made use of the Exoplanet Orbit Database and the Exoplanet Data Explorer at http://exoplanets.org.
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Study Preface
We are following our 1st. study with the intention to better understand the impact of chaos upon the stability of MMRs in planetary systems. Hence we decided to explore, statistically,  the evolution of energy in the driven pendulum, while moving from stability to chos, and find possible typical patterns that will be useful while exploring  the behavior of the 3- bodies system.
Study abstract
We studied the statistics of the peak-to-peak (PTP) and trough-to-trough (TTT) distance of energy time series of the periodically driven pendulum during its irregular and chaotic motion near the separatrix.
By controlling the driving force parameters (i.e. amplitude, frequency and phase) we forced the pendulum trajectories to move near and, occasionally, cross the separatrix, moving chaotically between libration and circulation modes of motion. We recorded the pendulum energy level whenever the driving force completed a full cycle. We measured the distances between every two energy peaks and every two energy troughs, thus constituting a time series of distances.

We show there is a significant difference between the standard deviation of the PTP and that of the TTT, i.e., their distributions are different. We further show that there is a typical dependence of the mean PTP and TTT on the mean-energy levels. 

We found that near the separatrix the mean PTP and TTT reach a minimum of 
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»

. This value has been shown to characterize independently and identically distributed (i.i.d.) random time series and as well the logistic map chaotic time-series. 
3.1 Study Introduction
Note: for additional scientific introduction, please refer to chapters 1.1-1.5 of the General introduction
3.1.1 Statistics of the Peak-to-Peak distance
The peak-to-peak distance is a statistical method to find patterns in data sets by investigating the distribution of distances between following peaks in the data. For instance, a study of  fox and wolf  populations in canada along the years revealed  that the mean distance between ajacent peaks of population ranges between 3 and 4 years (Newman 2012; Cole 1951).
Newman et al. (2012) have studied the peak-to-peak (PTP) distance statistic for several empirical long time-series datasets. Specifically, they have proved that the mean PTP, 
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, in the case of a sequence of  identically independently distributed (i.i.d.) random variables is 
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 (Fig.3.1.1.1). They have also provided the distribution of the PTP distance, m: 






[image: image392.wmf]32(1)

()

(1)!(3)

m

m

fm

mm

×-

=

++




(3.1.1.1)

for integer
[image: image393.wmf]2

m

³

.

[image: image394.jpg]Series of random numbers

2

Position





Figure. 3.1.1.1  Peak-to-peak distance for a series of 20 i.i.d random variables. The numberes attached to the horizontel arrows depict the distances between ajacent peaks (Red dots).


Besides the case of an i.i.d. sequence., Newman et al. (2012) and Newman (2014)  also studied the influence of correlation in the time series, by comparing the i.i.d. PTP statistics to that of a time series generated by a recursion analog of the Langevin equation,  
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where 
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 is an  i.i.d. random variable and 
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 represents the degree of memory or correlation.  Newman et al. (2012) and Newman (2014) demonstrated the strong  dependence of the mean PTP on the memory-related term 
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 and showed that between 
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, corresponding to the Brownian motion case, there is an approximately linear rise from  
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Following up on those results, Newman (2012) studied the PTP statistics in the case of the logistic map (Eq.1.4.13) in its chaotic configuration (
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), and showed that it has the same mean PTP as the i.i.d. sequence  (i.e., 
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) but has a completely different distribution:
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(3.1.1.3)

Since there are as many minima as maxima, the mean PTP distance must equal the mean trough-to-trough (TTT) distance. Newman (2012) also suggested that the distribution of the PTP and the TTT in the case of the logistic map at its chaotic state, should also be equal. 



Following those previous studies, we set out to study the PTP and TTT statistics in the case of the driven pendulum problem focusing on parameter regime known to invoke an irregular behavior.

3.2 The forced pendulum

Here we study a periodically forced pendulum of the form described by Eq.(1.4.1),
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where 
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 and 
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 are, respectively, the driver amplitude and frequency and 
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 is a phase shift.

Throughout this study, we integrate Eq. (1.4.1) with initial conditions of 
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 under fixed, arbitrary, driver frequency, amplitude and phase shift.  By changing the driver amplitude we regulate the level of mean energy in the system. For small enough amplitude the system mean energy stays negative and the pendulum maintains its initial librating state. Upon increasing the driver amplitude, the pendulum mean energy also increases and the phase-space trajectories start moving in the vicinity of the separatrix. This is where the motion becomes irregular (and possibly chaotic), unless the system is periodic or quasi-periodic
. In this irregular state, occasionally the system crosses the border between the negative and positive energy levels. Hence in this interval the behavior is more complex and unstable in the sense that it is neither purely librating nor circulating, but exhibits a mixed composition of both modes of motion. As we mentioned earlier, the periodically driven pendulum often simulates the behavior of the 3-body problem. Hence this type  of dynamical behavior, also referred to as “nodding”, may be prominent among extra-solar planet pairs with near MMR. There, the  resonance angle of the planet pairs will execute several libration cycles followed by a series of circulations and then perform a new set of libration cycles. (Ketchum, Adams & Bloch 2013   ) Despite the irregular behavior, this type of motion is not random but deterministic (Chirikov 1979; Hilborn 1994; Murray & Dermott 1999,  Gonzales; Reyes & Suarez 2002; Mardling 2008; Celleti 2010).

3.3 Energy time-series
The angular displacement of the pendulum is a cyclic variable. As such, there is no meaning to local maxima and minima, and therefore to PTP and TTT statistics. Instead, we chose to focus on the instantaneous energy of the pendulum. We used the same definition of energy as the one used in the case of the simple pendulum, comprising the potential and kinetic energy – Eq. (1.4.10),
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To generate these time series, we ran several numerical integrations of the periodically driven pendulum while monitoring the system angular displacement and velocity. 
For each run we used a Poincaré section of the continuous trajectory by sampling 
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 and 
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  after every cycle of the driving force, and calculating the corresponding energy using  Eq. (1.4.10).   Each run comprised 
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 cycles of the driving force and the outcome was a time series of energy values 
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             (3.3.1)

We decided to limit our study to an interval of mean-energy levels that are relatively close to the separatrix. This ensured that we would witness a mixed libration-circulation behavior. We found that an interval of  
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 was adequate for this purpose.

We aimed at studying the PTP and TTT distribution and its dependence on the mean energy, close to the irregular and chaotic behavior zone. Therefore, for each run we randomly chose the driving force amplitude, thus covering a range of mean energy levels. We also chose at random the driving force phase shift, while keeping the driver frequency at a fixed value. In order to remain in near-separatrix trajectories, we followed Mardling (2008) and chose the driver frequencies to be 
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, slightly smaller than the small angle frequency. For simplicity we chose  
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Regarding the amplitude of the driving force, we found out that in order to stay in the desired mean-energy interval 
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, given the selected driving force frequencies,  the amplitudes had to be limited to 
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. Fig.(3.3.1) demonstrates the dependence of the mean energy on the amplitude, for 
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We chose the driving force phase shift randomly from the interval 
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. In total, we performed 100 runs for each of the three fixed driving-force frequencies. Regarding the initial conditions of the pendulum, we learned that changes in initial values of the angular displacement (
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) and velocity (
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) had no long-run effect on our statistics, hence for simplicity we started all integrations with 
[image: image429.wmf]0;0

ff

==

&

.
Altogether we generated 100 runs for each of the three driver frequencies (i.e. 0.90, 0.95 and 0.99), every run lasted 
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 driving-force cycles and was characterized by the randomly selected driving-force amplitude and phase shift. We excluded those very few exceptional runs that fell outside the desired mean-energy interval 
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Figure.  3.3.1    Mean-energy (
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) vs. Driver amplitude (
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) for 
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3.4 Results
3.4.1 Peak-to-Peak versus Trough-to-Trough statistics
The mean values of the PTP and TTT are known to be equal whatever their distributions are, simply because peaks and troughs are almost always alternating. We therefore compared their standard deviations, and indeed found a noticeable difference, as is evident in figures 3.4.1.1 – 3.4.1.4. For all three frequencies the standard deviations of the TTT tended to be higher than those of the PTP. 
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 Figure. 3.4.1.1  Standard deviations of TTT against PTP series for 
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Figure. 3.4.1.2   Standard deviations of TTT against PTP series for 
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                 Figure. 3.4.1.3   Standard deviations of TTT against PTP series for 
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3.4.2  The dependence of PTP on mean-energy

Since the mean PTP always equals the corresponding mean TTT we will refer, from now on, to both terms as mean PTP or 
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. Our integrations reveal similar dependence of mean PTP on mean energy for all three driver frequencies. As the pendulum mean energy increases from the negative values toward zero (i.e., the separatrix) the mean values of the PTP decrease, and reach a minimum approximately at the separatrix. At higher mean-energy values they increase again. This behavior repeats for all the driver frequencies we examined, as can be seen in figures 3.4.2.1,  3.4.2.2 and 3.4.2.3 for driver frequency of 
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Figure. 3.4.2.1   The mean PTP distance (
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Figure. 3.4.2.2   The mean PTP distance (
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Figure.  3.4.2.3  The mean PTP distance (
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We attempted to fit the curves with a rational function that could exhibit this qualitative behavior: 
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Figures 3.4.2.4, 3.4.2.5 and 3.4.2.6 show the best fit curves for the three driver frequencies. Table 3.4.2.1 lists, for each frequency, the corresponding coefficients for Eq. (3.4.2.1), the RMS fit residuals and the location of the minimum according to the fit.

Table 3.4.2.1.  Eq. (3.4.2.1) coefficients, RMS and minima for the three driver frequencies
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Figure.  3..4.2.4  Best fit curve (solid line) for the mean PTP distance (
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Figure. 3.4.2.5  Best fit curve (solid line) for the mean PTP  (
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Figure. 3.4.2.6  Best fit curve (solid line) for the mean PTP  (
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The three data sets seem to be similar enough to assume that the dependence of the mean PTP on the mean energy is common to all driver frequencies. We therefore merged the three datasets and fit a common function:
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With RMS=0.2989. This RMS value is close enough to the RMS value of each of the three frequency related curves (Table 3.4.2.1), which seems to agree with our assumption that the three datasets can be described by a single curve.

The most important feature of the resulting function is that the minimum is obtained close to the separatrix at
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 (Figure 3.4.2.7). From past studies (Newman et al. 2012, Newman 2012) we know that both i.i.d time series and the logistic map chaotic series  also present mean peak-to-peak distances of 3.00.
Obviously, we should note that Eq. (3.4.2.2 ) is valid only on the range of mean-energy values where data is available. i.e., between energy values of -0.5 and 1.5. For smaller values, the time series becomes constant and no peaks can be defined. On the other hand, some tests we ran show that this equation is still reasonably accurate for mean energies as high as 7.
. 
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Figure.  3.4.2.7  Best fit curve (solid line) for the mean PTP  (
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3.4.3 The PTP standard deviations
As an important part of our attempt to characterize the PTP and TTT distribution we also examined the standard deviations of the resulting distributions. Figures 3.4.3.1-3.4.3.6 present the dependence of the PTP and TTT standard deviation as a function of their means  for the three driver frequencies (
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Figure. 3.4.3.1  Standard deviations of PTP against mean PTP  (
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Figure. 3.4.3.2   Standard deviations of TTT against mean TTT (
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      Figure. 3.4.3.3   Standard deviations of PTP against mean PTP  (
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Figure. 3.4.3.4    Standard deviations of TTT against mean TTT (
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     Figure. 3.4.3.5    Standard deviations of PTP against mean PTP  (
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Figure. 3.4.3.6  Standard deviations of TTT against mean TTT (
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)  for 
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We fitted the scattered data in those figures with a linear function and focused on the irregular zone (i.e., 
[image: image528.wmf],3.0

PTPTTT

»
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In comparison, the equivalent PTP standard deviation for an i.i.d sequence is 
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[image: image532.wmf]1

a

=

),
[image: image533.wmf]1.9742

Brownian

s

»

, and for the chaotic state of the Logistic map , 
[image: image534.wmf]1.4140

Logistic

s

»

.

3.5 Summary and conclusions
Following Newman et al. (2012, 2014) and Newman (2012) we studied the distribution of the PTP and TTT of energy time series generated by the periodically driven pendulum during its irregular motion near the separatrix. 

An important point in this study was the realization that the obvious quantity to study, i.e., the pendulum displacement, was not suitable for analysis using the PTP and TTT, due to its cyclical nature. For this purpose the energy was more adequate and convenient. As far as we know, this study is the first attempt to examine the PTP and TTT statistics in a continuous function. We chose to use the Poincaré section approach for the purpose of discretization. An additional interesting line of research would be to generalize the PTP and TTT statistics in a more natural and seamless way to the continuous domain in a way that would not require discretization.
One obvious result of our study is the asymmetry between the PTP and TTT statistics, as is manifested in the different standard deviations. This is understandable as there is a lower bound for the energy, but no upper bound, and therefore it is only natural that statistics related to peaks will be different from statistics related to troughs, as is indeed the case.
We have demonstrated that there is typical pattern of dependence of the 
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) on the mean-energy levels. In general, the nearer we are to a specific mean-energy interval near the separatrix (roughly 
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 values. Specifically, our best-fit model locates the minimum at 
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. This mean PTP value bears strong similarity with both the i.i.d. and the chaotic logistic map time series. This behavior provides another aspect to the chaotic nature of the forced pendulum near the separatrix (e.g. Mardling 2008). 

This first application of the PTP and TTT statistics on the solution of a non-linear differential equation can be elaborated on in many ways. Thus, one can achieve the discretization in other ways than the Poincaré section method, e.g., measuring the intervals between the continuous peaks or troughs, or zero-crossings. Of course, other non-linear differential equations can serve as the study subject. The driven pendulum itself can provide other interesting cases, such as different models for the driving force, or the addition of damping. Of course, generalizing this statistics to celestial mechanics phenomena, namely N-body chaotic systems and planetary systems in resonance, can be very illustrative. 

4 The 3rd study-From stability to chaos, a study of energy evolution in a driven pendulum with association to the 3-body problem 
Study Preface
Following our previous studies, we are shedding some more light on the phenomena of mean motion resonance (MMR) in the 3-body problem and to carefully draw possible conclusions on its impact on celestial systems. Our first study showed that MMR is, statistically, more prevalent among young celestial system. This evidence led us to formulate and to further investigate the possibility that resonances, in planetary systems, tend to diminish as time goes by. Hence on our second study we used a toy model of the 3-body system, the periodically driven pendulum, and learned the characteristic of its unstable, chaotic motion by statistically exploring its energy time series. In our current, third, study, we further explored  energy time sries of  the driven pendulum. The results we got  may provide further understanding  regarding the ambiguity of strength versus fragility of  MMRs in celestial systems. The contribution of the current study to our  general thesis research is that  this theoretical study significantly support our assumption that MMRs are not, neceseraly, an ever lasting phenomena and thiere  tendcy  to vanish as time goes by depends primarily upon the physical and dynamic structure of the systems themselves, rather than upon cataclysmic events originated outside the system, Deus ex machina.
Study abstract
We used the driven pendulum as a toy model to the 3-body problem and  studied its evoloution of motion, from stability to chaos. We have used these results to better understand the probability and rate of transition from stable mean-motion-resonance (MMR) to unstable, chaotic, motion, in the 3-body problem. The main question that intrigued us was- if and when does the MMR surrender to growing perturbation and ceases to exist. For that, we studied the typical times on which a driven pendulum, initially at its lowest energy state hence stable motion, crosses  for the first time several energy levels. Those energy thresholds were chosen from within the energy zone in which the pendulum motion is significantly chaotic hence unstable. In our model, an unstable motion of the pendulum is analogous to an unstable mtion of the resonance argument of the 3-body problem which indicates that the system is out of resonance.
To achieve a better similarity to the gravitational perturbation in the 3-body problem, we formulated a parametric driving force with mathematical resemblance to the disturbing function of the 3-body problem when written in high order Legendre-polynomials expansion.

We made thousands of tests, for various parameters of the driving force; on every test we recorded the series of times on which the instantaneous pendulum energy crossed each of the energy thresholds.
We show that, for a wide range of driver parameters, the time-to-energy series for each threshold are exponentially distributed. Hence the events on which the system becomes unstable occur randomly but on a constant rate. In addition we found that the relation between meant time of events 
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 and the driver amplitude factor 
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, that is equivalent to the level of perturbation in the system, obeys a power low function, 
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These results indicate that for each energy threshold there is specific driving force amplitude
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, under which the pendulum will never cross the threshold and will never lose its original stable state. For higher driver amplitudes, the probability to attain specific energy threshold, within any time interval, is greater than zero and, as said, obeys an exponential probability density function. Hence, when 
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 and given enough time, the pendulum system will eventually become unstable. 

Trying to make a deduction from our findings regarding the driven pendulum, we suggest that a similar time-to-energy dependence also exists in planetary systems. Hence for every 3-body system, there is a perturbation threshold that depends upon the masses and longitudes of the rotating bodies, under which the system will stay forever in a stable MMR. For higher perturbations, a system, initially in a MMR configuration, will lose its resonance state after finite time.
Note: for scientific introduction, please refer to chapters 1.1-1.4 of the General introduction
4.1 Methodology
Unlike other studies, in our current research, and since the survivability of the MMR is our main concern, we use different approaches regarding the terms stability and instability.

Firstly, we explore  the stability of the MMR rather then the stability of the system hence our criterion for unstable system is not when one body escapes to infinity (e.g. Mardling 2008)  but rather when the system is getting permanantly out of its previously stable MMR state. We should note that it is probable that such an event may, eventually, cause the physical destruction of the systen as well.
Secondly, because of their supposedly small effect on the evolution of the system, and in order to reduce computing time, researchers usually tend to neglect terms, in the expansion of the disturbing function, that are characterized by low order in amplitude (i.e. small strength) and by high frequency of the resonance argument. Nevertheless, since the nature of motion of the problem is chaotic, hence very sensitive to initial conditions, and in fact, unpredicted in the long run, we ask the question whether the effects of the infinite short-period, small-amplitude perturbation can accumulate and add up sufficiently to distort the celestial trajectories and break the system resonance. 
Our main research question on the thesis and on this study, was to figure out the probability that at a specific time, a 3-body system, initially in stable state of MMR, will become chaotically unstable in the sense of becoming non-resonating. To reduce time and computation resources we utilize the toy-model that imitates the behavior of the resonance argument in the 3-body problem, the driven pendulum.
As a criterion to the disruption of the stable MMR state, we chose the instantaneous pendulum energy. 

It is but obvious that for every system there is a specific “destructive energy level” under which the MMR will be disrupted. The level of energy is a function of the configuration, dynamics and physical properties of the system; hence we should analyze the probability and the timing to attain and cross any possible energy in a region that hosts both stable and chaotic motions. To follow our goals, we had to improve our model, the pendulum and to find an efficient experimental method to cope with the probability and timing issues. 
4.1.1 Formulating the driving force
In our research, we formulated a driving force that simulates a simplified type of the Legendre expansion of the disturbing function. For simplification purpose, we chose the case of the planar, circular, restricted problem. As said in chapter 1.1, researchers (e.g. Laskar 1990; Murray & Dermott 1999; Deck et al. 2013; Ramos et al. 2015) tend to simplify the 3-body problem by neglecting the terms that have short period arguments and/or low amplitudes hence consider only the “dominant terms”. These terms are also the low order terms in the Legendre expansion. Nevertheless, we thought that, after considerable time, the accumulation of minor perturbations may result in significant change of the orbital elements, especially while we operate the system in energy domains that are significantly chaotic.
Hence, we expanded the driving force series to high order and investigated, numerically, its perturbation impact upon the pendulum that was, initially, at rest or librating with low amplitude. These modes of motion simulate the resonance argument of a 3-body system in exact and near MMR state.
As described in chapter 1.4, to destabilize an initially stable, oscillatory, motion of a pendulum it must cross a specific, positive, energy threshold, above the separatrix hence in the chaotic zone. Operating in this energy level or above it, the pendulum cannot maintain its initial state of pure librations hence the stable resonance-like state is destructed. We named this energy “destructive energy”, (
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). In our study, we arbitrary chose six destructive energy values that served us as thresholds. We than sampled and analyzed the typical times needed to cross these energies to find a possible correlation between the amplitude of the driving force and the time it takes the pendulum to reach a specific, destructive, energy level hence to leave the stable motion and, in the 3-body analogy, to leave the MMR state.
We chose the simplified form of the disturbing function for the planar, circular, restricted 3-body problem, written in the Legendre-polynomials expansion, as in Eq. (1.1.51), 

 i.e., 
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We then formulated the driving force,
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 that resembles the above equation,
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(4.1.1.1)

where,
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, is the amplitude factor with which we control the average level of the pendulum energy. 
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 For simplicity, we chose 
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 and multiplied it by the irrational number
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 is the integration time-step determined by the pendulum natural frequency,
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 is a series of elements on which, for a fixed value of the amplitude
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4.1.2 Running the tests

We ran 3 separate tests. Each one characterized with a different value of
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On each test, we integrate the system with initial conditions of 
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 hence with the lowest possible energy level (i.e.
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). By augmenting the value of 
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 we increase the whole amplitude of the driving force, 
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 and the pendulum gains energy and start moving from complete rest to oscillate with small amplitude. This state is analogous to a libration of one resonance argument in the 3-body problem hence a stable MMR. Increasing the driver amplitude, the pendulum energy moves out of the negative region of stable libratory motion into the positive energy region, above the separatrix. On this level of energy, the motion becomes chaotically unstable in a sense that it shifts continuously and unpredictably between libration and circulation cycles. This state is analogous to a resonance overlap in the 3-body problem. As the pendulum gains more and more energy, the circulation to libration ratio becomes higher hence the system becomes less and less stable. Examples of the chaotic evolution of the pendulum amplitude and energy level are shown Figures 4.1.2.1 & 4.1.2.2.
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Figure. 4.1.2.1 The driven pendulum momentary energy shifts chaotically between negative (circulation) and positive (libration) levels. The driver parameters:
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Figure. 4.1.2.2 The driven pendulum amplitude moves chaotically during in a disordered libration-circulation motion. Its amplitude shifts unsystematically between the lower position (
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Theoretically, if we go on increasing the pendulum energy well above the separatrix, eventually it will attain a specific level, where the system libration cycles are so scarce that we can say that, in practice, the motion is circular. For a 3-body system, this type of motion means that the system is out of MMR. For our statistics, we chose six positive energy thresholds, all above the separatrix, that will serve as the destructive energies: 
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Though arbitrary, the thresholds had to be higher than the “noisy” level caused by the periodical nature of the driving force that gives a “kick” to the pendulum energy on each driver cycle. In contrast, we wanted our energy thresholds to be sufficiently low to be crossed by the pendulum energy in reasonable computing time.   
To monitor the pendulum instantaneous energy levels and determine the first time that the pendulum crossed each energy threshold, we integrated the equation of motion, Eq. (1.4.1) and used the numeric solutions of 
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  to calculate the instantaneous energy via Eq. (1.4.10).

In total, for each of the 3 values of 
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(0.90, 0.95, 0.99), we made 7-8 integrations, each one with different value of
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 were selected within the range
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. This range was chosen to guarantee that on each integration, all the six energy thresholds are crossed by the pendulum. We repeatedly ran each integration 1,000 times; each run took 25,000 time steps.
4.2 Results
4.2.1 Time series distribution

Due to the random nature of the phase 
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  each of the integrations, per specific values of 
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 . Out of thousands of integrations we chose four examples of energy crossing events:
Fig.4.2.1.1 and 4.2.1.2 present two separate integrations with driver parameters values of 
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Figure. 4.2.1.1 Pendulum energy evolution for driver parameters
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Figure. 4.2.1.2 Pendulum energy evolution for driver parameters
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Figure. 4.2.1.3 Pendulum energy evolution for driver parameters
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Figure. 4.2.1.4 Pendulum energy evolution for driver parameters

 

[image: image614.wmf]2.50

A

=

, 
[image: image615.wmf]0.90

e

=

, 2nd. integration

The red dots present the energy crossing events 
[image: image616.wmf]1

DE

 to 
[image: image617.wmf]6

DE


Each time in the time series corresponds to the first time that the instantaneous energy of the pendulum crossed one of the destructive energies under specific value of the amplitude factor
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. Hence the total of 1,000 runs yielded a sample of 1,000 crossing times for each destructive energy, 
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, is shown on Figures 4.2.1.5-4.2.1.10. 
Each sample is divided into 20 bins histograms where the y-axis represents the frequency and the x-axis represents the first time on which the specific threshold 
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 was crossed under those driving force parameters.
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 Figure. 4.2.1.5 Time series distribution for
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Figure. 4.2.1.6 Time series distribution for
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Figure. 4.2.1.7 Time series distribution for
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Figure. 4.2.1.8 Time series distribution for
[image: image637.wmf]4

4.0

DE

=

,
[image: image638.wmf]2.0

A

=

,
[image: image639.wmf]0.99

e

=


[image: image640.jpg]800

700

600

500

400

300

200

100

frsttime crossing energy #5=4.5

700





Figure. 4.2.1.9 Time series distribution for
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Figure. 4.2.1.10 Time series distribution for
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We found that the distribution of the time series, 
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Where 
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is the mean of the time series which can also be considered as “mean time of events” 
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 and 
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 is the constant event rate.

In our case, “event” is the instant on which an energy threshold was crossed and the pendulum motion became unstable.
In the pendulum case, there is a minimum time 
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 which takes the pendulum to reach, for the first time, the energy threshold, hence for all
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Therefore, we should make a necessary correction to the PDF in Eq. (4.2.1.1),
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(4.2.1.4)

Using the maximum likelihood method, we found that the value of 
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 should be equal to the smallest member in the energy time series hence, 
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Hence the corrected mean time of events is,
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and the corrected event rate,
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4.2.2 Mean time of events 
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 Vs. driver amplitude parameter 
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In order to describe the relation between the level of perturbation in the system and the average time to instability, we calculated, for each sample of the energy crossing times, the value of the corrected mean time 
[image: image663.wmf]t

)

 (Eq.4.2.1.6). We then ploted the different values of 
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A plot was depicted for each of the values 
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We found that our results are best fitted with a curve of the following power function,
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The various best fit curves are shown on figures Figures 4.2.2.1-4.2.2.18 where the data appears in Blue bullets and the fitted  curve is the red, continuous  line.
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Figure. 4.2.2.1 Mean time of events 
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Figure. 4.2.2.2 Mean time of events
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Figure. 4.2.2.3 Mean time of events 
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The data presented by blue circles and the best fit curve by continuous red line
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Figure. 4.2.2.4 Mean time of events 
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Figure. 4.2.2.5 Mean time of events 
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Figure. 4.2.2.6 Mean time of events 
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Figure. 4.2.2.7 Mean time of events 
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Figure. 4.2.2.8 Mean time of events 
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Figure. 4.2.2.9 Mean time of events 
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Figure. 4.2.2.10 Mean time of events
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Figure. 4.2.2.11 Mean time of events 
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Figure. 4.2.2.12  Mean time of events 
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Figure. 4.2.2.13 Mean time of events 
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Figure. 4.3.2.14 Mean time of events
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Figure. 4.2.2.15  Mean time of events 
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Figure. 4.2.2.16 Mean time of events 
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Figure. 4.2.2.17 Mean time of events  
[image: image755.wmf]t

)

 vs. driver amplitude factor 
[image: image756.wmf]A

 for
[image: image757.wmf]5

4.5

DE

=

,
[image: image758.wmf]0.99

e

=

.
The data presented by blue circles and the best fit curve by continuous red line

[image: image759.jpg]mean time of events Tau

0

x5

Eil

15

10

Tau for energy 5.0, Epsilon 0.99, Vs driver amplitude parameter A+best fit

18 2 22 24 26 28 3 32 34 36
driver armplitude parameter A




Figure. 4.2.2.18 Mean time of events 
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Tables 4.2.2.1-4.2.2.3  present the coefficients of Eq. 4.2.2.1 for each value of the parameter 
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Table. 4.2.2.2 The coefficients of Eq.4. 3.2.1 for
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Table.  4. 2.2.3 The coefficients of Eq.4. 3.2.1 for
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4.3 Summary, discussion and conclusions
In the current study, we followed our previous works regarding the strength and long-term evolution of mean-motion resonance in 3-body systems. Here, we studied the typical times needed to destabilize the motion of a driven pendulum, initially in stable state of low amplitude libration. This model is a “refined” analogue, to a 3-body system, initially in stable MMR, that we gradually increasing its mutual gravitational perturbations and generating significant chaotic motion until its internal resonance is destroyed. Our goal was to figure out the probability that at any given time the stable motion of the pendulum will become significantly chaotic hence unstable. Based on these results we aimed to draw possible conclusions regarding survivability of mean-motion-resonances in the 3-body system.
For the pendulum driving force we formulated a unique force, Eq. (4.1.1.1), that is the sum of infinite time series and is mathematically similar to the Legendre-polynomials expansion of the 3-body problem disturbing function, Eq. (1.1.51).
The distinction of an initial MMR state of motion depends, primarily, on the degree of perturbation inflicted on each of the three bodies by its two neighbors. In the 3-body problem the perturbation is a result of the energy transferred between the three bodies. In the pendulum, the perturbation is caused by the energy transferred to the pendulum by the driving force.  As we showed on our 2nd. Study (“Peak-to-Peak Distance Statistics of Energy Time Series in the Periodically Driven Pendulum”), when the transferred energy reaches a critical value, the perturbed pendulum cannot maintain its initially stable motion. Hence, we proposed the system instantaneous energy as criterion to distinguish between the stable state (i.e. stable resonance in the 3-body case and low amplitude libration in the pendulum case) and the unstable state (i.e. non-resonating state of the 3-body system and chaotic libration-circulation motion of the pendulum). Whenever an event of crossing the “destructive energy” level occurs, we can conclude that the pendulum motion or, in analogue, the 3-body system, lost its stable motion for good. This event may even have cataclysmic results upon the celestial 3-body system such as an ejection of one of the minor bodies to infinity or a collision of masses.  
Many studies tend to simplify the 3-body problem by neglecting short periods and/or small amplitude terms that allegedly have only marginal affect on the long-run of the system. We chose to consider and include the “minor” terms as well. Our simple logic led us to believe that their cumulative perturbation, amplified by the chaotic nature of the system, may eventually induce significant changes upon the orbital elements and break the stable motion. Therefore, in our pendulum system, we deliberately expanded the driving force series to its 20th Order. By regulating the driving force amplitude factor 
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, we gradually increased the pendulum averaged energy level until the desired energy has been crossed. Although we made sure that, under the specific parameters, the driving force is strong enough to force the pendulum to the energy threshold, the chaotic nature of the pendulum motion made it impossible to estimate when this threshold will be attained. We made 1,000 recurring numeric runs for several values of the factor 
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These time series are exponentially distributed, each series with its unique average rate of events,
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. In our study, an “event” defines the crossing of one of the destructive energies hence a destruction of the once stable, low libration motion of the pendulum or, in analogy to the 3-body system, the destruction of the mean-motion-resonance.
The exponential distribution of event times indicates that the events occur randomly but with a constant rate. In addition, the process has no memory hence the probability of a destructive event to occur, at any given time, does not depend upon the elapsed time.

This result may be consistent with our 2nd. research, (i.e. “Peak-to-Peak Distance Statistics of Energy Time Series in the Periodically Driven Pendulum”), where we showed statistical similiarity between the behaviour of pendulum energy time series in the chaotic region, near the separatrix, and  independent and identically distributed random variables (i.i.d.).
In addition, we showed that for each value of the driver parameter, 
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 on tables 4.2.2.1-4.2.2.3, we notice that most of them fall in the range of ~0.5-1.3. These values are merely the time it takes the pendulum to move from its rest position (
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 . In the pendulum case the time is depicted in units of the pendulum natural period while in the 3-body analogue these values indicate the elapsing time between successive conjunctions when the system is in MMR. In any case, we can regard the average time to event,
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Figure. 4.3.1  Mean time of events
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Figure. 4.3.2  Mean time of  events 
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Figure. 4.3.3  Mean time of events 
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Figure. 4.3.4  Mean time of events 
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Figure. 4.3.5  Mean time of events 
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Figure. 4.3.6  Mean time of  events 
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 (Green); The data is displayed with circles and the best fit with a continuous curve

If we cautiossely compare  between the pendulum model and the 3-body problem in general and celestial systems in particular, we can say that even if inspected in relatively old systems, MMR may, in many cases, be only a temporal state that will end anytime. Due to the chaotic nature of its motion, even small gravitational disturbances can accumulate, grow and, eventually drive the system out of resonance and, probably, even destroy the system.
Our results supports our former study (Koriski & Zucker 2011) as well as the  hypothesis that MMR is not, inevitably, an ever lasting phenomenon and its extinction may be the mere result of an evolutionary decay due to the chotic nature of the 3-body problem.
Further studies that will apply the energy time series method directly upon a numeric model of the 3-body problem may improve our analytic results and supply an improved diagnostic tool to investigate the long-term fate of MMRs in planetary systems. 
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� When looking at the Hamiltonian of the system, the system is considered integrable when there are as many constants of motion as there are degrees of freedom (Hilborn 1994) . This is not the case in the nonitegrable problems that the 3-body problen belongs is a part of.


   


�  Systems described by ordinary differential equations free of external random influences.


� Poincaré map or  Poincaré surface of section , in our context, is a method that displays the continuous position of a particle moving in a circular restricted orbit, with a given, fixed value of the Jacobi constant. The motion is presented  as a sequence of points in a two-dimensional plan (Murray & Dermott 1999). The Poincaé map is a highly efficient method for distinguishing quasi-periodic orbits from chaotic ones. 


�  In order to avoid time consuming calculations, these integrations were performed only on truncated secular equations obtained by averaging the equations of motion over the mean longitudes of the planets, i.e. neglecting the chaotic effect of the MMR terms. This method might be inaccurate, mainly in the regions where the gaps between the planets orbits are sufficiently close for resonance overlap to occur and provoke chaotic behavior of mean motions.   


� The computation of Lyapunov characteristic numbers (LCNs) that measure the chaocity of the system, is very time consuming. The MEGNO, developed by Cincotta & Simó 2000, is a more rapid technique that gives very good estimations for the LCNs. It investigates both ordered and stochastic components of phase space and provides a clear picture of the resonance structures, the exact location of stable and unstable periodic orbits and the measure of the rate of divergence of unstable orbits (hyperbolicity). It was applied to several exoplanetary systems (Bois et al.2003).


�FLI- A method introduced by Froeschle, Lega, & Gonczi (1997) that permits to distinguish qualitatively between regular and chaotic motion in a dynamical system (Bois et al. 2003).


� The system is Periodic or Quasi-Periodic if it can be written as a Fourier series.  If the associated frequencies � EMBED Equation.DSMT4 ��� commensurate, the system is periodic and if not- quasi-periodic.
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