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10Figure ‎2.1 – Schematic view of the parallel-plates actuator.



Figure ‎2.2 – Dynamic response of the parallel-plates actuator for various values of applied voltage. For voltages below the dynamic pull-in voltage  the response is periodic (dashed lines) and for voltages above this critical value the response is non-periodic (solid) (
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Figure ‎2.3 - Switching time and period time of the parallel-plates actuator when it is subjected to a step-function voltage. For voltages below the dynamic pull-in voltage  the response is periodic ('o') and for voltages above this critical value 
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16Figure ‎2.4 – Schematic view of a typical RF-MEMS capacitive shunt switch showing the clamped-clamped beam actuator. The switch is driven by the central bottom electrode which is coated by a dielectric insulator.



Figure ‎2.5 - Dynamic response of the clamped-clamped beam actuator (deflection of beam center) for various values of applied voltage. For voltages below the dynamic pull-in voltage  the response is periodic (dashed lines) and for voltages above this critical value the response is non-periodic (solid).
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Figure ‎2.6 - Switching time and period time of the clamped-clamped beam actuator when it is subjected to a step-function voltage. For voltages below the dynamic pull-in voltage  the response is periodic ('o') and for voltages above this critical value 
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20Figure ‎2.7 - (a) Micro photo and (b) schematic top view of the parallel-plates test structure.


21Figure ‎2.8 – The time response of the parallel-plates structure for the step-function of the dynamic pull-in voltage (at a pressure of 8 mTorr). For the same value of actuation voltage two different possibilities of pull-in instability are demonstrated: the solid line shows regular behavior of pull-in instability, when in the second response (dashed line) pull-in occurs only in the second period.


22Figure ‎2.9 – The time response of the parallel-plates structure for the step-function of three different voltages (at a pressure of 8 mTorr).



Figure ‎2.10 – Comparison of simulated and measured switching time of the parallel-plates actuator for different values of the applied voltage  on semi-log scale. The linear fitting is shown by solid line.
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Figure ‎2.11 – Comparison of simulated and measured switching time of the parallel-plates structure for different values of the applied voltage  on log-log scale.
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Figure ‎2.12 – Comparison of simulated and measured period time of the parallel-plates structure for different values of the applied voltage  on semi-log scale.
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30Figure ‎3.1 – Schematic view of a floating electrode actuator.



Figure ‎3.2 – Equilibrium curve of the floating-electrode actuator for a given charge. The charge works like a bias, shifting the curves by , such that the two pull-in voltages have different amplitudes.
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Figure ‎3.3 – Equilibrium surface of the floating electrode actuator, for .
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Figure ‎3.4 – The dynamic response of the floating electrode due to application of various step-function voltages after the system was loaded by . The dotted lines are the periodic response, the dashed lines are the a-periodic response, and the solid line is the critical dynamic pull-in state.
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41Figure ‎3.5 – Equilibrium and stagnation curves of the actuator for the specific value of charge on the floating electrode.



Figure ‎3.6 – Measured pull-in voltages for different values of charge on the floating electrode. The average of the two pull-in voltages (dashed line) is equal to the charge loading .
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43Figure ‎3.7 – Time decay of positive and negative pull-in voltages after the initial charging of the floating mass with a source of 6Volts. Measurement was performed in ambient conditions of 22°C and 50% relative humidity.


44Figure ‎3.8 – Charge decay as a function of time in the unpackaged actuator. Initial charge was Q/Cp=6Volts.


47Figure ‎4.1 – The actuation voltage waveform for eliminating bouncing at contact.



Figure ‎4.2 – Voltage-pulse interval extension for various values of the applied voltage for .
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51Figure ‎4.3 – Simulated time-response of the parallel-plates actuator for three different applied voltages (for (=0.01): (a) displacement as function of time, (b) velocity as function of time. The red lines are the response during the pulse and the blue lines are the response during the free-flight. The dashed lines present the response to a step-function voltage.


52Figure ‎4.4 – Pulse duration and free-flight duration as function of the applied voltage for (=0.01. The solid line presents the analytic prediction, and the markers are the simulated results.



Figure ‎4.5 – Pulse duration for different applied voltages (i.e.) for (=0.01. The ‘+’ marks present the simulated prediction and the solid line is the linear fit.
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53Figure ‎4.6 – The actuation voltage waveform for eliminating release oscillations.


54Figure ‎4.7 – Simulated response of the parallel-plates actuator (both the switching and release responses) when the structure is actuated with the proposed short voltage-pulses. (a) displacement and (b) velocity (dashed lines).


56Figure ‎4.8 – Measured response (at low pressure of 5mTorr) of the parallel-plates switch when it is actuated with a regular step-function voltage: (a) displacement and (b) velocity.


57Figure ‎4.9 – Measured response (at atmospheric pressure) of the parallel-plates switch when it is actuated with a regular step-function voltage: (a) displacement and (b) velocity.


59Figure ‎4.10 – Measured response of the parallel-plates switch when it is actuated with a regular step-function voltage: (a) displacement and (b) velocity.


60Figure ‎4.11 – Simulated (‘+’ marks) and measured (‘o’ marks) time intervals of the test switch as function of the applied voltage-pulse.
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Figure ‎5.7 – Simulated undamped time-response of the C-C beam actuator subjected to the applied step-function voltage , for different values of the incremental deflection of the beam-center 
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75Figure ‎5.8 – Pull-in dynamics of the C-C beam actuator as simulated by the new method.



Figure ‎5.9 – Simulated undamped time-response of the C-C beam actuator subjected to the applied step-function voltage , for different values of the time-step
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Abstract

Micro-Electro-Mechanical Systems (MEMS) are small multi-functional devices that are gaining use in a wide range of applications such as wireless communication, automotive and aerospace systems, and biomedical appliances. Micromechanical devices can be driven by electrostatic, electromagnetic, piezoelectric and thermoelastic actuators. To date, electrostatic actuation is the most prevalent method for driving MEMS because it is compatible with microfabrication technology and has very low power consumption.

Ongoing progress in microfabrication technology offers new prospects for innovative designs and actuation/sensing schemes in electrostatic MEMS devices. Efficient modeling and simulation tools are needed to facilitate design and to optimize actuation techniques of these devices.

In this work new efficient methods for modeling and simulation of electrostatic actuators are developed. Analytic expressions of important functional parameters of electrostatic actuators are derived for simple model problems, formulating design rules. 2D and 3D model structures were simulated using different numerical approaches (i.e. finite differences and finite-elements) showing applicability of the new methods. The theoretical analysis is validated experimentally using specifically designed and fabricated micro structures.
The research also examines new strategies for electrostatic actuation which lead to performance improvement of existing actuators. 
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1 Introduction
Micro-Electro-Mechanical Systems (MEMS) are small multi-functional devices that are gaining use in a wide range of applications, such as wireless communication, automotive and aerospace systems, and biomedical appliances. Due to the microscopic dimensions of these structures, physical fields and forces which are negligible in macroscopic scales, become dominant. Micromechanical devices can be driven by electrostatic, electromagnetic, piezoelectric, and thermoelastic actuators. To date, electrostatic actuation is the most prevalent method for driving MEMS because it is compatible with microfabrication technology and has very low power consumption.

The beginning of electrostatic actuation in micromechanical systems is referred to the pioneering work of Nathanson et al. [1], in which the first theoretical formulation of the so-called pull-in instability was proposed. Electrostatic loading by voltage has an upper limit beyond which the mechanical restoring force can no longer balance the electrostatic force, thereby leading to the collapse of the structure. This critical applied voltage is called the Pull-In Voltage. 

Since Nathanson's pioneering work, various studies have been performed to analyze the electromechanical response of electrostatic micro structures. Different numerical schemes were proposed for static [2-6] and dynamic pull-in prediction [7-12] of MEMS. In some devices the pull-in effect is utilized for rapid transition between two stable states (e.g. RF-MEMS switches [13-15], and torsional micromirrors [16, 17]). In contrast, in other devices (e.g. variable capacitors [13, 18]) pull-in instability limits the stable travel range. 

Another well known type of instability in electrostatic actuators is the side pull-in. This loss of stability can occur in comb-drive actuators [19], and can be prevented by appropriate design at both levels: at the suspension level [20-22] and at the individual finger level [23].

Electrostatic actuation is also widely used in resonant structures such as micromechanical resonators and filters [24-26].

In recent years more and more new ideas are introduced in the field of MEMS. Electrostatic actuation and sensing takes a leading role in implementation of these ideas to design of functional and reliable devices. Efficient modeling and simulation tools are needed to improve design and actuation techniques of these devices.

The following research presents a systematic analysis approach for modeling the electromechanical response of electrostatically driven micro actuators. The proposed methodology is based on energy methods and leads to new insights which are realized in new efficient methods for design, simulation, and actuation of electrostatic actuators. Simplified models of electrostatic actuators are solved analytically. Finite-differences and multi-field finite-element analysis are used to simulate models of electrostatic micro structures with more general geometry. The theoretical analysis is validated experimentally by testing specifically designed and fabricated micro structures.  

In Chapter 2 the dynamic electromechanical response of electrostatic micro switches is considered. In my M.Sc. dissertation I analytically derived the novel linear relations between the actuation voltage and important time measures of switches, such as switching time and period time. However, there was still no experimental validation to these theoretical predictions. During my Ph.D. research I have designed specific test-switches which were fabricated using SOI technology. The fabricated structures were experimentally characterized. The measured results show very good agreement with the analytic predictions. This work was presented in the IEEE MEMS 2008 conference [27], and then was published in the IEEE Journal of Microelectromechanical Systems [28].

During my Ph.D. research I was an active member in AMICOM – The European Network of Excellence on RF-MEMS and RF Microsystems. In the context of my activity in this network, I have worked on modeling and characterization of charging phenomenon in thin dielectric layers in RF-MEMS switches. As it happens, this work is not yet complete and I do not have final results to present. However, this effort led me to the new analysis of microsystems which are actuated simultaneously by voltage and charge (presented in Chapter 3). The response of the system is analyzed using energy methods, and it is shown that the system has two distinct pull-in voltages. It is also shown that the amplitude of charge in the system is proportional to the average of these two pull-in voltages. Test-actuators were designed, fabricated, and characterized to validate the theoretical predictions. A non-disruptive measurement of charge is proposed and demonstrated, which enables to monitor charge decay over time. This work was presented in the Hilton-Head 2008 Conference [29], and it is about to be submitted to a leading journal in the field.

Being a member in AMICOM I have been actively involved in modeling and design of RF-MEMS switches for various applications. During this experience I was exposed to different issues related to reliable operation of micro switches. One important issue which can lead to improper operation of switches is a rebound (i.e. bouncing, see Chapter 2) of the movable member (e.g. deformable beam) from the fixed bottom electrode. Another unwanted effect is oscillations of the movable part after its release from the bottom position. In Chapter 4,  a new approach for optimizing the dynamic response of electrostatic switches by shaping the actuation voltage waveform is proposed. The proposed actuation scheme is studied analytically using energy considerations and is numerically simulated and verified. The fabricated test-switches were experimentally measured to validate the analysis. It is shown that the switch can be closed without rebound, and the release oscillations can be dramatically reduced. This work was presented in the EuroSimeE 2007 conference [30]. There was no journal publication of this work because a paper with similar experiments was published by a different group [31] after our work was presented in the EuroSimeE conference.

While examining the time response of electrostatic actuators throughout my research I have performed numerous time dependent simulations for predicting transient dynamic behavior of different switches for variable electrostatic loads. Such simulations require time integration of coupled nonlinear equations which must be computed for each node of a given electromechanical system. This approach is computationally time consuming especially when a 3D model of a switch is considered. Accuracy of the method is strongly dependent upon the chosen time step for a given simulation. In addition, these simulations are limited to a single problem since the entire numerical procedure must be repeated for any change in input variables.   
In Chapter 5 we propose a new efficient method for simulating the time-response of electrostatic switches. The novel method uses a single-mode approximation to describe dynamic deformations. Therefore, time integration of each degree-of-freedom in the system is reduced to the time integration of a single scalar variable. The novelty of the proposed method is that we use an adaptive single-mode to approximate dynamic deformations. The shape of this single-mode is a function of deformation-amplitude. Specifically, our single-mode approximation is the static deformation of the system. Furthermore, we show that only very few static states need to be computed accurately. Simulations computed with the new method are in good agreement with common full transient analysis. It is shown that the new method is highly efficient and drastically reduces the necessary computation effort in both time and memory. The modeling method is validated experimentally by demonstrating good predictive capability. It is also shown that due to its high computational efficiency, the new technique can be used to motivate the functional form of damping forces. This work was presented in two conferences [32, 33], and then was submitted to the IEEE Journal of Microelectromechanical Systems and it is currently under review.
2 On the Dynamic Response of Electrostatically Driven Micro Switches
2.1 Introduction

Electrostatic actuators are prevalent in MEMS because of their low power consumption and their compatibility with microfabrication technology. Electrostatic actuators are deformable capacitors that are often made of one movable electrode and one fixed electrode. Application of a voltage difference between the electrodes induces electrostatic forces that deflect the deformable electrode [34, 35].

The response of many electrostatic actuators is nonlinear due to the inherent nonlinearity of electrostatic forces [34, 35]. This nonlinearity can cause the pull-in loss of stability. In switching applications pull-in is utilized to rapidly switch between two states of the actuator. Electrostatic switches have become prevalent in display applications [36, 37], and as ohmic and capacitive RF-MEMS switches [15, 38-41]. 

Electrostatic switches are commonly operated by application of a step-function voltage between the electrodes. The dynamic response of these switches is affected by the nonlinear electrostatic forces, and may also be affected by nonlinear damping [7, 42-44]. The analysis of the dynamic response of electrostatic switches is therefore difficult and many different modeling approaches have been proposed to facilitate this analysis [10-12, 43, 45-48]. 

In the present study the un-damped dynamic response of electrostatic switches that are driven by a step-function voltage is analyzed and validated experimentally. 

The theoretical analysis was performed within the context of my M.Sc. dissertation. During my Ph.D. research, specifically designed structures were fabricated, and the analysis was validated experimentally. For the sake of completeness, the analysis is also included in this Chapter in sections 2 and 3.
In section 2 the dynamic response of a simplified model of an electrostatic switch is analyzed using energy methods. Analytic approximations of the cycle time in case of a periodic response and of the switching time in case of a non-periodic response are presented. It is shown that the actuation voltage is linearly related to the switching time on a logarithmic scale.

In section 3 the transient switching response of the clamped-clamped beam actuator is modeled. It is shown that the characteristics of the dynamic response of the parallel-plates actuator are also applicable to the more realistic clamped-clamped beam actuator. 

In the last section the analysis is validated experimentally. The dynamic response of the test-switch is characterized, showing very good agreement with analytical and numerical predictions.

2.2 Dynamic response of the parallel-plates actuator
In this section the dynamic response of an electrostatic actuator with a single degree of freedom is analyzed. As a model problem, the parallel-plates actuator illustrated in Fig. ‎2.1, is considered. The actuator is constructed from a top electrode of mass m and area A that is suspended on a linear elastic spring with stiffness k, above a fixed bottom electrode. The bottom electrode is coated with a dielectric layer of thickness 
[image: image101.wmf]0

d

, and the initial gap between the top electrode and the dielectric is g. The fixed bottom electrode is electrically grounded and a voltage V may be applied to the top electrode.


[image: image102]
Figure ‎2.1 – Schematic view of the parallel-plates actuator.
2.2.1 Dynamic pull-in

In this sub-section I follow the analysis presented in [10, 12] and re-derive parameters of the dynamic pull-in of the parallel-plates actuator. This analysis will serve as background in the following sub-section where the switching time and other time-measures of the dynamic response will be derived.

The dynamic response of the parallel-plates actuator, when it is subjected to a step-function voltage, is derived from the Hamiltonian of the system given by [10, 12]
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Here x is the degree-of-freedom of the top electrode, 
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 is its velocity, 
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 is the permittivity of free space, and 
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 is the relative permittivity of the dielectric. The three terms on the right hand side of (2.1) are the kinetic energy, the elastic potential, and the electrostatic complementary energy (i.e. the electrostatic potentials of the deformable capacitor and of the voltage source). For brevity, the effect of fringing fields is not considered.

The Hamiltonian may be rewritten in the normalized form
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where
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Throughout this work damping is assumed to be negligible and accordingly, once the voltage is applied (at 
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 yields an energy constraint on the dynamic response, as formulated by the following dynamic response function


[image: image113.wmf]0

~

)

1

)(

~

1

(

~

2

1

~

2

1

~

2

1

2

2

2

=

+

-

+

-

+

=

V

x

x

x

x

D

x

x

&


(2.4)
The momentum equation that describes the motion of the top electrode may be derived from the Hamiltonian in the form
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where
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The momentum equation (2.5) can be integrated twice in time to find the displacement of the electrode as function of time 
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. Figure ‎2.2 illustrates the trajectory of the top electrode for 
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 and several values of applied voltage. These simulation results were obtained by numerical time-integration of (2.5) using Matlab [49]. 
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Figure ‎2.2 – Dynamic response of the parallel-plates actuator for various values of applied voltage. For voltages below the dynamic pull-in voltage 
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 the response is periodic (dashed lines) and for voltages above this critical value the response is non-periodic (solid) (
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Below a critical value of the applied voltage, the dynamic response of the actuator is periodic. For voltages above this critical value, the response is non-periodic, the velocity of the movable electrode is always positive, and it eventually collapses into contact with the fixed electrode. When the critical voltage is applied to the system, the movable electrode converges to an unstable equilibrium state [10, 12]. The parameters of this critical state are the dynamic pull-in voltage 
[image: image121.wmf]Dpi

V

~

, and the dynamic pull-in displacement 
[image: image122.wmf]Dpi

x

~

. For the parallel-plates actuator (with 
[image: image123.wmf]0

=

x

) the parameters of the dynamic pull-in state are [10, 12]
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In a periodic response, the movable electrode cycles between the initial state 
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The stagnation displacement 
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The solution of (2.8) is given by
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(2.9)

The other solution of (2.8) is non-physical. The stagnation displacement depends on the applied voltage. The maximal stagnation displacement is achieved when the argument in the square-root of (2.9) vanishes. 

This yields the dynamic pull-in state parameters of the system
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For the case of no dielectric layer (
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), these parameters reduce to (2.7).

2.2.2 Response time

Using the analysis of the previous sub-section as background, we now consider specific time-measures of the dynamic response: the cycle time of the periodic response and the switching time of a non-periodic response. To derive these time measures, the dynamic response function (2.4) is rewritten in the form
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Considering only positive velocities, this equation may be reformulated as
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(2.12)
For a periodic response, this equation can be integrated to compute the time elapsed from application of the step-function voltage at 
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The period time is then given by 
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Figure ‎2.3 - Switching time and period time of the parallel-plates actuator when it is subjected to a step-function voltage. For voltages below the dynamic pull-in voltage 
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This numerical result is compatible with the analytic approximation derived in the Appendix (Eq. (A7))
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For a non-periodic response, the switching time is the time elapsed from application of the step-function voltage at 
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. The switching time is given by
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Figure ‎2.3 presents the switching time for 
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This numerical result is compatible with the analytic approximation derived in the Appendix (Eq. (A11))
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For very large applied voltages, the second term in the square-root in (2.16) is negligible relative to the first term, and (2.16) asymptotically converges to
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For the case 
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So that for 
[image: image163.wmf]Dpi

V

V

~

~

>>

 the switching time satisfies the relation


[image: image164.wmf]p

=

Dpi

c

V

V

t

~

~

~


(2.21)

For the case 
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Figure ‎2.3 presents the switching time for 
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which is compatible with (2.21).

2.3 Dynamic response of a clamped-clamped beam actuator
Many electrostatic switches are constructed from a conductive clamped-clamped beam that is actuated by a bottom electrode. For example, capacitive shunt switches in RF-MEMS are constructed from a deformable bridge structure that is suspended over a co-planar waveguide [15, 41].
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Figure ‎2.4 – Schematic view of a typical RF-MEMS capacitive shunt switch showing the clamped-clamped beam actuator. The switch is driven by the central bottom electrode which is coated by a dielectric insulator.

A schematic view of such an electrostatic clamped-clamped beam actuator is presented in Fig. ‎2.4. The electromechanical system is governed by the following momentum equation
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where 
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 is the coordinate along the beam and 
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 where b is the beam width and h is the beam thickness, and the effective modulus is given by 
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The three terms on the right hand side of (2.24) are the distributed mechanical forces associated with: bending, membrane stiffening, and electrostatic force. The distributed electrostatic force is given by



[image: image182.wmf]ï

ï

ï

î

ï

ï

ï

í

ì

£

£

+

+

£

£

-

-

+

-

£

£

=

L

x

L

L

x

L

y

g

d

bV

L

x

V

x

q

r

2

/

)

1

(

0

2

/

)

1

(

2

/

)

1

(

)

(

2

1

2

/

)

1

(

0

0

)

,

(

2

0

2

0

a

a

a

e

e

a


(2.25)

where fringing fields are not considered.

The momentum equation (2.24) can be rewritten in the following normalized form


[image: image183.wmf])

~

,

~

,

~

(

~

~

~

~

~

~

~

~

6

~

~

~

~

2

2

1

0

2

2

4

4

2

2

V

y

x

q

x

y

x

d

x

y

g

E

x

y

t

y

+

¶

¶

ú

ú

û

ù

ê

ê

ë

é

÷

ø

ö

ç

è

æ

¶

¶

+

¶

¶

-

=

¶

¶

ò


(2.26)



[image: image184.wmf]ï

ï

î

ï

ï

í

ì

£

£

+

+

£

£

-

-

+

-

£

£

=

1

~

2

/

)

1

(

0

2

/

)

1

(

~

2

/

)

1

(

)

~

1

(

~

2

/

)

1

(

~

0

0

)

~

,

~

,

~

(

~

2

2

x

x

y

V

x

V

y

x

q

a

a

a

x

a


(2.27)

where
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The clamped-clamped beam actuator is subjected to a step function of applied voltage at its unloaded state. The initial/boundary conditions of the system are given by
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Equation (2.26) is solved numerically using an explicit finite differences scheme implemented in a Matlab code [49]. The time step is validated to be sufficiently small to ensure both stability and accuracy of the numerical computation.
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Figure ‎2.5 - Dynamic response of the clamped-clamped beam actuator (deflection of beam center) for various values of applied voltage. For voltages below the dynamic pull-in voltage 
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 the response is periodic (dashed lines) and for voltages above this critical value the response is non-periodic (solid).

Figure ‎2.5 illustrates the trajectory of the center of the beam electrode for 
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, and several values of applied voltage. This figure resembles the dynamic response of the parallel-plates actuator illustrated in Fig. ‎2.2. The dynamic pull-in voltage of the clamped-clamped beam actuator with the mentioned above parameters is found to be 
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. Below the dynamic pull-in voltage the dynamic response is periodic, and above this voltage it is non-periodic.

In contrast to the parallel-plates actuator, in the clamped-clamped beam actuator the critically-stable state that separates the periodic and non-periodic responses is dynamic (i.e. small oscillations) and not static. The vibrations in the critically-stable state as well as those observed in other curves in Fig. ‎2.5 , are due to the dynamic response in higher deflection modes. In actual systems, even if the switch is packaged in vacuum, these high-mode oscillations will eventually be damped-out (e.g. by thermoelastic damping [50]).
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Figure ‎2.6 - Switching time and period time of the clamped-clamped beam actuator when it is subjected to a step-function voltage. For voltages below the dynamic pull-in voltage 
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Figure ‎2.6 presents the time measures of the clamped-clamped beam actuator for 
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, when it is subjected to a step-function voltage. For voltages below the dynamic pull-in voltage 
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. For voltages slightly above the dynamic pull-in voltage  
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 on a log-log scale. These linear relations are kept for the cases when stress-stiffening of the beam is much more considerable (for values of 
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 up to 3). These relations can be used if a high accuracy computation of the dynamic pull-in state or the switching time is desired. In the following section the theoretical predictions are validated experimentally.
2.4 Experimental results

To validate the analysis and demonstrate that specific time-measures are linearly related to measures of the applied voltage, a parallel-plates test structure was designed and fabricated using SOI technology (Fig. ‎2.7). The large suspended mass and a relatively low stiffness of the suspension ensure a low natural frequency of the whole structure. This enables to detect motion with a high time-resolution at different locations on the suspended mass. This gives a more detailed picture of the dynamic response relative to what can be achieved by capacitive sensing. The movable mass is symmetrically supported by four folded beams. The initial gap is designed to be 6(m, and mechanical limiters are designed to stop the movable mass at a minimal gap of 1(m, so that contact between the electrodes (i.e. short-circuiting) is prevented. 
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      (a)
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      (b)
Figure ‎2.7 - (a) Micro photo and (b) schematic top view of the parallel-plates test structure.
Motion detection of both displacement and velocity is performed with a Polytec laser vibrometer. To measure the in-plane motion of the actuator the vibrometer laser beam which is intended for out-of-plane motion detection was reflected to the horizontal direction using a mirror tilted at 45°. A side opening was designed in the device to allow the laser beam to reach the movable mass (Fig. ‎2.7a). The dynamic responses presented in the following were measured in a vacuum chamber at a pressure of 8 mTorr.

The geometrical parameters of the specific structure presented in the following, were measured with a SEM and Laser vibrometer. The initial gap is 6.5(m, and mechanical limiters stop the movable mass at a minimal gap of 0.8(m.
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Figure ‎2.8 – The time response of the parallel-plates structure for the step-function of the dynamic pull-in voltage (at a pressure of 8 mTorr). For the same value of actuation voltage two different possibilities of pull-in instability are demonstrated: the solid line shows regular behavior of pull-in instability, when in the second response (dashed line) pull-in occurs only in the second period. 
The step-function voltage was applied to the fixed electrode when the movable mass was grounded. By gradually increasing the amplitude of the applied step-function voltage, the dynamic pull-in voltage of the structure was first identified. Figure ‎2.8 presents the measured time response of the parallel-plates structure when the critical step-function voltage 
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 is applied. One of two different trajectories occurred every time the measurement was repeated, with no apparent preference to either. These two possible responses demonstrate the sensitivity of the structure to ambient noise. For the same applied voltage the system can loose its stability in the first period (solid line) or in the second one (dashed line). When the movable mass looses its stability it contacts the motion limiters with high impact velocity, and rebounds several times before settling into a stable contact.
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Figure ‎2.9 – The time response of the parallel-plates structure for the step-function of three different voltages (at a pressure of 8 mTorr).
Next, voltages above the dynamic pull-in voltage 
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 is limited by the maximal allowed voltage. Because the device was fabricated on SOI wafers the maximal voltage was set at 100V (below the electrostatic break-down of the buried isolation layer). Accordingly 
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. The time responses were recorded with a computerized data acquisition system with a sampling frequency of 50kHz. This sampling frequency together with the relatively slow switching responses (Figs. 2.8, ‎2.9) enabled accurate switching time extraction. 
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Figure ‎2.10 – Comparison of simulated and measured switching time of the parallel-plates actuator for different values of the applied voltage 
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Figure ‎2.9 demonstrates three responses of the actuator for different applied voltages. It can be seen that the rebound bouncing increases, both an amplitude and a duration, with an increase of applied voltage. As shown, the duration of bouncing for a voltage of 1.7VDPI becomes longer than the switching time which is considered as the time to first contact.
Figure ‎2.10 presents the normalized switching time as function of 
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, on a semi-log scale. Both measured (diamond markers) and simulated (plus markers) results are presented on the same figure for comparison. For the normalization of time (2.3), the natural frequency 
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 was extracted experimentally by measuring the first-period time of unforced vibrations of the movable mass. A good agreement between experimental measurements and simulations was obtained. The difference between measurements and prediction for very small values of 
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 is attributed to the fact that the system is close to the critical dynamic pull-in state and is therefore very sensitive to ambient noise.

Many RF-MEMS capacitive switches are actuated by voltage of 
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 is clearly observed in Fig. 2.10. This linear relation can be used as a design rule for MEMS switches.
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Figure ‎2.11 – Comparison of simulated and measured switching time of the parallel-plates structure for different values of the applied voltage 
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Figure ‎2.11 shows the linear relation between the switching time and 
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 for large values of the applied voltage 
[image: image233.wmf](

)

6

2

£

£

d
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. Due to the limitation of maximal allowed voltage (i.e. electrostatic strength of the isolation layer), a small number of measurements were performed. However, the linearity can be clearly observed for the interval 
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Figure ‎2.12 – Comparison of simulated and measured period time of the parallel-plates structure for different values of the applied voltage 
[image: image237.wmf](

)

02

.

0

005

.

0

£

£

d

 on semi-log scale.
Figure ‎2.12 shows the linear relation between the vibration period and 
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 for voltages that are slightly below the dynamic pull-in voltage 
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, on a semi-log scale. The simulated period times are about 1% longer than the measured, but the linear relation (except in the vicinity of pull-in) is evident.

2.5 Discussion

Linear relations presented in this Chapter can be used first for extracting the dynamic pull-in voltage of switches. To accurately predict the dynamic pull-in voltage many time-consuming transient simulations should be performed. Using linear relations, this extraction procedure is reduced to only three simulations of switching response. Specifically, if 
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    2) For the applied voltages higher than 
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Once the dynamic pull-in voltage for a given switch is derived, the linear relations may be used to predict the voltage required to achieve switching within a specified required time. Accurate estimation of the required driving voltage is crucially important where the applicable voltage may be restricted (e.g. electrostatic break-down of isolation layers).
Period times which are linearly related to measures of the applied voltage may be a useful tool for a non-contact measurement of the dynamic pull-in voltage. Often, to characterize the dielectric charging phenomenon in capacitive switches, non-contact measurements of charge-induced voltage shift are required [51]. To this end, period times of the periodic response (
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). Vicinity to the dynamic pull-in state is indicated by a nonlinear behavior of the periodic response (as shown in Figs. ‎2.2 and ‎2.5). In this case, the dynamic pull-in voltage can be derived from the following equation   
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2.6 Summary
This chapter considers the un-damped dynamic response of electrostatic actuators driven by a step-function of voltage. The parallel-plates actuator is considered as a model of an electrostatic MEMS switch. For actuation by a step-function of voltage, the cycle time of the periodic response and the switching time of the non-periodic response are derived both analytically and numerically. The analysis was validated experimentally using specifically designed test structures. It was shown that these time measures are linearly related to measures of the applied voltage, on a semi-log or log-log scales. This linear relation may be used as a design rule for electrostatic switches. 

The experimental data presented in this work was measured in an ambient pressure of 8 mTorr, but linear relations between time-measures and measures of the applied voltage were also observed at higher pressures.

2.7 Appendix

In this Appendix I compute analytic approximations for the time response of a parallel-plates actuator with no dielectric layer (i.e. 
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For a periodic response, I use the variable 
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Then, the maximal displacement (i.e. the stagnation point) is given by
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At this point the velocity vanishes so that (2.11) can be solved to yield
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Substituting this voltage into (2.13) yields
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where 
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 is the complete elliptic integral of the first kind
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Setting the voltage to 
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Substituting this into (A5) and expanding for 
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For a non-periodic response, I use the variable 
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 defined by (A1) and set
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Substituting this voltage into (2.13) yields
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Setting the voltage to 
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Substituting this into (A9) and expanding for 
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 yields
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3 The Electromechanical Response of Pre-Charged Electrostatic Actuators Driven by Voltage 

3.1 Introduction

In recent years, much attention is given to the effect of dielectric charging in microelectromechanical actuators [53-58]. Proper operation of RF-MEMS capacitive switches requires a predictable and stable pull-in voltage (e.g. [59]), but this voltage is strongly affected by dielectric charging [58].  An  even worse effect is total lock-down of capacitive switches caused by spatial distribution of injected charges [58]. Dielectric charging has adverse effects in other microsystems as, for example, inducing drift in oscillators [60, 61]. 
A rigorous analysis of the effect of injected charge on the electromechanical response of electrostatic actuators was presented by Rottenberg et al. [58, 62]. In these investigations, electrostatic forces due to applied voltage and injected charge were derived, and used to solve the equilibrium equation of the system. An alternative approach to analyze the system response is to use energy methods. The advantage of energy methods is that they can be used to directly compute critical parameters of the dynamic response, without having to integrate the momentum equations in time [12]. However, with reference to dielectric charging, energy methods must be used with care to avoid physically inconsistent results, as explained in this chapter. In the present study the complicated analysis associated with non-uniformly distributed fixed charges is avoided. Instead, for simplicity, the case of total charge contained on a floating electrode (in which potential is uniform) is analyzed. The general methodology presented here for the case of floating charge may be applied to systems with fixed charges as well.
The study in this chapter has two purposes. The first is to present the proper way of using energy methods for analyzing electrostatic actuators that are subjected to both voltage and charge. Specifically, it is shown that a prevalent misinterpretation of electrostatic co-energy leads to erroneous results. The second purpose is to analyze a simple electrostatic actuator that is loaded by both voltage and charge, and to show theoretically and experimentally how charge can be deduced from measured parameters of the electromechanical response.
In the following section, the total potential of an electrostatic actuator that is simultaneously driven by voltage and charge is formulated. In section 3 the static response of the actuator is derived from the total potential and it is shown that the actuator has two distinct pull-in voltages. In section 4 the dynamic response of the actuator is analyzed, and the dynamic pull-in parameters are derived. Section 5 presents experimental validation of the theoretical predictions.    

3.2 Total potential of the system
In the following I analyze the electromechanical response of a simple electrostatic actuator which is simultaneously driven by both voltage and charge (Fig. ‎3.1). The movable electrode of mass 
[image: image278.wmf]m

 has a single degree of freedom 
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, and is suspended on a linear spring with stiffness 
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. The movable electrode is electrically isolated (electrostatically floating) and may carry a total charge 
[image: image281.wmf]Q

, and the driving electrode is subjected to a voltage 
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. A fixed parasitic capacitance 
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 between the floating electrode and ground is also considered.
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Figure ‎3.1 – Schematic view of a floating electrode actuator.
The capacitance of the driving (i.e. variable) capacitor is given by
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where 
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 is the permittivity of free-space, 
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 is the area of the driving electrode, and 
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 is the gap at the unloaded state (i.e. 
[image: image289.wmf]0

=

V

, 
[image: image290.wmf]0

=

Q

).

For brevity, fringing fields are not considered in the analysis. When the floating electrode is charged up, the driving and parasitic capacitors are effectively connected in parallel. The charge on the driving electrode 
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 and the charge on the ground-side of the parasitic capacitance, 
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, are given by
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such that 
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In the considered system, both charge 
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 and voltage 
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 are the driving parameters of the actuator. The aim of the analysis is to derive the quasi-static response and the dynamic response of the system, for any values of 
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 and 
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. In practice, it is quite difficult to continuously modify the charge (e.g. [63, 64]). A more realistic loading scheme is first to quasi-statically charge the floating electrode up to a level 
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 while 
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, and only then to apply a voltage. This charging may be achieved by connecting both the floating electrode and the driving electrode to a charging voltage-source 
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 which is disconnected once the required charge is reached. During the charge build-up, the suspended floating electrode will not move because it has the same potential as the driving electrode. Therefore, the charge Q is linearly proportional to the parasitic capacitance 
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 and the voltage 
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After the charging voltage-source is disconnected from the floating electrode, the driving electrode may be gradually grounded. This will cause the suspended floating electrode to move and reach an equilibrium state 
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 as derived in the next section. At this equilibrium state, the charge 
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 on the grounded driving electrode is given by
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Once the floating electrode is charged, the driving electrode may be subjected to a voltage 
[image: image308.wmf]V

. This voltage may be applied gradually so that the loading is quasi-static, or may be applied as a step-function such that a dynamic response is induced. In either case, when a voltage 
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 is applied to the system that was pre-loaded with a charge 
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, the charge on the driving electrode 
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 and the charge on the ground-side of the parasitic capacitance 
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Notice that with respect to the driving voltage V, the driving and parasitic capacitors are effectively connected in series, whereas they are effectively connected in parallel with respect to the floating charge Q.
At this state, the electrostatic potential of the two capacitors is given by
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(‎3.7)
To compute the electrostatic energy of the entire system, we must include the potential of the voltage source (e.g. battery). The potential energy of an ideal voltage source is 
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 is the charge that flows from the source to the driving electrode. Accordingly, the potential of the voltage source is given by
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The mechanical potential 
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 of the suspension is given by
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The total potential energy of the system is the sum of the mechanical potential, the electrostatic energy of the capacitors, and the potential energy of the voltage source
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(‎3.10)
It is constructive to consider the system in terms of non-dimensional variables
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In terms of these variables the total potential may be rewritten in the form
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3.3 Static response
For any given loading 
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 and 
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, the system may be held at an arbitrary location 
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~

 by application of a reactive mechanical force. This reactive force is given by the partial derivative of the total potential with respect to the displacement [12]
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(‎3.13)
Equilibrium is a state in which the reactive force vanishes (i.e. the system is subjected only to an electrostatic driving force and a mechanical restoring force). It follows that
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(‎3.14)
The stiffness of the system is the partial derivative of the reactive force with respect to the degree of freedom 
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(‎3.15)
The stability of the system can now be determined by the sign of the stiffness. The system is stable for 
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The stability of an equilibrium state may be determined by substituting (‎3.14) into (‎3.15) which yields
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(‎3.16)
The equilibrium state at which stability is lost (i.e. 
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) is the pull-in state of the system. It follows that the static pull-in displacement is
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This result is compatible with analysis of related systems (e.g. [65]). The term 
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 in Eqs. (‎3.13)-(‎3.15) is the effective electrostatic load applied to the suspended electrode, henceforth written as
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Substituting the displacement (‎3.17) back into the equilibrium equation (‎3.14), it follows that there are two static pull-in voltages given by
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where
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It is deduced that in the initial loading (i.e. 
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), static equilibrium is only possible if the charge is within the range 
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Furthermore, from (‎3.19) it follows that the normalized charge is equal to the average of the two pull-in voltages
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and that the critical effective electrostatic load is given by
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(‎3.23)
Therefore, by measuring the positive and negative pull-in voltages (without discharging the floating electrode) we can deduce the amount of charge on the floating electrode. We emphasize that this measurement is insensitive to the mechanical parameters of the system (e.g. if the spring stiffness is decreased by temperature increase). At the same time, since the system constant V*SPI is independent of charge, we can use property (‎3.23) to validate measurements of 
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We may now return to the previous section and derive the equilibrium displacement when the system is loaded only by charge, and extract the charge 
[image: image351.wmf]0

~

d

q

 on the driving electrode in that equilibrium state. This initial state is important for analyzing the dynamic response of the actuator, which is considered in the following section.
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Accordingly, the charge 
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 on the driving electrode at the equilibrium state 
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The equilibrium states of the floating-electrode actuator are illustrated in Figs. ‎3.2 and ‎3.3. For any given value of charge, equilibrium states are described by a tear-shaped curve with two possible voltages associated with each displacement 
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 (Fig. ‎3.2). The solid region of each curve describes stable equilibrium states, and the dashed region describes unstable equilibrium states. 
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Figure ‎3.2 – Equilibrium curve of the floating-electrode actuator for a given charge. The charge works like a bias, shifting the curves by 
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[image: image664.wmf](

)

n

Dpi

V

V

10

1

~

~

-

=


[image: image665.wmf]t

~

[image: image666.wmf]6

-

=

n

[image: image667.wmf]2

-

=

n


[image: image668.wmf]1

-

=

n

[image: image669.wmf]Dpi

V

V

~

~

=

[image: image670.wmf]3

-

=

n

[image: image671.wmf]0

=

n

[image: image672.wmf]6

-

=

n

[image: image673.wmf]2

-

=

n

[image: image674.wmf]1

-

=

n

[image: image675.wmf]3

-

=

n

[image: image676.wmf]c

y

~

[image: image677.wmf]5

-

=

n

[image: image678.wmf]4

-

=

n

[image: image679.wmf]5

-

=

n

[image: image365.png]



Figure ‎3.3 – Equilibrium surface of the floating electrode actuator, for 
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As a specific example, consider the case in which the system is charged and reaches static equilibrium with 
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(‎3.26)
for which the equilibrium displacement of the suspended floating electrode is
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(‎3.27)
The system can now be subjected to a gradually increasing voltage until static pull-in occurs. It follows from (‎3.19) that the two static pull-in voltages are
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As stated earlier, the average of the two pull-in voltages is indeed equal to the charge (‎3.26), and half their difference is indeed equal to (‎3.20). 

In view of the preceding derivation, it is important to point out a common misuse of energy methods in deriving the static state of electrostatic actuators. For electrostatic actuators that are driven by voltage only, it turns out that 
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. In electrostatic actuators that are driven only by voltage this error has no consequence. However, in cases such as the floating-electrode actuator with 
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This incorrect result predicts that the equilibrium displacement depends only on the magnitudes of the voltage and charge and not on the their polarities [66, 67]. The correct equilibrium equation derived in this work (‎3.14) suggests that equilibrium does depend on polarity of voltage and charge. This result is experimentally verified in section 5 of this work.

3.4 Dynamic response
In many applications the dynamic response of electrostatic actuators is crucial for performance (e.g. resonators [24, 25] and switches [13, 14]). When the driving voltage is applied in a step-function, the system responds in a dynamic vibration which will eventually be damped. The location of the suspended floating electrode as function of time can be computed by integrating the momentum equation twice in time. The non-dimensional form of the momentum equation, for a system with negligible damping, is given by
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where 
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 is given in (‎3.13) and
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The initial conditions for the time integrations are
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For example, consider the system that is loaded by the charge (‎3.26) and is in static equilibrium with initial displacement given by (‎3.27). This system may be loaded by an additional step-function of voltage and the momentum equation (‎3.30) may be integrated in time to compute the motion of the floating electrode. This computation was performed for various levels of the step-function voltage, and the motion for each case is presented in Fig. ‎3.4. For low values of the applied voltage (
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), the response is periodic (dotted lines) though due to the nonlinear nature of electrostatic forces, it is clearly not sinusoidal. Above a critical value of the applied voltage the response is a-periodic (dashed lines) and the time to contact is a decreasing function of the applied voltage [28]. The critical dynamic pull-in state (solid) is the one that is in between the periodic and a-periodic responses.
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Figure ‎3.4 – The dynamic response of the floating electrode due to application of various step-function voltages after the system was loaded by 
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By running many such time integration simulations it is found that for this case, dynamic pull-in occurs for
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An alternative method for computing the dynamic pull-in by considering only static states of the system, has been recently proposed [11]. Here I apply the same methodology, to analyze the dynamic pull-in of an actuator that is simultaneously driven by both voltage and charge. Before the application of voltage the driving electrode is grounded (i.e. 
[image: image394.wmf]0

~

=

V

) and the system is at rest in an equilibrium state, with  
[image: image395.wmf]Q

~

 and 
[image: image396.wmf]0

~

x

 given by (‎3.26) and (‎3.27). 
The Hamiltonian of the system is the sum of the total potential and the kinetic energy of the system
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where
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Immediately after application of the step-function voltage, and before the floating electrode begins to move, the Hamiltonian is equal to the total potential 
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Now, assuming there is no damping in the system, the Hamiltonian is constant once the voltage has been applied at 
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This results in the dynamic response function which relates the displacement 
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The stagnation states of the system are those states for which velocity vanished, and they are described by the stagnation function
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For any given charge 
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, the stagnation function relates the displacement at stagnation points to the applied step-function voltage. One trivial solution of (‎3.39) is 
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 which is about to be applied. The voltage at the stagnation points may be extracted from (‎3.39) in the form
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By simultaneously solving the equilibrium equation (‎3.14) and the stagnation function (‎3.39), we may extract all possible stagnation states of the system which constitute the stagnation line 
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This equation has two solutions: the trivial solution 
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As an example, Fig. ‎3.5 presents the equilibrium and stagnation curves of the floating electrode for the case described by (‎3.26) and (‎3.27).
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Figure ‎3.5 – Equilibrium and stagnation curves of the actuator for the specific value of charge on the floating electrode.
The intersection point of the equilibrium and stagnation curves can be analytically derived in the form
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which are compatible with the graphical and numerical solution (‎3.33).

In the previous section it has been shown that the static pull-in displacement of the actuator is always  
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, which means that even if fringing fields were considered they would always have had the same effect on the pull-in state, regardless of the charge Q. In contrast, the dynamic pull-in displacement can vary in the bounds
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which means that the effect of fringing fields (if considered) is not necessarily the same for any pre-charge Q.
3.5 Experimental results

To validate the theoretical analysis the test-actuator presented in Chapter 2 (Fig. ‎2.7) was used. The suspended electrode was charged by application of voltage through a probe-tip, which was then lifted leaving the charged electrode electrostatically floating. During charging the driving electrode was subjected to the same charging voltage. The parasitic capacitance of the tested actuator was measured to be 53.3pF, so when it is charged by a 6Volt source, the total charge was 
[image: image423.wmf]C

Q

10

10

2

.

3

-

×

=

.
Figure ‎3.6 presents the positive and negative pull-in voltages which were measured successively for various levels of charge. As predicted by the theory, the average of the two pull-in voltages is proportional to the charge. The pull-in voltages were measured immediately after the floating electrode was charged.
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Figure ‎3.6 – Measured pull-in voltages for different values of charge on the floating electrode. The average of the two pull-in voltages (dashed line) is equal to the charge loading 
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Figure ‎3.7 – Time decay of positive and negative pull-in voltages after the initial charging of the floating mass with a source of 6Volts. Measurement was performed in ambient conditions of 22°C and 50% relative humidity.
To measure charge decay, the two pull-in voltages were sequentially and repeatedly measured at fixed time intervals. Figure ‎3.7 presents the change in the two pull-in voltages as function of time after the floating electrode was charged with a source of 6Volts.
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Figure ‎3.8 – Charge decay as a function of time in the unpackaged actuator. Initial charge was Q/Cp=6Volts. 
The average of the two pull-in voltages, presented in Fig. ‎3.8, shows the decay of charge from its initial value. This experiment was performed with an unpackaged device with an ambient relative humidity of 50%. The rapid leakage is attributed to surface contamination.

In devices that were relatively clean, charge retention was much longer and a half-life time (time required for discharge of half the initial charge) of about 12 days in unpackaged devices was observed. Charge leakage from the floating electrode is strongly affected by relative humidity and by temperature (e.g. exhaling in the vicinity of the device caused temporary massive discharge). Changes in these environmental conditions on a daily scale meant that measurement over a time-span of several days is meaningless. Such measurements would require an environmental chamber.
3.6 Summary
The electromechanical response of electrostatic actuators that are subjected to both voltage and charge is considered in this chapter. The static and dynamic responses of the system are derived using energy methods. The proper definition of the total potential of the system is emphasized and it is shown how a prevalent misinterpretation of electrostatic co-energy leads to erroneous results. It is shown that due to the charge on the floating electrode, the system has two distinct pull-in voltages, and that their average is equal to the charge. This suggests that by measuring the two pull-in voltages (in a non disruptive way) the amount of charge and its decay over time can be monitored. This concept and the predictions of the analysis are validated by measuring the response of test devices.
4 Optimizing the Dynamic Response of Electrostatic Micro Switches by Shaping of Actuation Voltage Waveform

4.1 Introduction

Proper operation of electrostatic switches requires that their electromechanical dynamic response meets specific parameters. In many electrostatic switches a short response time is desirable. However, a short switching time often means that the movable electrode impacts the fixed electrode with a high velocity. This impact may lead to a rebound of the movable electrode (i.e. bouncing, see Chapter 2), and to accumulation of damage (e.g. pitting in Ohmic switches [41]). When the switch is released from the bottom position the movable electrode performs periodic oscillations which can last for a substantial duration of time. In some applications, e.g. phase shifters and phased-array antennas, the switch frequency is high. Therefore, the switch may be actuated during release oscillations thus leading to faulty device operation. 

One way of reducing impact bouncing and release oscillations is packaging the switch with an ambient pressure that is sufficient to damp its dynamic response. However, damping which is induced by the ambient pressure increases the response time of the switch. 

This chapter considers an alternative way of eliminating the impact bouncing and release oscillations, by tailoring the actuation voltage waveform. Specifically, short pulses of voltage with specified time duration are applied at closing and opening of the switch. Since no ambient pressure is required, the response time remains as short as possible for a given value of the applied driving voltage. 

The proposed voltage waveform employs a short voltage pulse which is applied for a predetermined interval of time. During this actuation period the movable electrode acquires the momentum required to reach contact with the fixed bottom electrode with a near-zero velocity. At this stage the hold-down voltage is applied to arrest the switch at the bottom position. When the hold-down voltage is released, the movable electrode is detached from contact by a mechanical restoring force. It is shown that application of a short voltage pulse during release can attenuate release oscillations such that the movable electrode reaches the unloaded state with a near-zero velocity. 

The dynamic response of a 1-DOF system to application of the proposed waveform is studied analytically. Design rules for different values of the applied voltage are formulated. The analysis is verified numerically and validated experimentally using test-switches.    

4.2 Analysis of the new actuation scheme
In this section the switch is modeled as a 1-DOF parallel-plates actuator, schematically illustrated in Fig. ‎2.1. The detailed description of the actuator is given in section 2 of chapter 2. In the following subsections the response of the actuator to the proposed voltage waveforms at both closing (sub-section ‎4.2.1) and opening (sub-section ‎4.2.2) is analyzed. 

4.2.1 Optimizing closing response

Figure ‎4.1 presents the new actuation voltage waveform used to close the actuator with a zero impact velocity, thus preventing impact bouncing. To this end, the short voltage pulse of magnitude 
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 is applied to an unloaded switch for a short period of time 
[image: image429.wmf]sp

t

. The pulse is terminated before the movable electrode achieves contact such that during the time interval 
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 the electrode is in a free-flight. The loading time 
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 must be predetermined such that the movable electrode achieves contact with the fixed electrode at the end of the free-flight period with a zero impact velocity. At this stage the hold-down voltage 
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 can be applied to keep the switch at the bottom position. The value of the hold-down voltage must be a little higher than the pull-out voltage which is the minimal value of the applied voltage required for holding the switch in contact. In capacitive switches the hold-down voltage should be as low as possible in order to reduce charging effect in thin dielectric layers. In ohmic switches the value of the hold-down voltage is dictated by the required contact force. 


[image: image433]
Figure ‎4.1 – The actuation voltage waveform for eliminating bouncing at contact.

The undamped dynamic response of the parallel-plates actuator which is subjected to a step-function voltage can be derived from the Hamiltonian, which may be written in the normalized form 
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(‎4.1)
An explanation for Eq. (‎4.1) and normalization rules are given in Chapter 2.  

The unloaded electrostatic actuator is assumed to be at rest, and is instantaneously subjected to a constant voltage for a limited time interval 
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. To simplify the analysis, it is assumed that the voltage pulse is applied in a displacement interval rather than in a time interval (though the two intervals are uniquely related as will be shown later). In other words, I assume that the applied voltage is defined by
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(‎4.2)
The purpose of this actuation strategy is to switch the actuator but ensure that the contact between the two electrodes occurs with zero impact velocity.

During the application of the voltage pulse 
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, the Hamiltonian is equal to its value immediately after application of the voltage pulse 
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. This results in the energy constraint which can be written in the following form
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(‎4.3)
This means that the work done by the voltage source is entirely invested in the kinetic energy and the elastic potential of the movable electrode.
After the end of the pulse (
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) no additional work is done by the voltage source and therefore
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(‎4.4)
From this moment until contact, the movable electrode is in a free-flight. Nullifying the velocity at contact, i.e. setting 
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(‎4.5)
The minimal voltage required for obtaining contact is the dynamic pull-in voltage 
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 which for parallel-plates actuator is given by (2.10). For this minimal value of voltage it is found from (‎4.5) that the voltage-pulse interval extension is bounded from above by
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For the case of an ohmic switch where a dielectric layer does not exist (i.e. 
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Figure ‎4.2 – Voltage-pulse interval extension for various values of the applied voltage for 
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Figure ‎4.2 presents the voltage-pulse interval extension 
[image: image452.wmf]sp

x

~

 for various values of the applied voltage (
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). It can be seen that as the applied voltage increases, the voltage-pulse interval extension decreases. The reason is that at high actuation voltages, a shorter interval is sufficient to achieve the necessary work required for a longer free-flight.
The time duration of the short pulse 
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 is uniquely related to the voltage-pulse interval extension 
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. The governing equation for calculating the short pulse duration can be derived from (2.12)
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(‎4.7)
Due to complexity of the integral, the analytic solution of (‎4.7) has not resulted in a closed-form expression. To this end, the pulse duration as function of the applied voltage is computed numerically, as is shown later in this sub-section.

 The free-flight time interval 
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 can be derived from the Hamiltonian which during the free-flight is given by
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At contact (i.e. at 
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. From the end of the pulse up to contact the Hamiltonian is unchanged (negligible damping). Accordingly, the velocity of the movable electrode at the free-flight zone is given by
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Considering only positive velocities the duration of the free-flight can be derived analytically
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(‎4.10)
Simulation of the time-response of the system to the proposed voltage waveform was performed using MATLAB. Figures ‎4.3a,b present the displacement and the velocity of the movable electrode, respectively, as function of time for three different applied voltages. It can be seen that the impact velocity of the movable electrode is very high when the switch is actuated with a step-function voltage. By using the short pulse voltage actuation, the impact velocity is reduced to zero. 

[image: image464]
Figure ‎4.3 – Simulated time-response of the parallel-plates actuator for three different applied voltages (for (=0.01): (a) displacement as function of time, (b) velocity as function of time. The red lines are the response during the pulse and the blue lines are the response during the free-flight. The dashed lines present the response to a step-function voltage. 

Figure ‎4.4 presents the duration of the voltage pulse and the free-flight duration as function of the applied voltage. When the applied voltage increases, the required voltage-pulse duration decreases, and the free-flight duration increases. The simulated free-flight times are in very good agreement with the analytic results.
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Figure ‎4.4 – Pulse duration and free-flight duration as function of the applied voltage for (=0.01. The solid line presents the analytic prediction, and the markers are the simulated results. 
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Figure ‎4.5 – Pulse duration for different applied voltages (i.e.
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) for (=0.01. The ‘+’ marks present the simulated prediction and the solid line is the linear fit. 

Furthermore, in the following I show that linear relations between the applied voltage and the pulse duration are obtained on a semi-log scale for the specific range of the applied voltages. According to the analysis presented in Chapter 2, I denote the applied voltage as 
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In Fig. ‎4.5 which presents the duration of the pulse as function of 
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, the linear relation is clearly observed. This relation can be a useful rule for actuating switches by different pulse voltages.
4.2.2 Optimizing release response

When the actuator is released from the bottom position, the same actuation strategy can be performed in order to reduce free harmonic oscillations of the movable electrode. The actuation voltage waveform for attenuating release oscillations, consists of two time intervals, 
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 and  
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, which are the same as for the switching waveform (Fig. ‎4.6). 


[image: image472]
Figure ‎4.6 – The actuation voltage waveform for eliminating release oscillations.

When the voltage is reduced from the hold-down voltage to zero, the movable electrode is released from contact by mechanical restoring force. During the free-flight up, the velocity of the movable electrode is given by (‎4.9). The voltage pulse should be applied during the free-flight in order to bring the top electrode to the initial open state with zero velocity. Assuming the voltage magnitude of the “damping” pulse is identical to this of the switching pulse, the boundary conditions of both problems are the same. Therefore, following the analysis of sub-section ‎4.2.1, the displacement at which the “damping” pulse needs to be applied is given by (‎4.5). Consequently, the pulse duration 
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 are given by (‎4.7) and (‎4.10), respectively.

 
[image: image475]
Figure ‎4.7 – Simulated response of the parallel-plates actuator (both the switching and release responses) when the structure is actuated with the proposed short voltage-pulses. (a) displacement and (b) velocity (dashed lines).

Figure ‎4.7 presents the simulated dynamic response of the actuator while short pulses with the voltage magnitude of 
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 are applied for both intervals: switching interval and release interval. It is shown that by applying an appropriate short voltage pulse, the impact velocity of the movable plate may be drastically reduced such that contact bouncing is effectively eliminated. It is also shown that by applying the similar pulse in release, the oscillations of the movable plate can also be considerably diminished.
4.3 Experimental validation
The fabricated parallel-plates switch that was presented in Chapter 2 (Fig. ‎2.7), was used in the following to validate the proposed actuation method. The specific structure which is tested in this sub-section had slightly different geometrical parameters due to inaccuracies of the fabrication process. From optical measurements it was found that the initial gap between the movable mass and the fixed electrode is 6 (m, and mechanical limiters stop the movable mass at a minimal gap of 0.8(m. The dynamic pull-in voltage of the switch was therefore lower than this of the previous structure, and was found to be 
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The motion detection (both displacement and velocity) was performed using a Polytec laser vibrometer. As the motion of the movable mass occurs in the in-plane direction, the perpendicular laser beam was reflected to the horizontal direction using a 45° tilted mirror. The specifically designed window in the silicon wafer allowed the laser beam to reach the side wall of the movable mass.

Figure ‎4.8 presents the measured response of the test structure (both displacement and velocity) when a regular step-function voltage of 
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 is applied at low pressure of 5mTorr. It can be seen that due to high impact velocity (about 5mm/sec), the movable mass bounces several times before stable contact is achieved. The release response of the structure is accompanied by harmonic oscillations which last for a long time due to lack of ambient air damping.


[image: image479]
Figure ‎4.8 – Measured response (at low pressure of 5mTorr) of the parallel-plates switch when it is actuated with a regular step-function voltage: (a) displacement and (b) velocity.

To check out if the ambient pressure can reduce the unwanted effects, i.e. bouncing and release oscillations, the test switch was actuated at atmospheric conditions. Figure ‎4.9 presents the response of the structure to the step-function voltage of 
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 at atmospheric pressure. It can be seen that ambient pressure had no influence on the bouncing effect. The impact velocity was nearly the same (about 5mm/sec). Release oscillations were slightly damped, but are still significant. 


[image: image481]
Figure ‎4.9 – Measured response (at atmospheric pressure) of the parallel-plates switch when it is actuated with a regular step-function voltage: (a) displacement and (b) velocity.

In order to apply the proposed voltage waveform on the test switch, duration of the short pulse and duration of the free-flight interval were computed using Matlab simulations presented previously. Normalized simulated times were converted to the actual times according to normalization rule (2.3). The natural frequency of the test-structure was extracted from the measured release response at low pressure.

First, the voltage waveform illustrated in Fig. ‎4.1 was applied to bring the actuator to the closed position. The short pulse with the same voltage magnitude of 
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 as was applied in the case of the step-function voltage actuation, was used. Application of pulses with predicted time duration, 
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, resulted in impact and rebound of the mass. In order to close the switch without bouncing, the pulse duration and the free-flight duration were slightly shortened to the values of 
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To arrest the movable mass at the end of the free-flight when it achieves contact with near-zero velocity, the hold-down voltage of 13.5V was applied. Though the minimal voltage required to keep the actuator in the closed position (i.e. pull-out voltage) was found to be 10.92V, it was experimentally revealed that this value of voltage was not sufficient to arrest the mass after the free-flight. The minimal voltage which is able to capture the mass at contact was found to be 13.2V. To ensure that the mass keeps in contact, the hold-down voltage of 13.5V was used. 

It is crucial to capture the mass with the hold-down voltage immediately at the end of the free-flight. Late application of the hold-down voltage can result in detaching of the mass. In contrast, if the hold-down voltage is applied before the floating electrode reaches contact, a rebound can occur. The actuation waveform can be further optimized while applying the hold-down voltage not by spontaneous pulse, but by quick ramp voltage which begins slightly before the end of the free-flight interval (i.e. slightly before contact), and achieves the hold-down voltage slightly beyond the free-flight interval. In this way the experimental adjusting procedure can be alleviated, and the mass can be smoothly captured at contact with negligible bouncing.   

To reduce the release oscillations of the test switch, the voltage waveform illustrated in Fig. ‎4.6 was applied. The same time intervals 
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which were measured at closing response were used at opening of the actuator. When the mass is released from contact, it is in a free-flight during the time interval of 
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Figure ‎4.10 presents the measured response of the test switch at low pressure of 5mTorr when the new voltage waveform is applied at both closing and opening. It is shown that the dynamic response of the actuator is optimized, i.e. the near-zero impact velocity is obtained, effectively avoiding contact bouncing, and the release oscillations are considerably reduced.   


[image: image492]
Figure ‎4.10 – Measured response of the parallel-plates switch when it is actuated with a regular step-function voltage: (a) displacement and (b) velocity.

In order to compare the simulated results with measurements, the test switch was actuated using the proposed voltage waveform with different magnitudes of the applied voltage. Figure ‎4.11 presents the simulated and measured time intervals, 
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and 
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, as function of the applied voltage-pulse. Good agreement between simulations and measurements was obtained. A small difference between the results is referred to the fringing-field effect which was not included in the model. 
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Figure ‎4.11 – Simulated (‘+’ marks) and measured (‘o’ marks) time intervals of the test switch as function of the applied voltage-pulse. 
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Figure ‎4.12 – Pulse duration for different applied pulse-voltages (i.e.
[image: image497.wmf]8

.

0

0

£

<

d

). The ‘+’ marks present the simulated results, the ‘o’ marks are measured results, and the dashed lines are the linear fit. 

Defining the applied voltage as 
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, linear relation can be clearly observed for both simulated and measured results (Fig. ‎4.12). 

4.4 Summary
A voltage waveform for optimal actuation of electrostatic MEMS switches was presented. The proposed actuation scheme was modeled analytically, simulated numerically, and validated experimentally. It was shown that by applying the appropriate short voltage pulses, the switch can be closed with near-zero impact velocity, effectively avoiding impact bouncing. Similarly, by application of the same voltage pulses during switch release, harmonic oscillations can be considerably reduced. 

5 A New Efficient Method for Simulating the Time-Response of Electrostatic Switches
5.1 Introduction

Electrostatic actuators are used in many microsystem devices (e.g. RF-MEMS switches [15, 41], accelerometers [68], and more). In some devices the periodic response is of interest. For example, pressure may be sensed by its effect on the frequency of a resonating actuator [69]. In other devices a switching response is utilized to achieve rapid transition between two discrete states [38, 40].
In this chapter I consider the dynamic transient response of electrostatic actuators. The response of many electrostatic actuators is nonlinear [34, 35], and their design requires careful analysis. To accurately predict the dynamic behavior of an electrostatic actuator, a coupled-field analysis which considers the structural and electrostatic domains (and possibly damping due to structure-fluid interaction) must be performed. Simulating the dynamic response of such systems requires full time-integration of nonlinear momentum equations which is very time-consuming, especially when a 3-D model is considered. Consequently, accurate transient-response simulation of a specific electrostatic switch due to a specific driving voltage, may take from several hours to several days of computation. Moreover, transient simulations require storage of large amounts of data, which can lead to process halting due to memory restrictions. This makes parametric design of electrostatic switches very cumbersome. 
Many modeling approaches have been proposed to study the dynamic behavior of microelectromechanical systems and facilitate simulations of their dynamic response. Reduced-order models often use a selected number of linear modes as approximation functions [43, 46-48]. Mehner et al. [47] proposed modification of the basis functions by correcting the strain energy to account for the nonlinear stress-stiffening. This model was used to simulate the periodic response of undamped electrostatic actuators.

In this paper I propose a novel efficient method for predicting the time-response of electrostatic actuators. This method is useful for simulating the periodic as well as the switching response, in a damped or undamped system. It is shown that the dynamic response of the system can be efficiently reconstructed by accurately computing only a few static states to derive approximations of the dynamic deformation. The method is capable of simulating the dynamic response of 3-D models including nonlinear effects such as stress stiffening and fringing fields. Furthermore, since the effect of damping is included, the proposed method may be used to motivate the functional form and extract parameters of damping forces, based on measured data.

In the following section the principle of the new method is explained. This method is demonstrated in section 3 where the dynamic response of a clamped-clamped beam actuator is simulated. In section 4 the proposed method is validated by comparing experimental data with simulations, and by demonstrating its predictive capabilities.    

5.2 Description of the proposed method
In the proposed modeling method I approximate deformed states of the dynamic response of the electromechanical system by using deformed states of the static response of the same system. I consider a dynamic response which is described by successive sampling of static deformation states. Specifically, I identify each deformed state of the system by a single scalar measure of deformation. As an example, for the clamped-clamped (C-C) beam actuator presented in Fig. ‎5.1, the scalar measure is the deflection of the beam-center. Static deformed states of the system are measured by a scalar, but due to the nonlinearities of the system, the deformation mode (i.e. mode-shape) is different for each deformed state. In other words, the approximation mode is a nonlinear function of deformation amplitude. This Adaptive Single-Mode (ASM) approximation has been previously used to analyze static electromechanical instabilities of electrostatic actuators [6].

[image: image501]
Figure ‎5.1 – Schematic view of a C-C beam actuator.
In this study, I identify the deformation amplitude of dynamic states with the same scalar measure that describe static deformed states (e.g. the beam-center deflection). For any deflection amplitude, the deformation mode of the dynamic response is approximated by the static deformation mode associated with the same deformation amplitude. 

[image: image502]
Figure ‎5.2 – Algorithm of the new modeling method.
The proposed modeling method is schematically described in a block diagram in Fig. ‎5.2. The modeling is performed in three main steps. The first step is simulation of four static deformed states that sample the entire travel-range of the actuator. These states can be calculated using finite-differences or finite-element methods. For each state the stored strain energy and the capacitance of the system are computed. 

In the second step, additional deformation states are interpolated (and extrapolated) from the four simulated states. Then, two parameters: strain energy and capacitance are computed for each interpolated (or extrapolated) state. Alternatively, the two parameters may be estimated by least-squares curve-fitting. This computational short-cut is explained in detail in subsection ‎5.3.2.

In the third and final step, I use the strain energy and capacitance values calculated in the second step, to reconstruct the time-response of the actuator for any applied voltage.

To demonstrate the modeling method the model problem of the C-C beam actuator (Fig. ‎5.1) is considered. The actuator consists of a double-clamped beam which is suspended over the fixed bottom electrode. The fixed electrode is coated with the thin dielectric layer. The geometrical and material properties of the beam are given in Table 5.1. The system is actuated by application of a step-function voltage V to the bottom electrode, while the beam is electrically grounded. 

	Beam length, L
	240(m

	Beam width, w
	40(m

	Beam thickness, h
	1(m

	Electrode extension, α
	0.3

	Air gap, g
	2(m

	Dielectric layer thickness, d
	0.1(m

	Young’s modulus, E
	70GPa

	Poisson’s ratio, ν
	0.35

	Density, ρ
	2700kg/m3

	Relative permittivity of the dielectric, (r
	4


Table 5.1 – Dimensions and material properties of the modeled C-C beam actuator.

When a step-function voltage V is applied to the unloaded actuator, the total energy of the system at any state is given by its Hamiltonian. The Hamiltonian is the sum of the kinetic energy T, elastic strain energy US, and total electrostatic potential energy UE 
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The total electrostatic potential energy 
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At the initial state (
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If damping affects the dynamic response of the system (e.g. air damping [70]), the work 
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where 
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The kinetic energy of the beam at any point in time, is defined by
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Here y is the deflection, x is the axial coordinate along the beam, z is the lateral coordinate, 
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 is the local velocity of the beam,
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, where ρ is the density of the material and h is the beam thickness.
Now, by assuming that the deformed states in the dynamic response are each identical to static states with the same corresponding beam-center amplitude 
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, it follows that the change in deformation at each state 'j' is given by
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In the limit case 
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. Since the deformed states are uniquely related to the beam-center deflection, the beam-center velocity may be extracted from (5.3) and the kinetic energy can be rewritten as
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where 
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The elastic strain energy for the specific deformed state 'j' is given by 
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where the first term is the elastic energy due to bending and the second term is the elastic energy due to stretching of the beam (for brevity, effects of residual stress are not considered). In Eq. (5.7), 
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The energy dissipated due to damping is given by 
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where 
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 is the local velocity of the beam. If the damping force function is known, I may simulate the damped response. Alternatively, if we have experimental data of the damped response but do not know the functional form or parameters which describe the damping force, we may consider various forms and parameters, and seek those that yield the best match between dynamic simulations and experimental data. This is why it is crucially important that dynamic simulations are rapid and computationally efficient.

In this work I make the simplifying assumption that damping is a linear function of velocity [52]: 
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Now, by extracting the velocity of the beam-center Eq. (5.8) takes the form
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where 
[image: image536.wmf]C

y

D

 is the incremental deflection of the beam-center, and 
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 is  parameter which accounts for distribution of damping along the beam
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The incremental deflection of the beam-center, 
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, is the difference between the beam-center deflection in consecutive states, and its amplitude is determined by the number of deformed state approximations. 

By substituting (5.5) and (5.9) into (5.2) the following quadratic equation for 
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From this equation the velocity of the beam-center for a specific time 
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 can be calculated. For the undamped case, where 
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), Eq. (5.11) is simplified and the beam-center velocity is found to be
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Here the '(' indicates that velocity is a unique function of deformation, as may be expected in a 1-degree-of-freedom energy-conserving system.

The time increment 
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The dynamic response of the electrostatic C-C beam actuator can be either periodic or a-periodic, depending on the magnitude of applied voltage [28]. Application of a step-function voltage that is higher than the dynamic pull-in voltage 
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 ([10, 12]) results in a switching response, in which the C-C beam collapses into contact with the dielectric layer. In this case the motion of the beam is monotonic. Consequently, the time-response of the actuator can be reconstructed by summing the time increments 
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If, however, the applied step-function voltage is lower than the dynamic pull-in voltage, the C-C beam will not make contact with the dielectric layer. For sub-critical damping, the dynamic response will be periodic and the beam deflection will converge to a static state. In the case of no damping the beam will continue in periodic oscillation [28]. When Eq. (5.12) is solved, the velocity must remain monotonic until a stagnation state is reached (i.e. velocity vanishes) after which the velocity changes sign.  

5.3 Implementation of the proposed method
In the following section the new modeling method is implemented using COMSOL/MATLAB codes. The steps presented in the block-diagram (Fig. ‎5.2) are explained in detail for the clamped-clamped beam actuator presented in Fig. 1.1.

5.3.1 Step 1: Computation of static states
The 3D model of the clamped-clamped beam actuator (Fig. 1.1) was constructed and simulated using static electro-structural (multi-physics) analysis in COMSOL 3.5 [71]. To save computation time, symmetry considerations may be employed to justify solution of one quarter of the full problem. Two layers of 3D structural brick elements were used to mesh the beam. The nonlinear stress stiffening effect was included in the analysis. The air region under the beam and the dielectric layer were meshed using 3D electrostatic elements. Four static deflection states of the beam were computed using displacement iterations (DIPIE) algorithm [5]. To this end, the center node of the beam is forced to a specific deflection within the gap. Then the voltage required to nullify the resulting reactive force at the beam center is iteratively computed until the solution converges to an equilibrium static state (with zero reaction force). By solving this equivalent problem, the electromechanical instability is avoided and the computation converges rapidly for any beam-center deflection. The static solution of this equivalent problem applies to the real problem in which an unconstrained C-C beam is electrostatically actuated. This approach enables to compute static states of the beam for any deflection throughout the air gap 
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[image: image552]
Figure ‎5.3 – Simulated deformation of four static states of the beam (middle surfaces). The four states correspond to beam-center deflections of 0.2, 0.4, 0.6 and 0.8 of the nominal gap.
Four static states of the beam were computed corresponding to four prescribed beam-center deflections: 0.2, 0.4, 0.6, and 0.8 of the nominal gap g. The deflection states (middle surfaces) of the beam are presented in Fig. ‎5.3. For each distributed deflection, the capacitance 
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 and the total strain energy 
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 (including nonlinear stress-stiffening) were extracted. 

5.3.2 Step 2: Calculation of general parameters of the dynamic response
In order to use the analysis described in section ‎5.2, the strain energy 
[image: image555.wmf]S

U

 and the capacitance 
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 of the system at much more than four deflections must be known. Reducing the incremental deflection 
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 between consecutive static states reduces the time intervals 
[image: image558.wmf]j

t

D

 between integration points (Eq. (5.13)) and increases the computation accuracy. The intermediate static deflections are interpolated (between each two adjacent simulated deflections) and extrapolated (from the fourth simulated deflection up to first contact) to cover the entire travel range of the actuator. Then, the capacitance and strain energy of replicated deformed states can be calculated. 


[image: image559]
Figure ‎5.4 – Elastic energy of the C-C beam actuator as function of the beam-center deflection. Values extracted from COMSOL are marked by ‘+’ marks and the polynomial fit is plotted by the solid line.
Here a computational short-cut is used. The strain energy US for any deflection throughout the gap is well fitted by a fourth-order polynomial. Figure ‎5.4 presents the total strain energy as function of the beam-center deflection. The simulated results are represented by the '+' marks and the polynomial fit by the solid line. Accordingly, instead of computing the strain energy for each interpolated state, this value is estimated from the fitted curve. In a similar fashion, the change in capacitance 
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 for any deflection associated with the beam-center is well described by the following formula which is motivated by functional form of the capacitance of the parallel-plates actuator
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where 
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 is the area of the actuation electrode. The coefficients a and b are optimally fitted by least squares, and are found to be 0.82 and 0.91, respectively. For a parallel-plates actuator the coefficients a and b are equal to unit. In our case the fitted coefficients are close to unit, indicating the affinity of the system to the parallel-plates actuator. Figure ‎5.5 shows the change in capacitance as function of the beam-center deflection. The '+' marks are simulated results and the solid line is the least square fit (5.14).


[image: image563]
Figure ‎5.5 – Change in capacitance as function of the beam-center deflection. Values extracted from COMSOL are marked by ‘+’ marks and the fitted curve is plotted by the solid line.

Based on the computed strain energy US  and 
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 along the stagnation curve of the actuator can be calculated [22, 28]
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Both, equilibrium and stagnation curves, are presented in Fig. ‎5.6. The maximal voltage on the equilibrium curve is the static pull-in voltage. For the considered actuator the voltage and displacement at the static pull-in state are 
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, respectively. The maximal voltage along the stagnation curve is the dynamic pull-in voltage of the undamped actuator [22, 28]. For the considered actuator the voltage and displacement at the dynamic  pull-in state are  
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[image: image573]
Figure ‎5.6 – Equilibrium and stagnation curves of the C-C beam actuator.

To calculate 
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 for each static deformation, the deflection over the middle surfaces of the beam is integrated, as defined in (5.6). Calculation of 
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 is constant. In the following simulations the specific value of 
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 is chosen so that we can demonstrate sub-critical damping with several oscillations before the periodic response converges to the steady state. In the following sub-section (Step 3) I reconstruct the dynamic response of the actuator for different applied step-function voltages, for both undamped (
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5.3.3 Step 3: Simulating the dynamic response 
In the final step of the proposed method the parameters calculated in Step 2 are used to simulate the dynamic response of the actuator for any specified voltage. First, the velocity of the beam center for the given applied step-function voltage is computed using (5.12). Then the corresponding time increments are calculated by (5.13). To ensure accuracy of the simulated response, the incremental deflection of the beam-center
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 should be sufficiently small. Figure ‎5.7 presents the simulated time-response of the C-C beam actuator when it is subjected to the step-function voltage 
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). The convergence of the response with the reduction of the deflection step can be clearly observed. For an incremental deflection of 
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 the response is sufficiently converged. Therefore, this deflection step is used for simulating the time-response for the different applied step-function voltages.

[image: image726.wmf]t

~

[image: image727.wmf]p

C

x

~

1

1

~

+

[image: image728.wmf]DPI

V

V

~

~

=

[image: image729.wmf]DPI

V

V

~

~

<

[image: image730.wmf]x

~

[image: image731.wmf]V

~

[image: image732.wmf]V

[image: image733.wmf]sp

t

[image: image734.wmf]ff

t

[image: image735.wmf]hd

V

[image: image736.wmf]sp

x

~

[image: image584.emf]0


1


2


3


4


5


6


-2


-1.5


-1


-0.5


0




0 1 2 3 4 5 6

-2

-1.5

-1

-0.5

0


[image: image737.wmf]DPI

V

V

~

/

~

[image: image738.wmf]1

.

1

~

=

n

V


Figure ‎5.7 – Simulated undamped time-response of the C-C beam actuator subjected to the applied step-function voltage 
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Simulations were performed for both an undamped (
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) response. First, the dynamic pull-in state was found for both cases by simulating the time-response of the actuator subjected to the applied voltages around 
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which was extracted previously in Step 2. Simulated pull-in dynamics are presented in Fig. ‎5.8. The dynamic pull-in parameters for the undamped case are the same as extracted in sub-section ‎5.3.2. For the damped response the dynamic pull-in voltage 
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Figure ‎5.8 – Pull-in dynamics of the C-C beam actuator as simulated by the new method.

5.3.4 Full transient analysis 
To verify the feasibility and assess the accuracy of the new method, the same finite element model that was used to simulate the four static states was also used to simulate the dynamic response by performing a transient analysis (full time-integration of the momentum equations) using COMSOL. The time-step of the explicit transient analysis should be validated to be sufficiently small to ensure accuracy of the numerical computation. Several values of the time-step were tested to simulate the undamped dynamic response of the actuator for the specific applied voltage of 21.7V which is about 
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. Figure ‎5.9 presents the convergence of the dynamic response with reduction of the time-step. For a time-step of 10ns the response is sufficiently converged. This time-step was then used to simulate the dynamic response for different step-function voltages. To accurately compute the dynamic pull-in state, several iterations were performed by subjecting the actuator to voltages around the dynamic pull-in voltage, which was computed with the new method. Both, undamped and damped responses were simulated. For the damped response, the same value of the damping coefficient (
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) was used. The dynamic pull-in voltage predicted by the transient simulations is 
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 for the damped case. These results are slightly higher (less than 1% error) than the values predicted by the new method. This small difference in predictions is due to the fact that in the new method higher mode vibrations of the beam are not considered.
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 Figure ‎5.9 – Simulated undamped time-response of the C-C beam actuator subjected to the applied step-function voltage 
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5.3.5 Performance comparison

Figure ‎5.10 presents simulated switching response of the C-C beam actuator for three different step-function voltages, all larger than the dynamic pull-in voltage. The solid lines are the response predicted by the new method, and the dotted lines are transient simulations. Undamped (thin lines) and damped (thick lines) responses were simulated for step-function voltages of 
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. The shortest switching time of the actuator is achieved by the undamped response. For higher voltages the response is less affected by damping. It can be seen that the new method and full transient analysis are in very good agreement for both damped and undamped response.
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 Figure ‎5.10 – Simulated time-response of the C-C beam actuator for three different applied step-function voltages, all larger than the dynamic pull-in voltage. The thin lines are the undamped response, and the thick lines are the damped response. For each applied voltage the time-response is simulated using transient analysis (dotted lines) and the new method (solid lines). 
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Figure ‎5.11 – Simulated damped time-response of the C-C beam actuator for three different applied step-function voltages, all smaller than the dynamic pull-in voltage. For each applied voltage the time-response is simulated using transient analysis (dotted lines) and the new method (solid lines).[image: image753.wmf]DPI
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Figure ‎5.11 presents damped periodic response of the C-C beam actuator for three step-function voltages of 
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. Here the response simulated by the new method is presented by solid lines, and transient simulations are represented by dotted lines. It can be seen that also for the periodic response the predictions of the new method are in good agreement with transient simulations. The small difference between the simulations obtained by the two methods is attributed to the effect of higher-mode vibrations which occur in the real problem but cannot be reconstructed by the adaptive single-mode approximation. This difference is more noticeable for larger applied voltages. 

In the following sub-section the efficiency of the proposed method is discussed.

5.3.6 Efficiency of the new method

I now compare the computational efficiency of the new method relative to common transient analysis. The main computational effort of our new approach is computation of four static states of the system (Step 1). 

	
	Transient analysis
	New method

	Step 1
	-
	540sec

	Step 2
	-
	8sec

	Accurate dynamic pull-in state VDPI  for specific damping conditions
	At least 4000 sec
	≈10sec

	Damped response for:
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Table 5.2 – Computation time required for transient analysis and the new method.
For the considered C-C beam actuator computation of Step 1 using COMSOL takes 540 seconds (on a Pentium 4 PC including stress-stiffening). Step 2 and Step 3 of the algorithm are performed in MATLAB. Calculations of Step 2 can take from several seconds to several tens of seconds. For the C-C beam actuator computation of Step 2 is eight seconds only, including extraction of static and (undamped) dynamic pull-in states. In Step 3 simulation of the dynamic response for each step-function voltage takes 1 or 3 seconds for a switching or periodic response, respectively. Computation times for the new method and transient analysis are detailed in Table 5.2, revealing the computational efficiency of the new method.

5.4 Experimental verification

In this section I validate the new simulation method. By fitting simulations to one specific measured response, we extract material parameters which are then used to predict the response of the system to many different driving conditions. I then show that due to the computational efficiency of the proposed method, it can be used to extract damping parameters from measurements of the periodic response. 
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 Figure ‎5.12 – Micro-photo of the electrostatic capacitive test-switch.

An electrostatic capacitive test-switch presented in Fig.‎5.12 was fabricated by ITC-irst [72] using surface micromachining (the detailed fabrication process can be found in [73]). Two structural layers of electroplated Gold are used: the main structural layer includes a 
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 membrane and the four supporting meander springs. The thickness of this layer is 
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 thick layer forms a circumferential frame stiffening the square membrane. The membrane is suspended over a bottom electrode which is coated by a 
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). The nominal gap between the membrane and the dielectric layer is 
[image: image623.wmf]m

m

3

.

The switch was placed in a vacuum chamber to measure the dynamic response at different ambient pressures. The switch was actuated by application of a step-function voltage to the line while the bridge was electrically grounded. Out-of-plane motion of the membrane was measured by a Polytec laser vibrometer [74]. The time response was recorded by a computerized data acquisition system with a sampling frequency of 2MHz. The measurements were performed at different ambient pressures from the lowest pressure of 
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 up to atmospheric pressure. It was found that the dynamic pull-in voltage is affected by ambient air pressure. The measured dynamic pull-in voltage of the switch at low pressure (
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) was 
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, while at atmospheric pressure it was 
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. In each experiment I applied voltages relative to the dynamic pull-in voltage associated with the specific pressure in the chamber. It was found that the switching response for a given relative applied voltage is almost the same for the entire range of ambient pressures. Due to the large perforations squeeze-film damping is negligible in switching response of this device. 
However, the periodic response for applied voltages lower than the dynamic pull-in voltage is strongly affected by ambient pressure. At low pressure the membrane oscillates with negligible decrement. At higher pressures the oscillations are rapidly damped and the membrane converges to the steady static state (Fig. 5.15). 
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 Figure ‎5.13 – Solid model of the test-switch.
A detailed geometrical model of the test-switch (Fig. ‎5.13) was constructed in COMSOL. To calibrate the finite-element model with the real switch, the simulated undamped dynamic pull-in voltage was fitted to the measured result by setting the Young’s modulus of the modeled structural material to 
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). Once the model was calibrated with measurements, the dynamic response for different applied step-function voltages was simulated. The undamped switching response was simulated using the new method and transient analysis in COMSOL. Figure ‎5.14 presents the simulated and measured responses of the test-switch for four different applied step-function voltages, all larger than the dynamic pull-in voltage. It can be seen that both simulation methods give very good prediction of the measured results. However, simulations performed with the new method are considerably more time-efficient relative to those performed by transient analysis (as was discussed in sub-section ‎5.3.6). 
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Figure ‎5.14 – Simulated and measured undamped switching responses of the test-switch. Measured data is presented by thin blue solid lines, the response simulated using the new method is plotted by thick green solid lines, and the transient simulations are presented by red dotted lines. 
The high computational efficiency of the new method can now be used to motivate the functional form of the damping forces based on measured periodic responses. Figure ‎5.15 presents the periodic responses at atmospheric pressure for two voltages which are lower than the dynamic pull-in voltage. Figure ‎5.15a presents the measured response (thin line) and simulated response (thick line) for 
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, and Fig. ‎5.15b presents the measured and simulated response for 
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 Figure ‎5.15 – Periodic response of the test-switch at atmospheric conditions. Measured data is presented by thin blue lines and the response simulated using the new method is plotted by thick green lines. The higher voltage induces larger deflections and lower frequency.

With the new method, simulation of each time-response requires about two seconds of computation. Therefore it is easy to test different functional forms of damping and to optimize parameters to best fit measured data. For the considered (perforated) switch, the damping force is found to be a linear function of velocity and a nonlinear function of the gap. Specifically, the damping coefficient is well fitted by the functional form 
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 gives the best fit to the measured response. This functional form and parameter were fitted to the response for 
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 (Fig. ‎5.15a), and the responses for other voltages (e.g.  
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 in Fig. ‎5.15b) were predicted and found to be in good agreement with measurements. A good fit with measured data could not be found for other different functional forms of the damping coefficient (e.g. 
[image: image639.wmf].

Const

b

=

). The best functional form could be easily identified because of the very short computation time required for each dynamic simulation.

In all structures considered in this work, higher-mode vibrations were insignificant (the geometries of the measured and simulated actuators are typical of RF-MEMS capacitive switches). However, it is important to note that when higher-mode vibrations are dominant in the dynamic response of a system, a single-mode approximation may be expected to produce inaccurate results.

5.5 Summary
A new efficient method for simulating the dynamic response of electrostatic micro actuators was presented. The method enables to reconstruct the time-response of actuators for any applied voltage based on four static states only. It is shown that the proposed technique is very time-efficient relative to common transient analysis, while demonstrating high accuracy. The measurement results are in very good agreement with simulations. It is also shown that due to high computational efficiency of the new method, it may be used for fitting the functional form of damping forces based on experimental data. Consequently, the proposed method is an effective tool for parametric design and for characterization and parameter extraction of electrostatic switches. 
6 Summary 
In this work the electromechanical response of electrostatically driven microstructures is studied analytically and numerically using energy considerations. Specifically designed microstructures were fabricated and tested to validate the theoretical analysis. 

In Chapter 2 it is shown that the applied voltage and important time measures of electrostatic micro switches, such as switching time and period time, are linearly related on a semi-log and a log-log scale. This relation allows to efficiently predict dynamic pull-in voltage of switches as well as to find the application voltage for the required switching time without the need for numerous time-consuming simulations. Consequently, the presented linear relations can be used as design rules for electrostatic switches.
In Chapter 3 the analysis is extended for electrostatic actuators which are driven simultaneously by voltage and charge. The electromechanical response of actuators pre-loaded by a controlled amount of charge and actuated by voltage is examined. The correct way of analyzing this kind of system using energy considerations is presented, revealing a prevalent misinterpretation of electrostatic co-energy. The actuator with an electrostatically floating electrode is introduced and analyzed. It is shown that the actuator pre-loaded with a charge has two distinct pull-in voltages. The induced charge behaves as a bias which increases or reduces the applied voltage according to the polarity of the charge. Experimental characterization of the fabricated floating electrode actuator shows very good prediction with the theoretical predictions. It is shown that the charge amount enclosed in the system can be monitored on a long time scale by simple measurements of the pull-in voltage.
In Chapter 4 the proposed methodology is used to analyze the new actuation method for improving performance of electrostatic switches. The new waveform of the applied voltage which consists of short voltage pulses is proposed. It is shown that electrostatic switches with 1DOF-like configurations can be closed with a near-zero impact velocity avoiding bouncing. The release oscillations of switches can be also considerably alleviated.

The last chapter presents  
7 Future Research Directions

The analysis presented in Chapter 3 can be extended to examine the effect of trapped charges in the dielectric layers on the electromechanical response of electrostatic actuators. Such an analysis may propose new aspects for modeling the dielectric charging phenomenon which is currently a hot investigation topic. Furthermore, the proposed floating electrode actuator can be used for investigating the charge leakage mechanisms at different ambient conditions. Using environmental chamber, the effect of temperature, ambient pressure, and relative humidity on charge outflow can be examined.   
The actuation technique proposed in Chapter 4 can be examined for implementation in distributed electromechanical systems, such as switches with bridge configurations. This analysis may be efficiently performed using the simulation method presented in Chapter 5.
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