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1 Introduction

(Note: Strong points for EAP use)
Dielectric elastomers (DEs) are polymers that are non conductive but polarize and

deform under electrostatic excitation. These light weight, flexible and available polymers
has the potential of being used and are emarging as actuators in a wide variety of applica-
tions such as artificial muscles, energy-harvesting devices, micropumps, and soft robotics,
among many others [Carpi et al., 2011].

(Note: The microstructure and macrostructure of the EAP (polymer networks from chains
and chains from monomers -> a polymer strip sandwiched between two electrodes))

At the microscopic level, DEs have the hierarchical structure of networks of poly-
mer chains. A polymer chain is a long string of repeating dipolar monomers. At the
macroscopic level, the essential part of a DE based device is a thin soft membrane of
the DE sandwiched between two compliant electrodes. When electric potential is ap-
plied between the electrodes the monomers react to the electric exitations while the DE
membrane reduces its thickness as a result of the attraction between the two oppositely
charged electrodes. Simultaneously, the membrane area expands due to Poisson’s effect.
This process converts electrical energy into mechanical energy. Attractive features of di-
electric elastomers include large strain, fast response, silent operation, low cost and high
efficiency [Moscardo et al., 2008].

(Note: The ratio between elastic moduli and dielectric moduli and its importance)
The electromechanical coupling in DEs is characterized by a quadratic dependence

of the force between the electrodes on the applied electric potential [Toupin, 1956]. In
turn, the deformation depends on the force via the elastic moduli. Thus, the coupling
depends on the ratio between the dielectric and the elastic moduli. Commonly, flexible
polymers have low dielectric moduli while high dielectric moduli polymers are usually
stiff. Accordingly, since this ratio is relatively small, large electric potentials are needed
for a meaningful actuation.

(Note: electric breakdown and other failure mechanisms)
The requirement for high electric potentials implies that the feasibility of these ma-

terials is limited by their dielectric strength, which is the limit beyond which electric
current flows through the dielectric material [Pelrine et al., 2000]. This failure mechanism
is known as electric breakdown or dielectric breakdown. In some cases this results in a
transformation of the insulator into an electric conductor. In general, electrical breakdown
may be a singular, a cyclic or a continuous event [Ahmad, 2012]. Predicting accurately
the occurrence of an electrical breakdown, timing or position, is not yet possible mostly
because it does not depend on a single cause, but it is a statistical product of several
factors. The most notable factors are the local defects, such as a void or an inclusion that
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would create a local decrease in the thickness of the DE, leading to higher electric fields
or higher mechanical stresses [Vogan, 2004]. In practice the dielectric strength is mea-
sured experimentally [Vogan, 2004, Qiang et al., 2012] and is measured for a membrane
at a given thickness with a given testing equipment [Madsen et al., 2016]. In their work
Plante and Dubowsky [2006, 2007] examined the failure mechanisms and the performance
boundaries of DEs. Their analysis showed that the performance of DEs made with highly
viscoelastic polymer mambranes is governed by four key mechanisms which are electric
breakdown, current leakage, pull-in failure and viscoelasticity.

(Note: The ratio between elastic moduli and dielectric moduli - low but can be improved)
A possible way to overcome the electric breakdown failure mechanism is by reducing

the electric potentials that are currently needed for a meaningful actuation, this can be
done by improving the polarizability of the DE. Several previous works suggest that the
low ratio between the dielectric and the elastic moduli may be improved and thus their
electromechanical response may be enhanced. A common general approach for improving
this ratio involves inserting additional materials to the elastomer. This approach can
result in a homogeneous or a composite elastomer. One aspect of the approach refers
to embedding components with a higher dielectric constant, which can be classified as
insulating or conducting, in a soft polymer [Huang et al., 2004, Stoyanov et al., 2010, Kofod
et al., 2011]. Kussmaul et al. [2011] presented such a method for the electromechanical
response enhancement of silicone elastomer networks, based on the grafting of molecules
with high permanent dipoles to the crosslinker molecules. Their method also allows for
a direct control of the mechanical properties of the elastomer by adjustments of the
crosslinking density. Another aspect of the approach refers to improving the actuation
in DEs with an appropriate adjustment of their microstructure as periodic laminates
[deBotton et al., 2007, Tian et al., 2012, Rudykh et al., 2013, Lopez-Pamies, 2014, Volpini
et al., 2019].

(Note: improving the response without changing the ratio between elastic moduli and
dielectric moduli)

As a contrary to improving the ratio between the dielectric and elastic moduli, several
works have been done to improve the responsiveness of DEs by adjusting the macroscopic
structure of the actuators. These works are mainly in regards to soft robotics, but not
limited to it [Jung et al., 2007, Rus and Tolley, 2015, Gu et al., 2017, Xu et al., 2017].
Recent works, such as Kellaris et al. [2018] and Rothemund et al. [2019] discussed soft
electrohydraulic transducers, termed Peano-HASEL (hydraulically amplified self-healing
electrostatic) actuators. Such actuators combine the strengths of fluidic actuators and
electrostatic actuators. This combination is performed as the actuators are comprised of
pouches, which are made of flexible dielectric polymer films, filled with a liquid dielectric
and covered with compliant electrodes. When a voltage is applied to the electrodes, they
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“zip” together due to the Maxwell stress, which causes the liquid inside the pouch to be
displaced, and thus causes the contraction of the actuator [Rothemund et al., 2019].

(Note: Previous investigations of the polymer properties:)
(Note: Mechanical response)
The aspiration to affect the ratio between the dielectric and elastic moduli of DEs

motivates a multiscale inquiry of their mechanical, dielectric and coupled properties. The
response of polymers to purely mechanical loading across all scales was investigated exten-
sively. A detailed investigation of the macroscopic behavior of soft materials undergoing
large deformation is presented in Ogden [1997]. A pioneering analysis at the microscopic
level was performed through the use of statistical mechanics by Kuhn and Grün [1942],
which resulted in a Langevin based constitutive relation. This work led to a variety of
multiscale models such as the three-chain model [Wang and Guth, 1952] and the eight-
chain model [Arruda and Boyce, 1993]. Such an analysis of mechanical systems was also
presented by Flory and Rehner [1943], Wall and Flory [1951] and James and Guth [1953]
for rubberlike elasticity of polymer networks. A review of the development of statisti-
cal mechanics treatments of rubber elasticity was given in Treloar [1975]. Warner and
Terentjev [2003] and Su and Purohit [2012] presented an analysis of mechanical systems
through the use of statistical mechanics for liquid crystal elastomers.

(Note: Electrostatic response)
The response of polymers to electrostatic exitation was examined extensively at the

macroscopic and microscopic scales by Tiersten [1990] and Hutter et al. [2007] among
others. Discussing and analyzing constitutive relations for the macroscopic electric pa-
rameters, such as the polarization and the displacement, and for the microscopic electric
parameters, such as the dipoles and the bound and free charge densities. Eringen [1963]
presented an electrostatic theory for rigid bodies as theoretical ideal constructs while
executing his analysis from a charge to a continuum.

(Note: Coupled response)
The analysis of the coupled electromechanical response of DEs at the macroscopic level

began with the work of Toupin [1956]. Years later, Dorfmann and Ogden [2005] introduced
the constitutive behavior of electro-sensitive elastomers via an invariant-based represen-
tation. This was expanded to the class of anisotropic materials by Bustamante [2008].
Among others, Zhao and Suo [2008] and Jimenez and McMeeking [2013] investigated
the influence of the deformation and the rate of deformation on the electromechanical
coupling. Lu et al. [2012] performed an analysis at the macroscopic level for the elec-
tromechanical response of membranes under a uniaxial force, under equal-biaxial forces
and for the case of a membrane constrained in one direction and subject to a force in
the other direction. Additionaly, they examined the response of a fiber-constrained mem-
brane. A principle of virtual work for problems of combined electrostatic and mechanical
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loading, which includes the interactions between the resulting strain and polarization,
was presented by McMeeking et al. [2007]. Physically motivated multiscale analyses of
the electromechanical coupling were previously performed by Cohen and deBotton [2014],
Cohen and deBotton [2015] and Cohen and deBotton [2016]. Multiscale analysis that was
based on statistical mechanics was introduced by Cohen et al. [2016].

(Note: Experimental work)
In addition to the discussed theoretical works, over the past 20 years the dielectric

properties of DEs have been extensively investigated experimentally. Although some have
determined the variation in the relative permittivity of DEs, such as VHB 4910/4905,
under biaxial extension to be negligible, as can be seen in the works of Kofod et al. [2003]
and Di Lillo et al. [2012] among others, several works contradicted those conclusions.
Several investigations on the variation of the relative permittivity as a result of area
stretch have revealed a decrease in its value. Choi et al. [2005] measured an initial relative
permittivity εr = 4.4 and εr = 2.25 under area stretch of 9. Wissler and Mazza [2007]
measured εr = 4.68 and εr = 2.62 as the initial relative permittivity and under area stretch
of 25, respectively. Qiang et al. [2012] measured a decrease as well while performing a
planar stretch of 16, as εr = 4.36 was the initial permittivity and εr = 2.44 was the
measurement under stretch. Zhang et al. [1997] found from their experimental work
on the electromechanical response of the polyurethane elastomer that the motions of
chains can be divided to those related to the mechanical response and those related to
the polarization response, while the overlap between them yields the electromechanical
response. Some experimental works, such as Pelrine et al. [2000], Barnes et al. [2007]
and Lu et al. [2012], examined the influence of prestraining the DEs membranes on the
performance of actuators. These examinations were performed for biaxially and uniaxially
prestraining silicone and acrylic elastomers. Furthermore, some work have been done into
developing models that assist in estimating the variation in relative permittivity as a
result of different stretch combinations [Jimenez and McMeeking, 2013, Dorfmann and
Ogden, 2017]. An example of such work is the one presented in Cohen et al. [2017], where
a statistical mechanics based model is compared to experimental findings.

(Note: This work)
(Note: A brief description of the displayed content)
We begin this work with a theoretical background, within the framework of contin-

uum approach, concerning the mechanical, electrostatic and coupled cases. Following are
a review of the analysis of the microstructure of isotropic polymer chain network using
statistical mechanics through entrophy considerations and a reference of a phenomenolog-
ical model for the electromechanical coupling of DEs that will be compared to our results.
In section 3 an analysis of the DEs electroelasticity in several hierarchical cases, from a
single electric charge to a network, is presented. Moreover, the means of assessing the
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structure and properties of a general polymer will be discussed. Section 4 deals with a
numerical application of the electrostatically biased polymer network. This demonstrates
the influence of performing the polymerization process of a polymer under an electric field,
on the structure of the network and it’s properties, all while comparing it to an isotropic
polymer network and to the phenomenological model. Next, our experimental work is
presented in section 5, which is meant to give an additional perspective than our theo-
retical work. The experimental work includes an evaluation of the influence of uniaxial
and biaxial stretching of DEs on their dielectric constant. Moreover, we introduce a new
experimental system which allows us to evaluate the variations in the dielectric constant
of DEs at different magnitudes of electric fields. Conclusions are gathered in section 6.
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2 Theoretical background

(Note: Multiscale entropy based analysis)
A mechanical and electrostatic energy balance is formulated in terms of the electric

enthalpy. The analyses will be carried out by taking into account the entropy of the chains
network within the framework of statistical mechanics with the appropriate kinematic and
energetic constraints.

2.1 Continuum electroelasticity

(Note: basic continuum mechanics - mechanics aspect)
Consider an electroelastic solid continuum in a stress-free configuration in the absence

of electric field and mechanical load. Let material particles be labelled by their position
vector X in this referential configuration. In the deformed configuration the point X
occupies the position x = χ(X, t) where the vector field χ describes the deformation of the
material. We require χ to be a one-to-one, orientation-preserving and twice continuously
differentiable mapping [Dorfmann and Ogden, 2005].

(Note: continuum mechanics - mechanics)
The deformation gradient tensor is

F = ∇Xχ(X, t), (1)

where ∇X is the gradient operator and the subscript X implies that the derivative is
taken with respect to the referential coordinate system. The Cartesian components of
F are F ij = ∂xi

∂Xj
, where Xi and xi i = 1, 2, 3, are the Cartesian components of X and

x, respectively. J ≡ det(F ) is the ratio between volume elements in the current and
reference configurations, with the convention of being strictly positive. Moreover, the
velocity of the material points is v (x) and accordingly the spatial velocity gradient is

L = ∇xv = Ḟ F−1, (2)

where ∇x is the gradient operator taken with respect to the current coordinate system.
(Note: continuum mechanics - electrostatic)
The body is subjected to an electric field E(x), which satisfies the relation∇x×E(x) =

0 in the entire space. The electric potential φ is a scalar quantity defined such that
E = −∇xφ. The electric induction, also known as the electric displacement, is

D(x) = ε0 E(x) + P(x), (3)
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where the constant ε0 is the permittivity of vacuum and P(x) is the electric dipole-
density, also known as the polarization. In vacuum P = 0. The electric displacement in
ideal dielectrics or in a continuum with no free charges is governed by the equation

∇x ·D(x) = 0. (4)

(Note: continuum mechanics - the electromechanical coupling)
The electrical boundary conditions for the electromechanical problem are given in

terms of the electric potential or the charge per unit area on the boundary ρa, which is
the charge on the electrodes such that D · n̂ = −ρa, where n̂ is the outer pointing unit
vector normal to the boundary in the current configuration. The mechanical boundary
conditions are stated in terms of the displacement or the mechanical traction t. The
electric field in the surrounding space induces Maxwell’s stress

σM = ε0

(
E⊗ E− 1

2(E · E)I
)
. (5)

Accordingly, the traction boundary condition is
(
σ − σM

)
n̂ = t. Assuming no body

forces, the stress that develops in a dielectric σ due to the electromechanical loading
satisfy the equilibrium equation

∇x · σ = 0. (6)

(Note: The first law of thermodynamics - energy balance)
A balance of energy is formulated through the first law of thermodynamics

dU
dt = dW

dt + dQ
dt , (7)

where U represents the internal energy stored in the material, W is the work of any
external sources, mechanical and electrical, and Q denotes the quantity of energy suplied
to the system as heat. Following McMeeking and Landis [2005], McMeeking et al. [2007]
and Cohen et al. [2016], a Legendre transform of the internal energy is used in order to
formulate the energy balance in terms of the electric enthalpy-density H = U − JP · E.
In order to formulate the energy balance in terms of entropy, which relates to the systems
number of microscopic configurations, we refer to a polymer as a reversible or conservative
material [McMeeking and Landis, 2005], i.e. a material that does not absorb the work done
by external agents but store it as dielectric polarization or elastic deformation. Hence,
following Clausius theorem in the case of a reversible material or system, the entropy
change is defined as dS = dQ

T
, where S is the entropy-density function per unit referential

volume and T is the absolute temperature. Thus, while taking into account the analysis
presented in appendix A [deBotton, 2020], we consider a general representation in which
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the first law of thermodynamics is

ḢΥ − d
dt

�
R3

ε0
2 E·EdV = Ẇ Υ + T ṠΥ , (8)

where we consider an electroelastic system Υ ⊂ R3.
In the work of Cohen et al. [2016], a specific representation of Eq. (8) was presented

for the analysis of the energy balance in a single polymer chain

d
dt

�
V0

H (F ,E) dV0 −
d
dt

�
R3

ε0
2 E·EdV = dW

dt + T
d
dt

�
V0

S (F ,E) dV0, (9)

where we consider a dielectric body that occupies the region V0 ⊂ R3 with a boundary ∂V0

before the deformation and the region V ⊂ R3 with a boundary ∂V after the deformation,
at the current configuration.

The rate of the electric enthalpy is [Cohen and deBotton, 2014]

d
dt

�
V0

H (F ,E) dV0 =
�
V

1
J

∂H (F ,E)
∂F

F T : LdV +
�
V

1
J

∂H (F ,E)
∂E

· ĖdV, (10)

and the rate of entropy is

d
dt

�
V0

S (F ,E) dV0 =
�
V

1
J

∂S (F ,E)
∂F

F T : LdV +
�
V

1
J

∂S (F ,E)
∂E

· ĖdV. (11)

If we assume no free charges in the material and neglect body forces, the power extracted
by the external mechanical and electrical agents on the system is [McMeeking and Landis,
2005, McMeeking et al., 2007, Cohen et al., 2016]

dW
dt =

�
∂V

t · v dA−
�
∂V

ρa
dφ
dt dA, (12)

which can also be formulated as [McMeeking et al., 2007]

dW
dt =

�
V

(
σ − σM − E⊗P

)
: LdV− d

dt

�
R3

ε0
2 E·EdV−

�
V

P·ĖdV+
�
R3/V

(
σ − σM

)
: LdV.

(13)
By takin into account Eq. (10), Eq. (11) and Eq. (13) in Eq. (9)

�
V

(
1
J

(
T
∂S (F ,E)

∂E
− ∂H (F ,E)

∂E

)
−P

)
· ĖdV +

�
R3/V

(
σ − σM

)
: LdV+ (14)

�
V

(
σ − σM − E⊗P− 1

J

(
∂H (F ,E)

∂F
− T ∂S (F ,E)

∂F

)
F T

)
: LdV = 0.
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As it is assumed that Eq. (14) fits every acceptable process, by following Coleman and
Noll [1963] it is obtained that

σ = σm + E⊗P + σM , (15)

where
σm = 1

J

(
∂H (F ,E)

∂F
− T ∂S (F ,E)

∂F

)
F T, (16)

is the mechanical stress [Cohen et al., 2016], and E⊗P is the polarizetion stress where

P = 1
J

(
T
∂S (F ,E)

∂E
− ∂H (F ,E)

∂E

)
. (17)

Furthermore, when dealing with incompressible materials

σ = σm + E⊗P + σM + p?I, (18)

where p? is an arbitrary Lagrange multiplier corresponding to the indeterminate hydro-
static pressure that results from the incompressibility constraint and I is the identity
matrix. The corresponding deviatoric stress, which is related to shape change, is

σDev = σ − tr (σ)
3 . (19)

2.2 Entropy-driven electroelasticity of an isotropic polymer network

(Note: defining the construct and directions in the polymer)
According to the work of Cohen et al. [2016], in order to evaluate the properties and

structure of different polymers the analysis starts with a single polymer chain with n

dipolar monomers. The length between the two contact points of a monomer with its
neighbors is l. We define a coordinate system

{
Ê, Ŷ, Ẑ

}
(Fig. 1) as the chain is subjected

to an electric field E = EÊ. In this system

ξ̂ = cos θÊ + sin θ
(
cosφŶ + sinφẐ

)
, (20)

is a unit vector where 0 ≤ θ < π is the angle between ξ̂ and the electric field and
0 ≤ φ < 2π is the angle of its projection on the plane perpendicular to Ê with Ŷ. We
define dΓ = sin θ dθ dφ as the differential solid angle. We also formally define that Γ
varies in the range from 0 to Γ0.
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Figure 1: A schematic description of the coordinate system
{
Ê, Ŷ, Ẑ

}
and the applied

spherical coordinates.

(Note: a chain’s number of possible configurations and constraints (+Stirling’s approxima-
tion))

The number of possible configurations of a single polymer chain is

ΩC = n!
Πi (ni!)

, (21)

where ni represent the number of dipolar monomers aligned along ξ̂ in the range θi ≤ θ <

θi + dθ and φi ≤ φ < φi + dφ. For convenience we define that θi and φi correspond to the
unit vector ξ̂i. The entropy of the chain is

SC = k ln
(
ΩC

)
= k

(
n ln (n)− n−

∑
i

ni ln (ni) +
∑
i

ni

)
, (22)

where Stirling’s approximation is implemented and k is Boltzmann constant. The chain
is subjected to three constraints: ∑

i

ni = n, (23)

∑
i

l niξ̂i = r, (24)

where the end-to-end vector of the monomers chain is r = r r̂, with r̂ = cos ΘÊ +
sin Θ

(
cos ΦŶ + sin ΦẐ

)
, and ∑

i

nihi = HC , (25)

where hi is the electrical enthalpy of a monomer directed along ξ̂i and HC is the enthalpy
of the chain.

(Note: maximizing the entropy according to the constraints)
We assume that the polymer chain occupies the most probable configuration under
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the given constraints, and therefore we are interested in maximizing the entropy,

SC = k

(
ln
(
ΩC

)
+ α

(∑
i

ni − n
)

+ τ ·
(∑

i

niξ̂i −
r
l

)
+ γ

(∑
i

nihi −HC

))
, (26)

where α, τ and γ are Lagrange multipliers. The derivative of SC with respect to ni is

∂SC

∂ni
= k

(
− ln (ni) + α + τ · ξ̂i + γhi

)
= 0, (27)

from which
ni = exp

(
α + τ · ξ̂i + γhi

)
. (28)

Upon substitution of the latter into Eq. (26), the maximum entropy that can be achieved
by the chain is [Cohen et al., 2016],

SC = k
(
n ln (n)− αn− τ · rl − γH

C
)
. (29)

(Note: Lagrange multiplier - inverse temperature)
We assume that the polymer chains do not interact with one another. Consequently, in

a volume element dV0, the total entropy-density and the total electrical enthalpy-density
function are S = 1

dV0

∑
k
SCk and H = 1

dV0

∑
k
HC
k , respectively. Accounting for the first law of

thermodynamics with respect to the enthalpy of the k-th chain we obtain

∂H

∂HC
k

= T
∂S

∂HC
k

, (30)

from which we can derive the relation

γ = − 1
k T

, (31)

where Eq. (29) is used.
(Note: PDF of a monomer according to the constraints and with maximum entropy (+cal-

culating the rest of the Lagrange multipliers and Hc))
From the constraint Eq. (23) and Eq. (27)

∑
i

ni = exp (α)
Γ0�

0

exp
(
τ · ξ̂ − h

k T

)
dΓ = n, (32)

where Eq. (29) is used and the summation is replaced by an integral over all the orienta-
tions of the monomers. Therefore,

exp (α) = n

Z
, (33)
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where

Z =
Γ0�

0

exp
(
τ · ξ̂ − h

k T

)
dΓ , (34)

is the partition function. Subsequently, from Eq. (28) we have that

p
(
ξ̂, h

)
= 1
Z

exp
(
τ · ξ̂ − h

k T

)
, (35)

is the probability density function (PDF) that a monomer is in the direction ξ̂ and has
an electrical-enthalpy h. An implicit equation from which the Lagrange multiplier τ is
computed follows from constraint Eq. (24),

Γ0�

0

ξ̂ p dΓ = r
n l
. (36)

From Eq. (25) the enthalpy of the chain is

Γ0�

0

h p dΓ = HC . (37)

(Note: monomer enthalpy and different dipole types)
Following Blythe and Bloor [2005], Cohen and deBotton [2014, 2015] and Cohen et al.

[2016], the electrical enthalpy of a dipole oriented along ξ̂ is

h = m · E, (38)

where the dipole vector m is determined according to a relevant model that represents
the local relation. Three specific models were accounted for. The first corresponds to a
spontaneous dipole or a rigid dipole with a constant magnitude [Blythe and Bloor, 2005]

mS = κP ξ̂. (39)

The second model is of a uniaxial dipole whose magnitude depends on the electric field
[Stockmayer, 1967]

mU = κU ξ̂ ⊗ ξ̂E, (40)

where κU is commonly referred to as the polarizability of the dipole. The third type is
the transversely isotropic (TI) model [Stockmayer, 1967]

mTI = 1
2κTI

(
I − ξ̂ ⊗ ξ̂

)
E, (41)
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where in this case the dipole is perpendicular to ξ̂. Note that since we do not account
for the local electrostatic interactions between the dipolar monomers, the electric field
induced over the monomers in the chain is uniform.

We note that in order to have that three dielectrics composed of a random and uniform
distribution of spontaneous, uniaxial and transversely isotropic dipoles admit the same
behavior in the limit of infinitesimal deformations and small electric fields, the relations
κU = κTI = κ2

P

k T
= κ are set. The polarizability is taken as κ = 3

n0
ε0 χ0 [Cohen et al.,

2016], where χ0 = εr − 1 is the initial susceptibility and εr is the relative permittivity.
n0 = N n is the number of monomers in a unit referential volume where N is the number
of chains in the unit referential volume.

(Note: PDF in the amorphous case)
In the case of an amorphous polymer the chain’s constraints, presented in Eq. (23),

Eq. (24) and Eq. (25), are irrelevant as there are no such limitations on a single monomer.
Therefore τ = 0 and the adjusted form of the PDF in Eq. (35) is

p
(
ξ̂
)

= 1
Z

exp
(
− h

k T

)
, (42)

where
Z =

�
exp

(
− h

k T

)
dΓ , (43)

and the enthalpy of the monomer is calculated by using Eq. (38) according to the correct
dipole type.

(Note: analytical calculation - PDF in the amorphous case - U and TI)
In addition to the numerical calculations for the PDF in the amorphous case, the amor-

phous monomer distribution can also be calculated by the analytical analysis presented
by Cohen et al. [2016], as

pU = ω

4πD (ω) exp
(
−ω2 sin2 (θi)

)
, (44)

is the PDF of the uniaxial dipole, where ω =
√

κ
k T
E = κP E

k T
andD (ω) = exp (−ω2)

� ω
0 exp (t2) dt

is the Dawson function. The PDF for the TI dipole is

pTI = ω

(2π)3/2 Erf
(
ω√
2

) exp
(
−ω

2

2 cos2 (θi)
)
, (45)

where Erf (x) is the error function.
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2.3 Phenomenological approach to electroelasticity

(Note: A reference for the results in the application section)
A predictive material model, a relatively simple model that allow for reasonable as-

sumptions, based on settings of continuum mechanics is used from the phenomenological
viewpoint as a comparison to the results of our examinations. In the current work a consti-
tutive law for the material is required to be expressed through an energy density function
that depends on both the deformation and the electric displacement or the electric field.
Thus, as a reference, we recall the extended neo-Hookean energy-density function for an
ideal elastic dielectric (IED) [Dorfmann and Ogden, 2005]

W (F ,E) = µ

2
(
Tr
(
F TF − I

))
+ ε0εr

2 E · E, (46)

where µ is the shear modulus of the material. From Eq. (46) and on the basis of thermo-
dynamic arguments, assuming a conservation of energy and a reversible or conservative
material, the constitutive equations for an incompressible IED can be expressed as

σ = F
∂W

∂F
+ p?I = µFF T + E⊗D + p?I, (47)

and
D = ε0εrE, (48)

in accordance with Eq. (3) as the relative permittivity is considered to be constant. We
note that, in general, this model does not accurately retrieves experimental results for
coupled electromechanical loading.
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3 Electroelasticity of solutions and anisotropic net-
works of polymer molecules

An in-depth multiscale analysis of the electromechanical coupling in DEs, which is inher-
ented from their microstructure, is carried out. The interplay between the macroscopic
deformation of the DEs and the rearrangement of the monomers in a network of polymer
chains as a result of external electrical and mechanical loading will be examined.

3.1 First law of thermodynamics

The first law of thermodynamics, presented in Eq. (8), is formulated as a general rep-
resentation for the electromechanical situation. Such representation accounts for the
conservation of energy of a body that is subjected to an electric field while allowing us
to formulate the energy balance in terms of the electric enthalpy and the entropy of the
system.

For systematic analysis of the electromechanical coupling in polymers, from the mi-
croscopic to the macroscopic levels, we specialize Eq. (8) to five different systems. The
simplest ones are based on the system presented in Fig. 2 which is essentially a one
dimensional system. Subsequently we examine a network that is treated as a 3 D body.

3.2 1 D systems of charge, dipole and molecular chains in elec-
tric field

In a 1 D system (see Fig. 2), we define the vector connecting the two ends (i.e. the end-to-
end vector of the system) as r = r−− r+. f+/−, V+/− and Q+/− are the forces, velocities
and charges on the system’s boundaries, respectively. The rate of enthalpy and the rate
of entropy are ḢΥ = Ḣ (r,E0) and ṠΥ = Ṡ (r,E0), respectively. The power extracted by
the external agents (Eq. (12)) is Ẇ Υ = ∑ f ·V +∑

Qφ̇.

3.2.1 A single electric charge

We begin with an analysis of the second term in Eq. (8), that concerns the variation in the
energy of the system due to variations in the electric field generated by a single charge.
To be precise, the present case describes a 0 D system.
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Figure 2: Schematic description of an arbitrary one dimensional system subjected to
electromechanical exitation at its boundary.

The electric field due to a particle with a constant electric charge Q is derived from
Coulomb’s law as

EQ (g) = Qĝ
4πε0g2 , (49)

where in the current case g = gĝ is the vector from a specific point in space to the charge’s
location. Thus, as electric fields satisfy the superposition principle, the total electric field
at the mentioned location is

E (g) = E0 + EQ (g) = E0 + Qĝ
4πε0g2 , (50)

where E0 = E0 Ê is the electric field subjected on the entire space. Accordingly, the
second term in Eq. (8) is

ε0
2

d
dt

�
R3

(
E0 · E0 + 2QE0 · ĝ

4πε0g2 + Qĝ
4πε0g2 ·

Qĝ
4πε0g2

)
dV

=ε02
d
dt

�
R3

(
E0 · E0 + QE0 · ĝ

2πε0g2 + Q2

16π2ε20g4

)
dV. (51)

We note that the first and third terms in Eq. (51) are constants. Moreover, for any
spherical region about the charge with inner radius Ri and outer radius Ro the variation
in the energy depends on

Q

4π

2π�

0

π�

0

Ro�

Ri

E0 · ĝ
g2 g2 sin ΘdgdΘdΦ = QE0

2
d
dt

Ro�

Ri

dg
π�

0

cos Θ sin ΘdΘ ≡ 0, (52)
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Figure 3: Schematic description of a single charge subjected to an electric field.

where according to Eq. (20) E0 · ĝ = E0 cos Θ. Since this integral vanishes identically, so
does its time derivative. Thus, for any motion of a single charge in a uniform electric field
the second term in Eq. (8) vanishes.

Taking into account Eq. (52) and neglecting the enthalpy and entropy, as we assume
no material, Eq. (8) is reduced to Ẇ = 0. Thus, by observing Fig. 3 and from Eq. (12)
for a single charge

Ẇ = f · dc
dt −Q

dφ
dt = 0, (53)

where c denote the location of the charge. The velocity of the charge is V = dc
dt where

dc = δÊ + dcT represent the change in the location of the charge during dt, dφ =
−E0 · dc = −δE0 and f = fEÊ + fT . Moreover, dcT and fT are the components of dc and
f , respectively, that are perpendicular to the direction Ê. Thus,

Ẇ = d
dt (f · dc +QδE0) = d

dt (fEδ + fT · dcT +QδE0) = 0. (54)

Therefore, since in an equilibrium state Eq. (54) equals zero and dcT is arbitrary, we
conclude that fT ≡ 0 and fE = −QE0. This is precisely Coulomb’s force on a charge of
magnitude Q in an electric field E0.

3.2.2 Dipoles

Consider a charged nonpolarized rigid dipole and, as in the previous case, we assume no
material and neglect the enthalpy and entropy. As can be seen in Fig. 4, the dipole is
described as two charges, Q+ and Q−, connected by a stiff rod with length l and in the
direction of the unit vector ξ̂. We assume that Q+ = −Q− = Q.
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Figure 4: Schematic description of a single dipole consisting of two charges, Q+ and Q−,
connected by a stiff rod in an electric field.

Again, we begin with an analysis of the second term in Eq. (8), the variation in the
energy of the system due to variations in the electric field generated by both the charges.
Hence, in accordance with the superposition principle

E = E0 + EQ+ (g+
)
− EQ− (g−) = E0 + Qĝ+

4πε0 (g+)2 −
Qĝ−

4πε0 (g−)2 ,

= E0 + E+ + E−, (55)

where g+ = g+ĝ+ and g− = g−ĝ− are the vectors from a specific point in space to the
locations of the charges Q+ and Q−, respectively. Accordingly, the second term in Eq. (8)
is

ε0
2

d
dt

�
R3

(
E0 · E0 + 2

(
E0 · E+ + E0 · E− + E+ · E−

)
+ E+ · E+ + E− · E−

)
dV (56)

where according to Eq. (52) the integrals of E0 ·E+ and E0 ·E− vanishes identically and
the rest of the terms are constants. Hence, Eq. (56) equals zero.

Thus, Eq. (8) is again reduced to Ẇ = 0. From the definition of the electric potential,
dφ = −E0 · dc. Thus, φ̇+/− = −E0 ·V+/− and the rate of work of the external sources is

Ẇ = f+ ·V+ + f− ·V− + E0 ·
(
Q+V+ +Q−V−

)
= 0. (57)

Since c+ = c−+lξ̂ from the geometric relation, then V+ = V−+l ˙̂ξ and the corresponding
rate of work is

Ẇ =
(
f+ + f−

)
·V− + l

(
f+ +QE0

)
· ˙̂
ξ = 0. (58)
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Figure 5: Schematic description of a dipole in an electric field.

Since the dipole is rigid, there is a constraint along the direction of the dipole. Thus, the
forces and the electric field are splitted to components in accordance with the orthogonal
system

{
ξ̂, û, ŝ

}
where ŝ = ξ̂ × Ê is perpendicular to the plane spanned by the electric

field and the dipole. û = ŝ × ξ̂ is perpendicular to the dipole and is on the described
plane. Hence, let f+ = a+ξ̂ + b+û + c+ŝ, f− = a−ξ̂ + b−û + c−ŝ and E0 = eξ̂ + gû.
Consequently, Eq. (58) yields

Ẇ =
((
a+ + a−

)
ξ̂ +

(
b+ + b−

)
û +

(
c+ + c−

)
ŝ
)
·V−+l

(
a+ξ̂ + b+û + c+ŝ +Q

(
eξ̂ + gû

))
· ˙̂ξ = 0.

(59)
Since at equilibrium Eq. (59) equals zero and V− and ˙̂

ξ are arbitrary, it can be inferred
from the first term that a+ = −a−, b+ = −b− and c+ = −c−. Though, when considering
the second term, we can deduce that c+ = 0. Moreover, since ˙̂

ξ ⊥ ξ̂ the dot product
of the component which is along the dipole with the temporal derivative of the dipole
vanishes identically. Thus, the second term of Eq. (59) does not contribute a constraint
for the components of the forces in the dipole direction and b+ = −gQ. These results are
analogous to the requirement that the sum of the moments on the dipole vanishes.

In the case of a spontaneous and polarizable dipolar monomers (Fig. 5) the electrical
enthalpy must be taken into account. According to Cohen et al. [2016], the electrical
enthalpy of a dipole is

h = −m · E0, (60)

where m is the dipole vector. In the case of a spontaneous dipole with a constant mag-
nitude κ, m = κξ̂. Hence, the electrical enthalpy is h = −κξ̂ · E0 and the rate of the
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electrical enthalpy is
ḣ = −κ ˙̂

ξ · E0. (61)

In this case Eq. (8) is reduced to
ḣ = Ẇ . (62)

Substituting Eq. (58) and Eq. (61) into Eq. (62) yields

− κ ˙̂
ξ · E0 = f+ ·V+ + f− ·V− =

(
f+ + f−

)
·V− + lf+ · ˙̂

ξ, (63)

which yields that (
f+ + f−

)
·V− +

(
lf+ + κE0

)
· ˙̂
ξ = 0. (64)

Again, the forces and the electric field are splitted to components in accordance with
the orthogonal system

{
ξ̂, û, ŝ

}
, where f+ = a+ξ̂+ b+û + c+ŝ, f− = a−ξ̂+ b−û + c−ŝ and

E0 = eξ̂ + gû. Accordingly, Eq. (58) yields

((
a+ + a−

)
ξ̂ +

(
b+ + b−

)
û +

(
c+ + c−

)
ŝ
)
·V−+

(
l
(
a+ξ̂ + b+û + c+ŝ

)
+ κ

(
eξ̂ + gû

))
· ˙̂ξ = 0.

(65)
Thus, as V− and ˙̂

ξ are arbitrary, the first term leads us to the constraints a+ = −a−,
b+ = −b− and c+ = −c−. The second term leads to c+ = 0 and since ˙̂

ξ ⊥ ξ̂ the second
term does not contribute an additional constraint on the components of the forces in the
dipole direction and b+ = −g κ

l
. In the case where b+ = 0 then E0 · ˙̂ξ = 0 for equilibrium.

Since ˙̂
ξ ⊥ ξ̂ it inferes that for this specific case ξ̂ ‖ E0. Which means that the electric field

will not induce rotation on the dipole and the dipole can be at rest without application
of external forces.

3.2.3 Polymer molecule (chain)

As was established, while d
dt

�
R3 E·EdV vanishes identically and whenever Ẇ = 0, Eq. (8)

is reduced to
Ḣ = T Ṡ. (66)

Thus, since T ṠC − ḢC = 0 describes an equilibrium state for a polymer chain, it means
that the preferred state of a chain can be described by determining max

{
TSC −HC

}
.

By taking Eq. (29) into account, the most probable state is the one that satisfies

max
{
Tk

(
n ln (n)− αn− τ · rl

)
− (Tkγ + 1)HC

}
, (67)
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where from Eq. (25) HC (r,E0) =
n∑
i=1

hi
(
ξ̂i,E0

)
. Furthermore, we emphasize that the

analysis is executed with the assumption that r, the end-to-end length of the chain with
maximum permutations (i.e. the most probable), is the only end-to-end length of chains
in the direction of r̂.

(Note: The "length" of a polymer chain - general)
In order to determine the most probable r for a specific chain, the number of possible

permutations is calculated for all possible end-to-end lengths in the range 0 ≤ r ≤ n l.
This assessment is performed for chains in all possible orientations relative to the direction
of the electric field, 0 ≤ Θ < π. Thus, we can assess the most probable chain configuration,
depending on the magnitude of the electric field in the polymerization process and the
chain’s inclination to the electric field.

(Note: The "length" of a polymer chain in the case of E=0 - purely mechanical case)
When examining r of a single polymer chain in the case of E0 = 0, then HC (r, 0) = 0

and the entropy of the chain is governing its behavior. By using the implicit equation
from which the Lagrange multiplier τ is computed and the probability density function
that a monomer is in the direction ξ̂, Eq. (36) and Eq. (35) respectively, we obtain

Γ0�
0
ξ̂ exp

(
τ · ξ̂

)
dΓ

Γ0�
0

exp
(
τ · ξ̂

)
dΓ

= r
n l
. (68)

Let τ = ar̂ + bm̂ where m̂ = m
m

and m = τ − (τ · r̂) r̂ in an orthogonal system {r̂, m̂, ŝ}
where ŝ = r̂×m̂. In this system take ξ̂ = cos θr̂+sin θ (cosφm̂ + sinφŝ), and subsequently
τ · ξ̂ = a cos θ + b sin θ cosφ.

Multiplying Eq. (68) by m̂ we obtain

1
Z

Γ0�

0

(
ξ̂ · m̂

)
exp

(
τ · ξ̂

)
dΓ = 0, (69)

or explicitly

1
Z

� 2π

0

� π

0
exp (a cos θ) exp (b sin θ cosφ) sin θ cosφ (sin θ dθ dφ) = 0. (70)

We note that the choice b = 0 leads to

1
Z

� π

0
exp (a cos θ) sin2 θ dθ

� 2π

0
cosφ dφ = 0, (71)

and hence to the fulfilment of Eq. (69).
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Next, by multiplying the left hand side of Eq. (68) by r̂ we obtain

1
Z

Γ0�

0

(
ξ̂ · r̂

)
exp

(
τ · ξ̂

)
dΓ = 1

Z

� 2π

0

� π

0
exp (a cos θ) cos θ sin θ dθ dφ. (72)

A change of variables to x = cos θ leads to the expression
� 1
−1 exp (a x) x dx� 1
−1 exp (a x) dx

= r

n l
, (73)

which can be integrated to

exp (a) + exp (−a)
exp (a)− exp (−a) −

1
a
≡ L (a) = r

n l
, (74)

where L is the Langevin function. Accordingly,

a = L−1
(
r

n l

)
, (75)

where L−1 is the inverse Langevin function. Note that if r
n l

≪ 1 then a ∼= 3r
n l

and in the
limit r → n l then a→∞.

Substituting the expression for SC following Eq. (22) and Eq. (26)

ln
(
ΩC

)
= n ln (n)−

∑
i

ni ln (ni) (76)

= n

ln (n)− 1
Z

ln
(
n

Z

) Γ0�

0

exp (a cos θ) dΓ + a

Γ0�

0

exp (a cos θ) cos θ dΓ


 ,

where, from Eq. (72)

Γ0�

0

exp (a cos θ) cos θ dΓ = r

n l

Γ0�

0

exp (a cos θ) dΓ , (77)

and thus,

ln
(
ΩC

)
= n

ln (n)− 1
Z

(ln
(
n

Z

)
+ a r

n l

) Γ0�

0

exp (a cos θ) dΓ




= n ln (Z)− ar
l
. (78)

We note that
Z = 2π

a
(exp (a)− exp (−a)) , (79)
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and hence
ln
(
ΩC

)
= n ln

(2π
a

(exp (a)− exp (−a))
)
− ar

l
. (80)

Note that in the limit r → 0, ln
(
ΩS
)

= n ln (4π) and hence ΩS = (4π)n, and in the limit
r → n l, ln

(
Ωn l

)
= n ln

(
2π
a

exp (a)
)
− a n = n ln

(
2π
a

)
and hence Ωn l =

(
2π
a

)n
→ 0 since

a→∞. The total number of permutations of chains with end-to-end length r, as E0 = 0,
is

ΩO (r) = 4πr2ΩC (r) = 4πn2l2η2ΩC (81)

where η ≡ r
n l
. Since at r → 0 ΩS is finite then ΩO (0)→ 0 and since at r → n l ΩS → 0

and r2 is finite ΩO (n l) → 0. This suggests that in the range 0 < r < n l ΩO has a
maximum.

Determination of the maximum is performed as

d ln ΩC

dη = ∂ ln ΩC

∂a

da
dη + ∂ ln ΩC

∂η
, (82)

when treating a and η as independent variables. It can be seen from Eq. (74) and Eq. (80)
that

∂ ln ΩC

∂a
= n

(
exp (a) + exp (−a)
exp (a)− exp (−a) −

1
a

)
− r

l

= n

(
exp (a) + exp (−a)
exp (a)− exp (−a) −

1
a

)
− nη = 0, (83)

thus,
d ln ΩC

dη = −a n. (84)

From the distribution in the case of E0 = 0 (seen in Eq. (81)), as 4πn2l2 = k

1
k

∂ΩO

∂η
= 2ηΩC + η2 dΩC

dη = η exp
(
ln ΩC

)
[2− η a n] = 0, (85)

therefrom a = 2
n η

or η = L
(

2
n η

)
= coth

(
2
n η

)
− n η

2 . If n is a large number coth
(

2
n η

)
=

n η
2 + 2

3n η + o
(

2
n η

)3
. Hence, up to a second order in 1

n
η =

√
2
3

1√
n
∼ 0.816√

n
. This result

differ from the assessment given from random walk statistics presented and used by Kuhn
[1934], Treloar [1973], Arruda and Boyce [1993] and Cohen et al. [2016] but coincide with
the assessed end-to-end chain length determined in Flory [1949] , Flory [1953] and Treloar
[1975].

(Note: force in a single chain with no electric field)
Furthermore, the most probable end-to-end length of a chain whose one end is at the

origin and the other end is located within a small dV = r2drdφdθ when a given force
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f ‖ r is acting upon it is also examined in the case of no electric field. By specializing
Eq. (8) to the case of a single chain without an electric field we receive

Ẇ + T ṠO (r) = 0. (86)

For this case, we define that r = ρR, where ρ is the stretch magnitude, R is the end-to-
end vector in the referential state of the chain and it is assumed that r ‖ R. Thus, in
accordance with Eq. (22) and Eq. (81), the rate of entropy is

ṠO (r) = dSO
dρ ρ̇ = k

(
2
ρ
− τ ·R

l

)
ρ̇, (87)

and the rate of work of the external sources is

Ẇ = f · v = f ·Rρ̇, (88)

where v = ṙ, f is the external force operating on the chain and body forces are neglected.
Substituting Eq. (87) and (88) into Eq. (86) yields

(
f ·R + T k

(
2
ρ
− τ ·R

l

))
ρ̇ =

(
f ·Rρ+ T k

(
2− τ ·Rρ

l

))
ρ̇

= (f · r + T k (2− η τ n)) ρ̇ = 0, (89)

thus,

f = −T k (2− η τ n)
r2 r = −

T k
(
2− r

n l
L−1

(
r
n l

)
n
)

r
r̂, (90)

where Eq. (75) is taken into account. Hence, in accordance with Eq. (85), when r
n l

=√
2
3

1√
n
then f = 0.

3.3 Polymer molecules (chains) in electric field

We examine a method for controlling the electroelastic moduli of a network. Specifically,
we examine the consequence of executing the polymerization process under electric field.
To this end we assume that the chains are in a solution during the polymerization. The
current step assumes that the monomers are already bonded into chains, but before the
curing and the toughening or hardening of the network by cross-linking of the chains. In
this case we can refer to the chains as "floating" in the solution such that no external work
is applied at their ends. Furthermore, we assume no interactions between the chains and
determine their most probable permutations seperetly.

In accordance with the mentioned assumptions, each chain will be examined individ-
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ually as the end-to-end length of a chain is rj = r (Θj,E0) and the end-to-end direction
of the chain is r̂j = r̂ (Θj,Φj). According to the coordinate in Fig. 1, Θj is the inclination
of the chains end-to-end vector relative to the direction of the electric field. Hence, as
described in section 3.2.3, the suitable rj for each Θj is the one that satisfies Eq. (67). In
the case where E = 0 it is sufficient to analyze a single chain (detailed in section 3.2.3)
since in this case the polymer has no preferred direction and the network is isotropic.

3.3.1 Monomers orientational distribution

(Note: calculating monomer orientations)
After calculating the polymers end-to-end chain length in each group, the orientation

of the chains building blocks, the monomers, can be evaluated. The monomer orientations
are investigated as a part of a chain while taking into account the suitable constraints,
seen in Eq. (23), Eq. (24) and Eq. (25).

Once the end-to-end chains lengths with the maximum possible permutations are de-
termined, i.e. the most probable end-to-end chain length for each group is found, the
monomers distribution can be calculated for each chain by using Eq. (35). The probabili-
ties for all possible orientations of the monomers are calculated in order to determine the
monomers distribution of the most probable chains, found in the previous section. The
mentioned orientations include all combinations of 0 ≤ θ < π and 0 ≤ φ < 2π.

After obtaining the monomers orientations for each of the chain groups, a comparison
can be made to the monomer distribution in the amorphous case. Such distribution can
be calculated according to Eq. (42) while taking into account the correct type of dipole.
Analytical approximations of the PDF in the amorphous are presented in Eq. (44) and
Eq. (45) for uniaxial dipoles and transversely isotropic dipoles, respectively [Cohen et al.,
2016].

3.4 An anisotropic network of polymer molecules

According to Flory [1949] the total number of internal configurations of a polymer with
N polymer chains is

Ωt = N !
∏
q

(
(ωq)Nq

Nq!

)
, (91)

where ωq and Nq are the number of configurations and the number of chains associated
with specific end-to-end vector, respectively. Assume, in a way of an example, that we can
a-priori split the chains population into two popultions such that for all the end-to-end
vectors in the two groups the number of possible configurations are ω1 and ω2, and the
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number of chains in each group are N1 and N2. There are total ψ1 and ψ2 end-to-end
vectors in the two groups such that ψ1N1 + ψ2N2 = N . Accordingly

Ωt = N !
 ψ1∏
q1=1

(ω1)N1

N1!

 ψ2∏
q2=1

(ω2)N2

N2!

 = N !
(

(ω1)N1

N1!

)ψ1 ((ω2)N2

N2!

)ψ2

. (92)

Similarly, if there are J groups with similar number of configurations and number of
chains in each group

Ωt = N !
J∏
j=1

(
(ωj)Nj

Nj!

)ψj

, (93)

where ψj is the number of end-to-end vectors in the j-th group and

∑
j

ψjNj = N. (94)

The number of possible configurations of a polymer chain is calculated as

ωj = nj!
Πi (nij!)

, (95)

where nj is the number of dipolar monomers in a chain which is in the j-th group of
chains and nij is the number of monomers aligned along ξ̂i in a chain which is in the j-th
group. Consequently, the total entropy of the polymer

St = k ln
(
Ωt
)

= k

N ln (N)−N +
∑
j

ψj

(
Nj

(
nj ln (nj)− nj −

∑
i

nij ln (nij) +
∑
i

nij

)
−Nj ln (Nj) +Nj

)
= k

N ln (N) +
∑
j

ψjNj

(
nj ln (nj)−

∑
i

nij ln (nij)− ln (Nj)
) ,

(96)

by employing the Stirling approximation. The polymer network is subjected to the con-
straint mentioned in Eq. (94). As was previously specified, each chain is subjected to
three constraints: ∑

i

nij = nj, (97)

∑
i

lnij ξ̂i = rj, (98)

and the end-to-end vector of the monomers chain is rj = rj r̂j, and

∑
i

nijhi = HC
j , (99)
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where HC
j is the electrical-enthalpy of the chain and hi is the enthalpy of a monomer

aligned along ξ̂i.
We assume that the most probable configuration is the one that the polymer occupies,

and thus we are interested in maximizing the entropy under the given constraints,

St = k ln (Ωt) + k
∑
j

ψjNj

(
αj

(∑
i

nij − nj
)

+ τ j ·
(∑

i

nij ξ̂i −
rj

l

)
+ γj

(∑
i

nijhi −HC
j

))

+ k η

∑
j

ψjNj −N

 , (100)

where αj, τ j, γj and η are Lagrange multipliers.
In order to account for the maximal number of configurations we impose that

∂St

∂nij
= k

(
−ψjNj ln (nij) + ψjNj

(
αj + τ j · ξ̂i + γjhi

))
= 0, (101)

from which

nij = exp
ψjNj

(
αj + τ j · ξ̂i + γjhi

)
ψjNj

 = exp
(
αj + τ j · ξ̂i + γjhi

)
. (102)

By substituting Eq. (101) in Eq. (100), the maximum entropy of the polymer is

St = k N ln (N) + k
∑
j

ψj (Nj (nj ln (nj))−Nj ln (Nj))−
∑
j

ψjNj

(
αjnj + τ j ·

rj

l + γjH
C
j

)

+ k η

∑
j

ψjNj −N

 . (103)

Following the works of Kuhn and Grün [1942] and Treloar [1975], we too assume
the polymer chains do not interact with one another. Therefore, the total enthalpy is
Ht = ∑

j ψjNjH
C
j . Differentiating the first law of thermodynamics, Eq. (8), with respect

to the enthalpy of the j′th we have that

∂H t

∂HC
j

= T
∂St

∂HC
j

, (104)

and by using Eq. (103) we derive the relation

γj = − 1
k T

. (105)

By taking into consideration the constraint in Eq. (97) and the relations we received
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in Eq. (102) and (105) we obtain that

∑
i

nij =
Γ0�

0

exp
(
αj + τ j · ξ̂i −

hi
k T

)
dΓ = nj. (106)

From here we can determine the PDF that a monomer in the j-th chain is in the direction
of ξ̂i and has an electrical-enthalpy hi. This is

pij
(
ξ̂i, hi

)
= nij
nj

= 1
Zj

exp
(
τ j · ξ̂i −

hi
k T

)
, (107)

where

Zj =
Γ0�

0

exp
(
τ j · ξ̂i −

hi
k T

)
dΓ , (108)

is the partition function and the Lagrange multipliers τ j are computed from the implicit
equations that follow from the constraints in Eq. (98),

Γ0�

0

ξ̂i pij dΓ = rj
nj l

. (109)

The enthalpy of the chain,
Γ0�

0

hi pij dΓ = HC
j , (110)

is computed from constraint Eq. (99).
In order to consider the network with largest number of chain configurations we impose

that

∂St

∂Nj

= ψj

(
nj ln (nj)−

∑
i

nij ln (nij)− ln (Nj)
)

+ ψjαj

(∑
i

nij − nj
)

+ ψjτ j ·
(∑

i

nij ξ̂i −
rj

l

)

+ ψjγj

(∑
i

nijhi −HC
j

)
+ ηψj

= ψj

(
nj ln (nj)−

∑
i

nij ln (nij)− ln (Nj) + η

)
= 0,

(111)

from which
Nj = exp

(
nj ln (nj)−

∑
i

nij ln (nij) + η

)
=

exp (η) nnj

j∏
i n

nij

ij

. (112)
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Next, from constraint Eq. (94) we obtained that

∑
j

ψjNj =
∑
j

ψj
exp (η) nnj

j∏
i n

nij

ij

= N. (113)

This enables us to determine the Lagrange multiplier

η = ln

 N∑
j

(
ψjn

nj
j∏

i
n

nij
ij

)
 . (114)

Furthermore, the PDF that a chain is in the j-th inclination is

pj = Nj

N
=

∏
i n
−nij

ij∑
k ψk

∏
i n
−nik
ik

=
∏
i (njpij)−njpij∑

k ψk
∏
i (nkpik)−nkpik

, (115)

and the fraction of all the chains with a specific inclination to the electric field can be
estimated as

υj = ψjpj, (116)

such that ∑j υj = 1.
Next, we make use of Eq. (115) in Eq. (103) to determine the entropy of the entire

network

St = k

N ln (N) +
∑
j

ψjNj

nj ln (nj)−
∑
i

nij ln (nij)− ln
N ∏

i n
−nij

ij∑
k ψk

∏
i n
−nik
ik


= k N ln (N) + k

∑
j

ψjNj

(
nj ln (nj)−

∑
i

nij ln (nij)− ln (N)
)

+ k
∑
j

ψjNj

(∑
i

nij ln (nij) + ln
(∑

k

ψk
∏
i

n−nik
ik

))

= k

∑
j

ψjNj

(
nj ln (nj) + ln

(∑
k

ψk
∏
i

n−nik
ik

)) .
(117)

Assuming that the number of dipolar monomers in each chain is fixed, we neglect the first
term in the last of Eq. (117) to conclude that

St ∝ N ln
(∑

k

ψk
∏
i

n−nik
ik

)
. (118)

By following the same steps for the case of the entropy of a chain presented in Eq. (22),
it can be concluded that

SCj ∝ ln
(∏

i

n
−nij

ij

)
. (119)
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We can observe the similarities between both assessments of the maximum entropy. In
Eq. (119) the entropy of a chain is a function of the end-to-end, rj, and does not depend
on the inclination, r̂.

We note that in the case of exitation by an electric field the number of end-to-end
vectors in the j-th group are dependent on the groups inclinations to the direction of the
electric field, and so

ψj = 2πr2
j sin (Θj) . (120)

3.4.1 Deriving the properties of the polymer

In order to assess our methodology, we wish to evaluate the properties of the new
anisotropic polymer and to compare them to those of the isotropic polymer. Besides
the electro-mechanical coupling, which is our main interest, the response of the polymer
to purely mechanical loading and electrostatic exitation should be examined too. The
mechanical properties of the polymer relate to the mechanical stress in the polymer under
purely mechanical loading described by the deformation gradient tensor F . The electrical
properties of the polymer, such as the electric displacement and the susceptibility, relate
to the polarization in the polymer under electrostatic exitation.

(Note: referenced mechanical stress)
The general mechanical stress presented by Cohen et al. [2016] which results from

Eq. (16) is

σm = 1
J dV0

∑
i

n


Γ0�

0

∂h

∂F
p dΓ


i

+ k T τ i
l

∂ri
∂F

F T. (121)

The mechanical stress takes into account the change in the electrical energy of a the
monomers due to the mechanical deformation and for the mechanical loadings that de-
forms the chains end-to-end vectors. Considering the assumption made by Cohen et al.
[2016] that the monomer is rigid compared to the polymer chain, the electrical enthalpy
of the monomer does not depend on the deformation gradient. Furthermore, by assuming
an incompressible material, Eq. (121) can be simplified to

σm = 1
dV0

∑
i

(
k T τ i
l

∂ri
∂F

)
F T. (122)

(Note: simplified mechanical stress, suitable for an anisotropic case)
In order to evaluate the mechanical stress in the polymer, the average stress of each

chain group is calculated first. As mentioned, in the case of exitation by an electric field,
the chains groups are determined by their inclinations to the direction of the electric field.
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Thus, the stresses of chains with the same inclination, Θk, are averaged over 0 ≤ Φq < 2π

σmk =

Q∑
q

(
k T τkq

l

∂rkq

∂F

)
F T

Q
, (123)

where r̂kq = cos ΘkÊ + sin Θk

(
cos ΦqŶ + sin ΦqẐ

)
, as q = 1, 2, ..., Q. ∂rkq

∂F
is detailed in

appendix B.
Next, the relative influence of each of the chains groups is considered. This is performed

by taking into account the fraction of the chains in a specific group, as shown in Eq. (116).
Thus, Eq. (122) can be rewritten as

σm = N
∑
k

υkσ
m
k , (124)

where the averaged stress of a chain is multiplied by the number of chains in a unit volume,
N .

(Note: referenced polarization)
The polarization

P = − 1
J dV0

∑
i

n


Γ0�

0

∂h

∂E
p dΓ


i

+ k T τ i
l

∂ri
∂E

 , (125)

was presented by Cohen et al. [2016]. This relations stems from Eq. (17). The polarization
equation, Eq. (125), considers the variation of the electrical enthalpies of the monomers
as a result of the excitation of the electric field and the reorientation of the chains as a
response to the electrical excitation. From the assumption that the chains undergo affine
deformation, it follows that the electric field does not directly affect the distribution of
the chains. Thus, by assuming an incompressible material, Eq. (125) can be simplified to

P = − n

dV0

∑
i


Γ0�

0

∂h

∂E
p dΓ


i

. (126)

(Note: simplified polarization, suitable for an anisotropic case + susceptibility)
The polarization of the polymer is calculated by executing the same steps that were

described for the mechanical stress. As ∂h
∂E = −m, the polarizations of chains with the

same inclination, Θk, are averaged over 0 ≤ Φq < 2π

Pk =
n

Q∑
q

(
Γ0�
0

m p dΓ
)
kq

Q
, (127)

31



where q = 1, 2, ..., Q.
Thus, as the relative influence of each of the chains groups is considered through the

fraction of the chains in a specific group,

P = N
∑

υk
k

Pk, (128)

where the averaged polarization of a chain is multiplied by the number of chains in a unit
volume, N . After the calculation of the polarization, the electric displacement can be
calculated according to Eq. (3) and the susceptibility can be calculated as

χ = P · E
ε0E2 . (129)
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4 Application to electrostatically biased network

(Note: Opening sentence + Isotropic example - first step of the numerical analysis - evaluating
the Lagrange multiplier tau)

As we aspire to modify the properties of DEs in order to affect their electromechanical
coupling, we propose to perform the polymerization process of a polymer while in the
presence of an electric field. Such a process will result in a relative order of the networks
of polymer chains as the chains and the dipolar monomers can react to the electric field
while the chains are forming and "floating" in the solution state. The mentioned electric
field will be removed at the end of the hardening of the network which is a result of the
cross-linking of the chains. We note that the responses of the chains and monomers are
restricted by the constraints in Eq. (94), Eq. (97), Eq. (98) and Eq. (99), as is detailed in
section 3.4.

For the sake of examining the influence of our proposed polymerization process (i.e.
creating a “biased” polymer), we follow the analytical analysis detailed in section 3. This
examination will be executed while comparing our results for the biased polymer to those
of an unbiased polymer (i.e. an isotropic polymer) and to the IED model (presented in
section 2.3), all in order to evaluate the influence of performing the suggested process on
the structure and properties of the polymer.

4.1 Chains distribution

The initial step of the analysis is to evaluate the most probable configurations of the
polymer chains in the isotropic and biased polymers. At first we apply our calculations
to the case of no electric field, for an isotropic chain network. The initial step of the
calculation is to evaluate the value of the Lagrange multiplier τ with the application of
the Newton-Raphson method on Eq. (36). The first guess, τ 0, is obtained by analytically
estimating the Lagrange multiplier as a function of r in a case where the electric field
approaches zero,

τ 0 = 3r
n l
, (130)

which is accurate in this specific case, as is detailed in appendix C.
(Note: chains length - isotropic distribution)
As a result of the maximum-entropy assumption and the fact that, in this case, there

is no electric actuation or any other external influence we can assume that there is an
isotropic distribution of chains and so we can assess the end-to-end length of a chain
in a single direction and relate it to all directions. Thus, in order to evaluate the most
probable end-to-end chain length, the number of configuration of a chain with a specific
r is calculated and then multiplied by the surface area of a sphere with the same r,
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which represents the chains groups in the isotropic case, as is discussed in section 3.2.3
and shown in Eq. (81). The entropy of each case is calculated by using the results from
Eq. (81) in Eq. (22). An example is presented in Fig. 6, which presents the entropy as a
function of the normalized radius, r

n l
, for n = 50 and n = 100 as l = 100µm. The initial

susceptibility used in the presented exampels is χ0 = 37, about ten times the electric
susceptibility of the commercially available VHB 4910. The analyses are performed for
the case of uniaxial dipoles. The difference between the curves in Fig. 6 can be attributed
to Eq. (21), Eq. (22) and Eq. (81). Accordingly, as the number of monomers in a chain
increases so does the entropy of the chain.

(Note: defining calculation parameters - material properties and calculations boundaries)
We assume that the shear modulus of the polymer in its initial unloaded configuration

is µ = 105 Pa. The value of N , the number of chains in a unit volume, was deduced from
the relation µ = N k T [Treloar, 1943, Flory and Rehner, 1943]. The normalized radii
that correspond to the maximum points of the two curves in Fig. 6 are

(
r
n l

)
n=50

∼= 0.1
and

(
r
n l

)
n=100

∼= 0.075 which are compatible to the analytical predictions given in section
3.2.3, of

(
r
n l

)
n=50

= 0.115 and
(
r
n l

)
n=100

= 0.082, presented by the dashed columns
in Fig. 6. The differences between the numerical and analytical results for the most
probable end-to-end chain length can be associated with the density of discretization
of 0.025 for 0 ≤ r

n l
≤ 1. Furthermore, it can be seen that the results of the current

approach are different from the results of the random walk statistics of
(
r
n l

)
n=50

= 0.141
and

(
r
n l

)
n=100

= 0.1, presented by the dot-dashed columns in Fig. 6. The values of the
entropy that are smaller then zero are irrational and are truncated as they represent
numbers of configurations that are not compatible with the previously made assumption
for Stirling’s approximation between Eq. (21) and Eq. (22).

(Note: the main idea - parameters value and initial calculations)
Next, for the purpose of evaluating the influences of electrical exitation on the polymer

structure during a polymerization process, different parameters were investigated as the
electric field magnitude ranged from 0 MV

m to 150 MV
m . The presented results are based on

numerical calculation where the number of monomers in a single chain, the length between
the two contact points of a monomer with its neighbors and the number of chains in a
unit volume are the same as the ones assumed for the case of no electric field.

In order to demonstrate the influence of electric fields with different magnitudes on
chains at various inclinations to the direction of the field, results for chains with Θ = π

1000 ,
Θ = π

4 and Θ = π
2 are presented in Fig. 7, Fig. 8 and Fig. 9. The natural logarithm of the

maximum number of configurations for each chain as a function of the electric field can
be seen in Fig. 7. The end-to-end length with the maximum number of configurations
of each chain as a function of the electric field can be seen in Fig. 8. The Lagrange
multiplier τ , which can be portrayed as the chain’s mechanical constraint, that relates
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Figure 6: The entropy of a polymer chain with uniaxial dipoles as a function of the
normalized radius as 0 ≤ r

n l
≤ 1 and l = 100µm. The red continuous curve with circular

markers corresponds to n = 50 and the brown curve with squares to n = 100. The
dashed columns corresponds to the normalized radii in accordance with the results in
section 3.2.3, r

n l
=
√

2
3

1√
n
, and the dot-dashed columns to the results from random walk

statistics, r
n l

= 1√
n
.

to the end-to-end length with the maximum number of configurations was examined as a
function of the electric field magnitude, as can be seen in Fig. 9.

We note from Fig. 7, Fig. 8 and Fig. 9, that the magnitude range of electric field that is
smaller than 50 MV

m has shown very small differences in results from the case of E = 0 MV
m .

This is particularly evident in Fig. 8, where the change in the end-to-end length of the
different chains is hardly visible below 50 MV

m . In Fig. 7, we can observe the similarities in
the curves for the natural logarithm of the maximum number of configurations for chains at
different inclinations, which all decrease as the magnitude of the electric field is enhanced.
The differences between the curves can be associated to the number of end-to-end vectors
in each inclination to the direction of the electric field, seen in Eq. (120). By observing
Fig. 8, it can be seen that the end-to-end length of chains at all inclinations increase as
the magnitude of the electric field is enhanced. Though, as the magnitude is enhanced,
the differences in the end-to-end length become more prominent, as chains in greater
inclinetions are longer. We find that this is counterintuitive as we would expect chains
with greater inclinations to the direction of the electric field to be shorter as the monomers
aspire to reorient in the direction of the electric field. From Fig. 9 we can observe the
differences in the chains mechanical constraint. As the magnitude of the electric field is
enhanced its value decreases for chains parallel to the direction of the electric field and
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Figure 7: The natural logarithm for the maximum number of configurations as a function
of the electric field magnitude for chains with uniaxial dipoles at different inclinations.
The blue curve with circular markers corresponds to Θ = π

1000 , the red curve with squares
to Θ = π

4 and the yellow curve with diamonds to Θ = π
2 .
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Figure 8: The most probable end-to-end length as a function of the electric field magnitude
for chains with uniaxial dipoles at different inclinations. The blue curve with circular
markers corresponds to Θ = π

1000 , the red curve with squares to Θ = π
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Figure 9: The size of the Lagrange multiplier τ , associated with the most probable radius
as a function of the electric field magnitude for chains with uniaxial dipoles at different
inclinations. The blue curve with circular markers corresponds to Θ = π

1000 , the red curve
with squares to Θ = π

4 and the yellow curve with diamonds to Θ = π
2 .

relatively increases for chains with greater inclinations. This can be attributed to the fact
that as the polymer is in a solution state during the polymerization, it is "harder" to hold
chains at larger inclinations as the monomers react to the electric exitation and aspire to
rotate towards its direction.

4.2 Monomers orientation

(Note: monomer distribution - chains)
Once the calculations of the end-to-end lengths for chains at each of the mentioned

inclination to the direction of the electric field, i.e. determining r0
j = r0 (Θj,E) r̂ (Θj),

the monomers orientation can be calculated as detailed in section 3.3.1. Fig. 10a, b and c
present the monomers distribution of chains with different inclinations Θ = π

1000 , Θ = π
4

and Θ = π
2 , respectively, while the magnitude of the electric field is E = 150 MV

m . In these
three dimensional plots, the length of the radius vector to each point represents the number
of monomers aligned with this vector. As can also be seen, the monomers distributions
are compatible when comparing between the different inclinations. This means that the
monomers in the different chains aspire to orient similarly. This compatibility is very
interesting, as the chains have different inclinations and different end-to-end lengths.

(Note: amorphous monomer distribution)
As the monomers orientation for each of the mentioned chains was obtained and their
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Figure 10: The monomer distribution for a polymer chain of uniaxial dipoles. The mag-
nitude of the electric field during the polymerization process is E = 150 MV

m . (a) Corre-
sponds to the chain with the inclination Θ = π

1000 and end-to-end length r = 0.89
√
n l. (b)

Corresponds to Θ = π
4 and r = 0.91

√
n l. (c) Corresponds to Θ = π

2 and r = 0.93
√
n l.

likeness was recognized, the monomers distribution in an amorphous case is examined.
Fig. 11 presents the results of the numerical calculations for amorphous monomers distri-
bution in the case of a uniaxial dipole according to Eq. (42). Unlike Fig. 10a, b and c,
Fig. 11 presents a symmetric distribution of the monomers, as in this case the monomers
are free to reorient separately and are not constrained as a part of a chain. The result of
the analytical analysis for the PDF in the amorphous case [Cohen et al., 2016], presented
in Eq. (44) can also be seen in Fig. 11 as they are identical to the numerical results.

4.3 The free state

(Note: finding the natural state - chains distribution, weights and lambda0 deformation)
After analyzing the micro-scale and understanding the monomer distribution as a

result of the mentioned polymerization process, the macro-scale is examined. Hence, as
we wish to analyze the macroscopic response of the polymer to different excitations, as is
detailed in section 3.4, the relative influence of each of the chains groups in the different
inclinations needs to be assessed. For the sake of such evaluation Eq. (116) and Eq. (120)
are used to calculate the fraction of chains with the j-th inclination to the electric field.
A comparison of the number of chains in the different inclinations to the direction of the
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Figure 11: The amorphous monomer distribution of a uniaxial dipole as E = 150 MV
m .

According to the numerical analysis as τ = 0 and identical to the results of the analytical
analysis that was presented by Cohen et al. [2016].

electric field between the isotropic polymer and the biased polymer is presented in Fig. 12.
A comparison between the fractions of chains in each inclination of both cases is presented
in Fig. 13. The relations between the results in Fig. 12 and Fig. 13 are credited to ψj,
which is the number of end-to-end vectors in the j-th group, presented in Eq. (120).

As can be observed from Fig. 12, the presence of an electric field in the polymerization
process affects the distribution of the chains, as the chains aspire to align in the direction
of the electric field. Though, as a result of Eq. (120) and as can be observed in Fig. 13, the
most influential inclination of the polymer as a result of the proposed process is Θ ∼= π

4 .
The density of discretization for the inclinations to the direction of the electric field is

taken as ∆Θ = π
16 , as denser discretizations did not produce any meaningful differences

in the results. As we refer to the different groups of chains discreetly in accordance with
their inclinations to the direction of the electric field, we attribute each group chains with
one end at the origin and the other end located within a small volume dV = r2drdφdθ.
Furthermore, we note that as the coupling in DEs is characterized by a quadratic depen-
dence on the applied electric potential [Toupin, 1956], the different responses of DEs can
be deduced from analyzing 0 ≤ Θ ≤ π

2 . Accordingly, the groups that relates to inclina-
tions Θ = 0 and Θ = π

2 , which are the boundaries of the analyzed range, are attributed
to small volumes with ∆Θ = π

32 . This is performed so as not to exceed the limits set for
the tested angular range.

Fig. 14 presents the analysis of the deformation in the direction of the electric field,
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Figure 12: The number of chains along each inclination as a function of the inclination
relative to the direction of the electric field, N (Θ,Φ = 0). The blue curve with circular
markers corresponds to the isotropic polymer and the yellow curve with squares corre-
sponds to the biased polymer.
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Figure 13: The fractions of chains along each inclination as a function of the inclination to
the direction of the electric field, ν (Θ). The blue curve with circular markers corresponds
to the isotropic polymer and the yellow curve with squares corresponds to the biased
polymer.
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λ0, of a polymer that was induced with the chosen electric field magnitude during the
polymerization process, as the electric field is removed at the end of the process. The
chains are unable to change their lengths to the length of the chains in the isotropic
polymer as they are cross-linked and cannot rearrange separately. Thus, each chain is
affected by the same deformation gradient. The corresponding deformation gradient,
while assuming incompressibility, is

F 0 (λ0) = λ0Ê⊗ Ê + 1√
λ0

(
I − Ê⊗ Ê

)
=


λ0 0 0
0 1/

√
λ0 0

0 0 1/
√
λ0

 . (131)

In order to assess the stress free configuration of an incompressible body such as the biased
polymer, different deformation gradients were examined. The suitable one is depicted by
the state where σEE = σYY = σZZ = Tr(σ)

3 as the deviatoric stress is zero in accordance
with Eq. (19). As seen in Fig. 14, λ0 is achieved from calculating σEE − σYY = σDiff

and determining the correct value from σDiff (λ0) = 0. In this case it is received for
λ0=0.795, which means that the deformation gradient tensor that is compatible with the
deformation after the removal of the electric field is

F 0
E=150 MV

m
=


0.795 0 0

0 1.121 0
0 0 1.121

 . (132)

This is counterintuitive when considering that in this case chains in greater inclinations
will get longer. Though, when considering the orientation of the monomers, it is reason-
able to assume that some will rearrange in grater inclination to the electric field as it
is removed. Thus, the polymer will perform a planar expansion. The chains end-to-end
lengths and inclinations in the relaxed state, which from now on will be the starting point
for each of the examined chains in the biased polymer, can be deduced from rj = F 0r0

j .

We also note that the same calculations for the isotropic case yielded λIso
0 = 1, as was

expected.

4.4 The materials properties

(Note: mechanical and electrostatic properties - new polymer + comparison)
As the chains orientations were established for the mentioned example, the properties

of the biased polymer can be examined and compared to the case of an isotropic polymer,
as detailed in section 3.4.1. The polymer’s mechanical properties can be assessed by
evaluating the mechanical stresses as a function of the deformation ratio, λ, according to
Eq. (124). The calculationes of the mechanical stresses were performed by taking into
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Figure 14: σDiff = σEE − σYY as a function of λ0 after the removal of the electric field
with the magnitude of E = 150 MV

m
.

account and averaging the stresses at 0 ≤ Φ < 2π with a discretization of ∆Φ = π
16 for

each inclination to the electric field, Θ, and evaluating the stresses in each deformation
ratio while taking into account the fractions of each inclination (Eq. (116)) in each case
of deformation. The mechanical stresses in the direction of the electric field and in the
transverse plane as a function of the deformation ratio are presented in Fig. 15 for the
isotropic polymer, the biased polymer and the IED model.

The electrostatic properties can be assessed by first evaluating the polarization of
the polymer as a function of the magnitude of the electric field. These calculations are
performed according to the same steps that were mentioned for the stresses calculations.
The susceptibilities of the biased polymer, isotropic polymer and the IED model as a
function of the electric field are presented in Fig. 16 as they are calculated according to
Eq. (129).

A change in the stresses is visible in Fig. 15 as a result of the presence of an electric
field in the polymerization process. More precisely, there is an increase in the stresses
of the biased polymer, relatively to the isotropic polymer, in the direction of the electric
field and perpendicular to it. The stresses in the IED model are higher than both the
other examined polymers.

Fig. 16 shows similar susceptibilities for the biased polymer and the isotropic one. The
susceptibilities of both the polymers are as the given initial susceptibility while under the
exitation of electric fields with small magnitudes (under E ∼= 5 MV

m ) and they increase in
values almost identicaly as the magnitude of the electric field increases. We suspect that
the resemblance between the susceptibilities of the biased and isotropic polymers stems
from the fact that as the electric field is removed, at the end of our proposed process, the
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Figure 15: The deviatoric mechanical stress as a function of the deformation ratio, λ.
Dashed curves corresponds to the isotropic polymer, continuous curves to the biased
polymer and the dot-dashed curves to a polymer described by the IED model. The blue
curves corresponds to the normal stress in the direction of the electric field, σm

EE, and the
red curves to the transverse stress, σm

YY = σm
ZZ.

monomers aspire to rearange as in the isotropic case while the biased polymer deforme. We
note that the numerical results of the susceptibility for the biased polymer shows a slight
increase relatively to the isotropic polymer, though not enough for a visible separation
between the curves. The susceptibility of the IED model is not affected by the magnitude
of the electric field and is constant in value as the initial susceptibility. Hence, it can be
deduced that the changes in the mechanical properties as a result of inducing the polymer
with an electric field during the polymerization process are more prominent than those of
the electrostatic properties.

4.5 The coupled response

(Note: coupled properties - new polymer + comparison)
After examining and comparing the mechanical and electrostatic properties, the cou-

pled properties of the two mentioned polymers can also be examined. For that purpose,
the main criterion to be examined is the deformation, λ, as a function of the magnitude of
the induced electric field, presented in Fig. 17. As can be seen in Fig. 17, the deformations
of the biased polymer are smaller than those of the isotropic polymer. These results agrees
with the previous ones. As it was established from Fig. 16 that the electrostatic response
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Figure 16: The susceptibilities of the polymers as a function of the electric field. The
black dashed curve corresponds to the isotropic polymer, the black continuous curve to
the biased polymer and the black dot-dashed line to a polymer described by the IED
model. (the dashed and the continuous curves overlap).
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Figure 17: The deformation in the direction of the electric field, λ, as a function of
the magnitude of the electric field. The black dashed curve corresponds to the isotropic
polymer, the black continuous curve to the biased polymer and the black dot-dashed
curves to a polymer described by the IED model.
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of the biased polymer shows no meaningful difference from that of the isotropic polymer,
from Fig. 15 it can be interpreted that the biased polymer is stiffer than the isotropic
polymer. Furthermore, as the susceptibility of the IED model is constant and generally
smaller in value than both the other polymers within the examined magnitude range of
electric fields, the stresses in the IED model are higher than both the other polymers.
Thus, it is logical that the deformations of the IED model are the smallest of the three.
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5 Experimental work

Additionally to our analytical and numerical work, as deeper understanding of the poly-
mers coupled electromechanical behavior is required. Experimental studies aimed toward
examining the coupled response of different DEs such as VHB and PDMS are also being
performed and compared to analytical calculations. The dielectric constant of DEs is
determined by firstly determining the capacitance of capacitors with the DEs as their
medium, from which the relative permittivity can be calculated. A common method used
to carry out such measurements is based on the analysis of the capacitance component in
a LCR (L-inductance, C-capacitance, R-resistance) circuit by means of a LCR meter or
a simpler versions of this instrument, the capacitance meter.

The presented experimental work is divided to two main parts. The first includes
an expansion of the work presented in Cohen et al. [2017] and examines the influence
of uniaxial and biaxial stretching on the dielectric constant. The second includes the
first presentation of a new experimental system which is aimed towards measuring the
dielectric constant of polymers under an electric field. The two polymers that were cho-
sen to be examined are VHB 4910 (a commercially available acrylic elastomer by 3M)
and Polydimethylsiloxane (PDMS that was made in our lab from Dow Corning Sylgard
182 Silicone Elastomer Encapsulation Kit). These materials are of interest due to their
flexibility and accessibility.

5.1 The influence of uniaxial and biaxial stretching

The first experimental system we present allows us to evaluate the influence of uniaxial
and biaxial stretching of DEs on their dielectric constant and deepen the examination of
the dependence of the dielectric constant on the deformation. The experimental system
is built from a self constructed stretching device with four movable grippers, as can be
seen in Fig. 18a. In order to measure the relative permittivity of the deformed samples,
a C-shaped clamp is used as a plate capacitor (Fig. 18b) and is connected to a capaci-
tance meter, Agilent U1701A. The experimental relative permittivity of each sample is
calculated via

εrExp
= Cs d

A ε0
, (133)

where Cs is the measured capacitance, d and A are the thickness and surface area of
the capacitor respectively and ε0 is the vacuum permittivity. The analytical relative
permittivity for uniaxial stretch of the dielectric elastomers is calculated via Cohen et al.
[2017]

εrU
= 1 + χ0

(
1− 1

5n

(
λ2 − 1

λ

))
. (134)
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(a) (b)

Figure 18: (a) The self constructed stretching device. (b) The C-clamp used as a parallel
plate capacitor.

Table 1: The number of monomers in a single chain for the case presented in Fig. 19.

PDMS - Uniaxial VHB - Uniaxial VHB - Biaxial
nf 4.35 80 80
ne 5.844 21.807 5.156

The calculation for the analytical relative permittivity was extracted in the current work
from the results of Cohen et al. [2017] to the case of biaxial stretches. The final expression
is

εrB
= 1 + χ0

(
1− 2

5n

(
λ2 − 1

λ4

))
, (135)

where n is the number of monomers in a single chain, χ0 is the initial susceptibility and
λ is the magnitude of the uniaxial or biaxial stretches.

The results of the experiments and the analytical calculations for the relative permit-
tivity as a function of the percentage of surface area expansion are presented in Fig. 19
for uniaxial stretch of PDMS (Fig. 19a), uniaxial stretch of VHB 4910 (Fig. 19b) and for
biaxial stretch of VHB 4910 (Fig. 19c). The analytical results for uniaxial and biaxial
stretches are also presented for the different examined cases. The number of monomers in
a single chain is estimated from the stretch at failure, which is presumed to be the lock-up
stretch, and labeled as nf and from fitting the analytical equations to the experimental
results as ne, as is shown in Table 1.

As can be observed, while the samples are stretched and their thickness decreases their
relative permittivity decreases. The incompressibility assumption was also examined and
in the case of the PDMS the results of both the measured and the calculated thickness
can be observed. The incompatibility of the curves based on the number of monomers
in a polymer chain from the stretch at failure can stem from the fact that the stretch at
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Figure 19: The relative permittivity measurements as functions of the percentage of
surface area expansion. The dashed and dotted curves correspond to the analytical results
[Cohen et al., 2017], as n are estimated from the stretch at failure (nf ) and from fitting
the analytical equations to the experimental results (ne), respectively. (a) PDMS under
uniaxial stretch. (b) VHB under uniaxial stretch. (c) VHB under biaxial stretch.
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Figure 20: A schematic description of the experimental system.

failure is not necessarily the lock-up stretch of the chain.

5.2 The influence of an electric field

This experimental work is aimed toward examining the effect of electric fields with different
magnitudes on the dielectric properties of various polymers. For that purpose, we will
present a new experimental system which allows us to evaluate the variations of the
dielectric constant as an electric field is applied on them. Furthermore, we will continue
the work performed in Cohen et al. [2017] and deepen the examination of the dependence
of the dielectric constant on the deformation by performing our examination on pre-
stretched samples.

5.2.1 Experimental set-up

(Note: Samples description)
(Note: Presenting the experimental system)
Ten rectangular samples of each of the two chosen polymers were cut for each examined

case. For the case of the pre-stretched VHB, the samples were then stretched using a self
constructed stretching apparatus comprised of two movable grippers, as can be seen in
Fig. 18a.

Our new experimental system is built from non-conductive materials, all but the two
electrodes with a diameter of 30 mm that are made from copper and acts as one of two
capacitors connected in a row, as can be seen in Fig. 20. The two electrodes are each held
in a Teflon housing with a 60 mm diameter, as can be seen in Fig 21. As the medium in
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Figure 21: The parts of the plate capacitore.

the mentioned plate capacitor is the examined elastomer sample, the second capacitor is
a capacitor with a fixed capacitance, which can be regarded as a fixed capacitor. For the
current work a ceramic capacitor suitable for high voltage is used, TDK’s UHV-241A.

For the case of examining pre-stretched samples we first use a bi-directional stretching
apparatus in order to generate the required tension. After the stretching the sample is
held in the stretched state using a two parts self constructed Perspex gripper with an
opening of 60 mm diameter in the middle and an O-ring notch to maintain the tension in
the sample, as can be seen in Fig. 21.

In order to measure the referential permittivity of the different samples, we make use
of the plate capacitor from our experimental system. This measurement is performed
by connecting it to a capacitance meter before the experimental system is connected to
the power source. Furthermore, the distance between the electrodes is measured in each
experiment. After the referential values are obtained, the power source is connected to
the described system. As the supplied potential difference is changed in the power source
the potential difference on the plate capacitor is measured by a non-contact voltmeter,
USSVM2 by AlphaLab.

(Note: Presenting the work method or protocol)
For the purpose of evaluating the relative permittivity of the polymer while under an

electrostatic excitation the charge conservation is taken into account,

Q = CsVs = C0V0, (136)

where Q is the charge on both of the capacitors, Vs and Cs are the potential difference
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and the capacitance of the examined polymer and V0 and C0 are the potential difference
and the capacitance of the fixed capacitor. Thus,

Vt = Vs + V0 = Q
( 1
Cs

+ 1
C0

)
, (137)

where Vt is the total potential difference as it is supplied from the power source. While
taking into account Eq. (137) we can obtain the relation,

Cs =
(
Vt
Vs
− 1

)
C0, (138)

from which the current capacitance of the polymer can be calculated, while the constant
value of C0 is taken from its data shit and confirmed at the beginning of the experiment
with the capacitance meter.

The relative permittivity, which is the electrostatic property that we aim to examine, is
calculated from the results of the capacitance calculations by using the relationes presented
in Eq. (133).

5.2.2 Results and discussion

In all test the thickness of the samples were measured for the calculation of the relative
permittivity, presented in Eq. (133), and the correct assessment of the electric field that is
induced on the sample, which is calculated as Es = Vs

d
. Measuring the pre-stretched VHB

4910 have led to the understanding that the incompressibility assumption is reasonable
and can be employed in this case.

In the two plots of Fig. 22, the relative permittivity measurements as functions of the
electric field on the samples for the un-stretched samples are marked by blue filled dots
and for the 2.25 area pre-stretched samples by red empty circles. The standard deviations
are marked by error bars. An agreement between the results shown in section 5.1 and
the current results can be identified in cases where Es → 0. In the case of the VHB 4910
samples (Fig. 22b), the relatively small standard deviations of the different measurements
provide confidence in the accuracy of the measurements for this material. The relatively
larger standard deviations of the PDMS samples can be as a result of the fact that the
samples were made manually in our lab, although there is a clear trend in the results.
We find that the relative permittivity of the two examined polymers increase with the
magnitude of the electric field.

The variations in the responses of the two examined polymers hints that these are
governed by the microstructure of the polymers. Furthermore, another evidence to the
governing of the microstructure can be seen in the results of the pre-stretched VHB 4910.
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Figure 22: The permittivity measurements a functions of the electric field on the sample.
The Blue dots corresponds to a relaxed sample and the red circles corresponds to the area
pre-stretch of A = 225%. (a) PDMS, (b) VHB.
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As the initial values of the relative permittivity correspond to the results in Fig. 19, the
maximum relative permittivity measured in the pre-stretched case is much lower then
the one measured in the relaxed case despite the fact that we achived larger magnituds
of electric field as the thickness of the samples was decreased. It can be seen in the
results for both the polymers (Fig. 22), the relative permittivity deviation is much steeper
in relative low electric fields (< 1MV

m ). Thus, additional experimental analyses of the
relations between the microscopic structure and the macroscopic response are needed for
the understanding of the coupled electromechanical behaviors of different polymers.
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6 Conclusions

(Note: Opening - Motivation)
Although this thesis presents another possible step towards the realization of the DEs

potential for being used in a wide range of applications, it comes at a time when our culture
is seemingly ready for such advances in different fields such as clean energy, medicine and
robotics. Hence, as a substantial improvement in the electromechanical response of DEs is
needed, we present a possible method for influencing and analysing the response, structure
and properties of the polymer, all without adding any foreign materials.

(Note: 3. Electroelasticity of solutions and anisotropic networks of polymer molecules)
(Note: 3.1 general - multiscale analysis)
Initially, we carried out a multiscale analysis of the electromechanical coupling in DEs

at several hierarchical cases, from a single electric charge to a network. The analysis
accounts for the conservation of energy through the first law of thermodynamics, in terms
of the electric enthalpy and the entropy of a system that is subjected to an electric field.
Our analysis of the microstructure of the polymer is based on statistical mechanics as
we assume that the configuration of each chain is the one that was calculated as most
probable.

(Note: 3.2 an analysis of the isotropic chain end-to-end length, tau and force)
We carry out an analysis of the polymer chain, in the case of no electric field. This

analysis yielded the relations between the Lagrange multiplier τ , which can be portrayed
as the chain’s mechanical constraint, and the normalized end-to-end length of the chain
through the Langevin function. Our calculations also yielded an assessment for the end-
to-end length of a chain in such a case, which is similar to the one obtained by Flory
[1949, 1953] and Treloar [1975] but different than the commonly used assessment given
from random walk statistics [Kuhn, 1934, Treloar, 1973, Arruda and Boyce, 1993]. A
relation between the end-to-end length of a chain and the external force operating on it
was also deduced.

(Note: 3.3 polymer chains in an electric field and monomers distribution)
As our proposed method for controlling the electroelastic moduli of a network by

executing the polymerization process under an electric field is examined, we describe a
manner for the assessment of the most probable configurations for each of the chains
groups and for the monomers orientational distribution in such a case.

(Note: 3.4 an anisotropic network analysis - general analysis with a reference for polymer-
ization under an electric field + material properties)

Next, an expression is derived for the total entropy of the polymer which allows us
to evaluate the distribution and the fractions of the chains in the different chains groups.
Next, once the fractions of the chains in the different groups were determined, expressions
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for the mechanical stress and the polarization were derived in order to determine the
response of the polymer.

(Note: 4. Application to electrostatically biased network - remined our main idea for the
polymerization)

To examine the outcome of our proposed process of polymerization under an electric
field, that leads to a “biased” polymer, a numerical analysis was performed. This analysis
is an application of our analytical work, and its prediction is compared with the results
for an isotropic polymer and the IED model.

(Note: 4.1 chain end-to-end length - isotropic case (our analysis is more accurate) and
anisotropic (mention the examined parameters))

The initial step of the numerical analysis involved an examination of our assessment
for the end-to-end length of a chain in the case of an isotropic polymer. In regards to the
configuration of the chains in the biased polymer, a comparison was performed for three
parameters: the maximum number of configurations of the chain, the most probable end-
to-end length and the Lagrange multiplier τ that relates to the end-to-end length with the
maximum number of configurations. From which we determined that magnitude ranges
of electric fields lower than 50 MV

m have shown hardly any differences in results from the
isotropic case. Though, when enhancing the magnitude furthur, the end-to-end length
of chains in all inclinations increases, which is counterintuitive as the uniaxial dipolar
monomers aspire to rotate towards the direction of the electric exitation.

(Note: 4.2 monomer orientation - aspire to be as in the amorphous case)
The findings from the examinations of the monomers orientation for chains in the dif-

ferent inclinations and the comparison to the distribution of monomers in the amorphous
case led to the realization that despite their constraints, the monomers in the chains aspire
to orient as though they are unattached.

(Note: 4.3 assessing the free state and discussing the chains distribution/weights)
Next, the free state of the biased polymer was assessed. This state is achieved when the

deviatoric stress vanishes and the body is at a stress free configuration. It was found that
the biased polymer contracts in the direction of the applied electric field. This strengthens
our understanding of the importance of the microscopic structure to the properties of
the polymer, since when the electric field is turned off the monomers rotate away from
its direction and hence the contraction in that direction. The spatial expansion in the
transverse direction is due to incompressibility.

(Note: 4.4 the material properties and coupled response)
The resulting material properties shows a difference between the mechanical ones as

the biased polymer is found to be stiffer than the isotropic one. Regarding the electrostatic
properties, no significant differences were found between the two polymers. Though, in
both cases the susceptibility does not appear to be fixed under different magnitudes of
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electric fields. In accordance with the assessed mechanical and electrostatic properties
of both polymers, from the analysis of the coupled response, it was established that the
electromechanical response of the biased polymer is smaller then the isotropic polymer.

(Note: 5. Experimental work)
The findings of our experimental work imply that the dependence of the polymers

dielectric properties on the deformation and the magnitude of the electric field cannot
be neglected. Moreover, they suggest that common models that assume constant relative
permittivity, such as the models of Wissler and Mazza [2007] and Dorfmann and Ogden
[2017], are not applicable if the polymer is subjected to different mechanical loads or
excitations from electric fields at different magnitudes. Additionally, we observed that
our extension to the model of Cohen et al. [2017] for the case of biaxial stretches is able
to predict the relations between the relative permittivity, which represents the dielectric
behavior, and the deformation of the polymer. Though, the assessment of the number
of monomers in a single chain from the stretch at failure does not yield a good enough
prediction of the mentioned relations. This can stem from the fact that the stretch
at failure is not necessarily the lock-up stretch of the chain. Furthermore, from our
examination of the effect of electric fields with different magnitudes on the dielectric
properties, the differences in the responses of the relaxed and pre-stretched VHB 4910
demonstrate the prominent influence of the microscopic structure on the macroscopic
electromechanical behavior. Accordingly, it can be seen that pre-stretching the sample
hinders the evolution of the relative permittivity as the magnitude of the electric field
increases.

(Note: ** Future work)
We have spent considerable time pondering the future directions of this research.

While this thesis presented a method of influencing the properties of polymers, so far it
was applied only to the case of uniaxial dipoles. Thus, an analysis should be performed
for spontaneous and transversely isotropic dipoles as well. Additionally, the creation of a
biased polymer should be examined from different directions and with greater magnitudes
of electric fields in order to assess the threshold field from which there are segnificent differ-
ences in the electrostatic properties in comparison with the isotropic polymer. Moreover,
from the experimental perspective, the influence of an electric field on the dielectric prop-
erties should be examined for additional materials, with more pre-stretching conditions
and under higher magnitudes of electric fields.
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Appendix

A Presentation of the first law of thermodynamics in
terms of electrical enthalpy

The first law of thermodynamics is U̇ = Ẇ0 + Q̇ (Eq. (7)) [McMeeking and Landis, 2005,
deBotton et al., 2007] where

U̇ = d
dt

�
V0

u (F ,P) dV0 + d
dt

�
R3

ε0
2 E·EdV, (139)

and where no interactions between the system and other bodies and that far away the
electric fields vanish are assumed. The work done the mechanical loads due to deformation
and by the electric field due to variations in the charge [McMeeking and Landis, 2005,
deBotton et al., 2007]

dW0

dt =
�
V

bivi dV +
�
∂V

tivi dA+
�
V

φ
d
dt (q dV ) +

�
∂V

φ
d
dt (ρa dA) . (140)

We recall the definition of the electric enthalpy density [Cohen et al., 2016]

h (F ,E) = u (F ,P)− JP · E. (141)

Accordingly

U̇ = d
dt

�
V0

h (F ,E) dV0 + d
dt

�
V0

P · EJdV0 + d
dt

�
R3

ε0
2 E·EdV

= d
dt

�
V0

h (F ,E) dV0 + d
dt

�
V

P · EdV + d
dt

�
R3

ε0
2 E·EdV. (142)

Since in the body D = P + ε0E and outside the body D = ε0E

U̇ = d
dt

�
V0

h (F ,E) dV0 + d
dt

�
R3

(D− ε0E) · EdV + d
dt

�
R3

ε0
2 E·EdV. (143)

Thus, we have that

U̇ = d
dt

�
V0

h (F ,E) dV0 −
d
dt

�
R3

ε0
2 E·EdV + d

dt

�
R3

D · EdV. (144)

Define Ḣ = d
dt

�
Ω0
h (F ,E) dV0 as the stored electric enthalpy in the body. According

63



to the first law of thermodynamics

Ḣ − d
dt

�
R3

ε0
2 E·EdV = Ẇ0 + Q̇− d

dt

�
R3

D · EdV. (145)

Consider the last term

− d
dt

�
R3

D · EdV = d
dt

�
R3

D · ∇φdV = d
dt

�
R3
∇ · (Dφ) dV − d

dt

�
R3
∇ ·DφdV. (146)

Assuming no free charges outside the body, then ∇ ·D = q in the body and zero outside,

− d
dt

�
R3

D · EdV = d
dt

�
∂V

φD · n̂dA− d
dt

�
V

φqdV, (147)

where we make use of the divergence theorem and exploit the assumption that far enough
the electric field vanish. Thus,

− d
dt

�
R3

D · EdV = − d
dt

�
∂V

φρadA−
d
dt

�
V

φqdV. (148)

The last term can be simplified to

− d
dt

�
V

φqdV = − d
dt

�
V0

φqJdV0 = −
�
V0

φ̇qJdV0 −
�
V0

φ
d
dt (qJ dV0)

= −
�
V

φ̇qdV −
�
V

φ
d
dt (q dV ) . (149)

The first term of Eq. (148),

− d
dt

�
∂V

φρadA = − d
dt

�
∂V0

φρ0
adA0, (150)

where ρ0
a is the referential surface charge such that ρ0

adA0 = ρadA. Thus,

− d
dt

�
V

φqdV = −
�
∂V0

φ̇ρ0
adA0 −

�
∂V0

φ
d
dt
(
ρ0
a dA0

)
= −

�
∂V

φ̇ρadA−
�
∂V

φ
d
dt (ρa dA) .

(151)
Substituting to Eq. (148) we have

− d
dt

�
R3

D ·EdV = −
�
∂V

φ̇ρadA−
�
∂V

φ
d
dt (ρa dA)−

�
V

φ̇qdV −
�
V

φ
d
dt (q dV ) . (152)

Substituting into the first law of thermodynamics, Eq. (145), with the use of the expression
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for the external work W0, Eq. (140), we have

Ḣ − d
dt

�
R3

ε0
2 E·EdV =

�
V

φ
d
dt (q dV ) +

�
∂V

φ
d
dt (ρa dA) + Q̇+

�
V

bivi dV +
�
∂V

tivi dA

−
�
∂V

φ̇ρadA−
�
∂V

φ
d
dt (ρa dA)−

�
V

φ̇qdV −
�
V

φ
d
dt (q dV )

= Q̇−
�
∂V

φ̇ρadA−
�
V

φ̇qdV +
�
V

bivi dV +
�
∂V

tivi dA. (153)

In terms of the external work due to the variations in the electric potential [McMeeking
et al., 2007, Cohen et al., 2016]

dW
dt =

�
V

bivi dV +
�
∂V

tivi dA−
�
∂V

φ̇ρadA−
�
V

φ̇qdV, (154)

we end with the expression for the first law of thermodynamics in term of the electric
enthalpy

Ḣ − d
dt

�
R3

ε0
2 E·EdV = Ẇ + Q̇. (155)
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B Chain stress and deriving the chain end-to-end
vector by the deformation gradient

In order to evaluate the stress, depicted in section 3.4.1, derivation of the term ∂r
∂F

is
needed. This is carried out in index notation.

The end-to-end vector of the chain in the current configuration is

ri = Fiprp, (156)

where r0
i is the end-to-end vector of the chain in the reference configuration and Fij is the

deformation gradient. Accordingly

∂ri
∂Fkl

= ∂

∂Fkl
(Fip) r0

p = δikδlpr
0
p = δikr

0
l . (157)

From Eq. (124), the mechanical stress in the j-th chain is

σ
m(j)
ks = k T

l

τ (j)
i

∂r
(j)
i

∂Fkl

Fsl = k T

l
τ

(j)
i δikδlpr

0(j)
p Fsl = k T

l
τ

(j)
k Fspr

0(j)
p = k T

l
τ

(j)
k r(j)

s .

(158)
Since τ (j)

k ‖ r(j)
s (established in section 3.2.3) it follows that

σ
m(j)
ks = k T

l
τ (j)r0(j)r̂

(j)
k r̂(j)

s . (159)
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C The initial guess for τ

The Lagrange multiplier τ is extracted from the implicit equation that follows from the
constraint in Eq. (98), �

ξ̂ p dΓ = r
n l
, (160)

where
p
(
ξ̂, h

)
= 1
Z

exp
(
τ · ξ̂ − h

k T

)
. (161)

Taking the first two terms of Taylor expansion series for τ

τ = τ 0 +Ar + o
(
r2
) ∼= Ar, (162)

where according to Eq. (75) τ 0 = τ (r = 0) = 0.
Thus,

exp
(
τ (r) · ξ̂ − h

k T

)
E→0−→ exp

(
ξ̂ ·Ar

) ∼= 1 + Aikξ̂irk, (163)

and
Z =

�
θ,φ

(
1 + Aikξ̂irk

)
sin (θ) dθdφ = 4π + Aik

�
ξ̂idΓrk = 4π. (164)

Hence,

p
(
ξ̂, h

)
= 1
Z

exp
(
τ · ξ̂ − h

k T

)
= 1

4π
(
1 + (Ar) · ξ̂

)
, (165)

and by taking into account Eq. (165) in Eq. (160)

1
4π

�
ξ̂
(
1 + (Ar) · ξ̂

)
dΓ = 1

4π

�
(Ar) · ξ̂ ⊗ ξ̂dΓ = 1

4π

(4π
3 I

)
· (Ar)

= 1
3 (Ar) · I = r

n l
=⇒ A = 3

n l
I. (166)

and τ (E→ 0) is
τ = Ar = 3r

n l
(167)
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