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Abstract

This work present an Auditory emulation program that solves Auditory Neural

response and detects Hearing level based on Parallel Time domain non-linear solu-

tion of the Cochlea. Previous solution used parallel calculation of Basilar membrane

velocity and than calculated serial Neural Response along time and longitudinal di-

mension, this solution limited has efficiency by both copy large arrays and perform

serial computation. using GPU to massive parallel computing JND calculation speed

can be accelerated by factor of 80–400, which make this solution valuable for both cal-

culate hearing level for single pitch signal and spoken words, both with variable kinds

noise or in silence, and measuring effects of different hearing aid prescriptions on the

JND.
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Chapter 1

Introduction

hearing impairment has become a common phenomenon, with significant part of com-

municating is speech. hearing necessary for both earning and personal communica-

tion, while the amount for Quality of Life(QoL) reduced due to hearing loss is un-

determined [54]. it is generally agreed that the impairment reduce QoL. the hearing

loss (HL) is phenomenon on continuous scale and cut offs barrier to determine hear-

ing impaired is disagreed upon across different researches [38]. by using standardized

methods to set unified threshold for hearing impairment. its also the second com-

mon disability by measure years of life with the impairment. In 2012 World Health

Organization estimated 360 million people (5.3% of world population) have disabling

Hearing Impairment.for adults, age 55-74 above 30% has lost more than 30dB in their

better Ear [38], however the majority, 80% of the adults need hearing aid do not use

them [12]. those who does use has significant HL more than 10 years before getting

an aid [9]. examination of the reasons at [13] shows that for 7 out of researches 15-30%

patients who does not use HA does not benefit from the device and for 5 researches

22-52% suffer from noisy background. For children, multiple longitudinal researches

occurred to measure hearing aid effectiveness, adoption of early screening and inter-

1
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vention ensure that HA and Cochlear Implants adjusted to children at very young age.

parallel research on children with normal hearing (CNH) show that amount of vocal

input effect language development, researchers assumed that if vocal input present

children will uptake the information. for children with Hard Hearing (CHH) this as-

sumption fails due to difficulty of understanding in noisy environment or low power

speech leads to variable uptake and reduction of available processed oral communi-

cation, degradation varied but includes low pass filtering and spectral reduction that

cause final -s to be inaudible and lost of experience for many morphemes [44]. multiple

causes for varied uptake include distance to the parent, noise from the environment

and HA fitnesses. Some of the studies found that CHH with HA has linguistic de-

velopment one standard deviation below their age with HA fitting age not predictive

[48]. Despite controversy about HA effectiveness for CHH several studies found that

audibility assistance increase language understanding for school children [45, 22] but

not to level of CNH, other studies does show HA contribute significantly to language

understanding [55]. This unclear picture suggests that more precise measurements

are needed to test effectiveness of HA and better fitting methods are required. Hear-

ing Aids are adapted for user by examining the patient hearing threshold for pure

tones and testing speech discrimination in quiet. the user than get prescription for

duration of examination and return to report experience and adjustments, this process

can occur several times due to lack of objective method to test prescription effective-

ness. Solution of the cochlear model in time domain was done by Oded and Furst 36,

however the solution was implemented on CPU, and is very slow.real time solution
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requires Massive Parallel Computation. Sabo et al. 39 implemented part of the model

on Commodity GPU, but solution was still slow. We implemented the entire model on

GPU, including Hearing level inference and effects of varying prescription of Hearing

Aids on the model.

The remainder of thesis is composed as follows. Chapter 2 describes the cochlear

model simulated by our program. Chapter 3 compares different NVidia architectures

by generation and their effect on program performance.Section 6.1 describe paral-

lelization for signal and noise at various power levels. At Chapter 4 we describe

improving of [40] algorithm and test performance for multiple execution profiles. In

Section 5.1 we describe the calculation of auditory nerve response from Basilar Mem-

brane Velocity. In Section 5.2 we present parallel algorithm to calculate JND directly

on GPU from Auditory Nerve Response. Chapter 7 describes program usage to di-

agnose patient and fit hearing aid prescription. We present results at Chapter 8 and

conclusion at Chapter 9



Chapter 2

Description of The Human Ear
Anatomy

2.1 Basilar Membrane Velocity Calculation

Our work implements Furst 14 model of the mammalian ear. The mammalian ear is

composed of the outer ear, the middle ear, and the inner ear. The outer ear includes the

pinna, the ear canal, and the ear drum. The middle ear is an air-filled cavity behind the

ear drum, which includes three small ear bones, the ossicles. The inner ear includes a

snail-shaped structure, the cochlea (see schematic description in Figure Figure 2.3).The

sound is directed by the outer ear through the ear canal to the eardrum. When sound

strikes the ear Hearing Loss drum, the movement is transferred through the three

bones of the middle ear to a flexible tissue called the oval window, finally reaching

the upper fluid-filled ducts of the cochlea (see Fig. 2.3). The upper cochlear ducts are

called scala vestibuli, and the bottom duct is referred to as scala tympani. The space

between the top and bottom ducts is labeled as scala media.

The middle ears task is to match the impedance of the sound pressure in the air

to that of the fluid. Movement of the fluid inside the upper cochlear duct results in

a pressure difference between the upper and lower ducts. This pressure difference in

4



CHAPTER 2. DESCRIPTION OF THE HUMAN EAR ANATOMY 5

Figure 2.1: Detailed description of human ear anatomy from [1]

turn causes the basilar membrane (the membrane that separates the scala tympani and

scala media) to move.

(a) cochlea cross section (b) cochlea diagram

Figure 2.2: the structure of Cochlea

Two types of auditory receptor cells inhabit the scala media, the inner and outer

hair cells. The defining feature of those cells is the hair bundle on top of each cell. The

hair bundle comprises dozens to hundreds of streocilia, which are cylindrical actin-

filled rods. The streocilia are immersed in endolymph, a fluid that is rich in potassium

and characterized by an endocochlear potential of +80 mV. The streocilia move with
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Figure 2.3: Cochlear model of pressures applied

the basilar membrane displacement. Their deflection opens mechanically gated ion

channels that allow any small, positively charged ions (primarily potassium and cal-

cium) to enter the cell. The influx of positive ions from the endolymph in the scala

media depolarizes the cell, resulting in a receptor potential. The roles of the OHCs

and IHCs on the function of the cochlea are very different. While the OHCs act as

local amplifiers, the IHCs innervate the auditory nerve. The OHCs lay on the basi-

lar membrane, and their upper part is embedded in a gel-like membrane, the tecto-

rial membrane (TM). An increase in the OHC receptor potential causes a decrease in

its length [5], which in turn enhances the BM movement. The hair bundles of the

IHC move freely in the scala media. The change in their receptor potential opens

voltage-gated calcium channels that release neurotransmitters at the basal end of the

cell, which trigger action potentials in the attached nerve.

Modeling the human ear requires a detailed model of the cochlea and the middle

and outer ears [6, 39, 21, 58, 4, 15]. A common approach is to model the inner ear as

a one-dimensional structure with the cochlea regarded as an uncoiled structure with

two fluid-filled compartments with rigid walls that are separated by an elastic parti-

tion, the basilar membrane. The cochlear partition, whose mechanical properties are
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describable in terms of point-wise mass density, stiffness, and damping, is regarded

as a flexible boundary between scala tympani and scala vestibuli. Thus, at every point

along the cochlear duct, the pressure difference P(x, t) across the partition drives the

partitions velocity. By applying fundamental physical principles, such as the conser-

vation of mass and the dynamics of deformable bodies, the differential equation for P

is obtained by [14]

∂2P(x, t)
∂x2 =

2ρβ

A
∂2ξBM(x, t)

∂t2 (2.1)

where ξBM is the BM displacement, A represents the cross-sectional area of scala

tympani and scala vestibuli, β is the BM width, and ρ is the density of the fluid in both

the scala vestibuli and the scala tympani. The pressure on the BM (Pbm) is a result of

both the difference in fluid pressure and the pressure caused by the OHCs (Pohc). The

relation between the pressures of BM, TM, and OHC is shown in [36] Fig. 2.3, which

can be interpreted as

PBM(x, t) = P(x, t) + POHC(x, t)
0 = POHC(x, t) + Ptm(x, t)

}
(2.2)

The mechanical properties of both BM and TM are simulated as second-order os-

cillators that yield

Pbm = Mbm(x) · ∂2ξbm(x,t)
∂t2 + Rbm(x) · ∂ξbm(x,t)

∂t + Kbm(x) · ξxm(x, t)

Ptm = Mtm(x) · ∂2ξtm(x,t)
∂t2 + Rtm(x) · ∂ξtm(x,t)

∂t + Ktm(x) · ξtm(x, t)

}
(2.3)

where Kbm, Ktm,Rbm, Rtm, Mbm, and Mtm are the effective stiffness, damping, and

mass per unit area of BM and TM, respectively (see Table A.1). The TM displacement
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is defined as ξtm. Since the OHCs lie between the two membranes, their displacement

is considered as

ξohc = ξtm − ξbm (2.4)

Each OHC is modeled by two sections, the apical and basal parts. The apical part

is directed toward the endolymph of the gap between the TM and the reticular lamina

(RL), while the basolateral part is embedded in the perilymph next to the supporting

cells that are aligned along the BM. When the OHCs stereocilia move due to the rel-

ative displacement of the BM and the TM, the conductance of the apical part of the

OHC is affected, which in turn causes a flow of potassium and calcium ions to the en-

dolymph. Thus, a voltage drop is developed on the basal part of the OHC membrane.

[8]

An outer hair cell model is described by an equivalent electrical circuit in Fig. 2.4

[6, 27]. The apical part is presented by its variable conductance (Ga ≈ ξohc) and its con-

stant capacitance (Ca), while the basal part is presented by its constant conductance

and capacitance, Gb and Cb, respectively. The electrical potential of the endolymph is

Vsm = 80mV, and the perilymph resting potential is ψ0 = 70mV. Solving the equiva-

lent electrical circuit by using Kirchhoff laws yields the differential equation for psiohc,

the OHCs membrane voltage:

dψOHC

dt
+ ωOHC · (ψ− ψ0) = η · ξOHC (2.5)

where ωohc ≈ Gb/Cb = 1000Hz, which represents the cutoff frequency of the OHCs
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membrane and η = αVsm/(Cb + Ca) = const. (see Table A.1).

Figure 2.4: Equivalent electrical circuit of outer hair cell

An OHCs length changes due to the electrical potential developed on the OHC

membrane and is defined as ∆lohc. It is usually described as a sigmoid function [56, 18,

29]:

∆lohc = αs
e−2·αl ·ψ − 1
e−2·αl ·ψ + 1

= αs · tanh(−αl · ψ) (2.6)

where αl and αs are constants (see Table A.1).

The pressure developed by each OHC (Pohc) is obtained from the spring properties

of the OHC. Lets define γohc(x) as the OHC effective index. It represents the effective

distribution of the OHCs along the cochlear partition. Therefore, the OHC pressure is

obtained by

Pohc(x, t) = γohc(x) · Kohc(x) · [ξohc(x, t)− ∆lohc(x, t)] (2.7)

where Kohc is the OHCs stiffness (Table A.1). A cochlea with no active OHC is

obtained by γohc(x) = 0, whereas 0.5 ≤ γohc(x) ≤ 0.6 yielded an optimal cochlea that
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best fits physiological data [36].

The ear model described by Eqs. (2.2) to (2.7) is solved by applying initial and

boundary conditions. The boundary conditions are

∂P
∂x

∣∣∣
x=0

= 2ρC ∂2ξow(t)
∂t2

P(Lco, t) = 0

}
(2.8)

where Lco = 3.5cm is the cochlear length, ξow is the oval window displacement,

and Cow is the coupling factor of the oval window to the perilymph. In order to obtain

ξow, the middle ear model was applied [47] as expressed by the following differential

equation:

d2ξow(t)
dt2 + γOW ·

dξow(t)
dt

+ ω2
OW · ξow(t) =

1
σOW

· [P(0, t) + Γme · Pin(t)] (2.9)

where σOW ,γOW and ωOW are oval window’s areal density, resistance and reso-

nance frequency.Furst 14, (At Section 2) shown The mechanical gain of the ossicles is

denoted by Γme. the initial conditions are:

ξbm(x, 0) = ∂ξbm(x,t)
∂t

∣∣∣
t=0

= 0;

ξtm(x, 0) = ∂ξtm(x,t)
∂t

∣∣∣
t=0

= 0;

ξow(0) = ∂ξow(t)
∂t

∣∣∣
t=0

= 0;

ψOHC(x, 0) = ψ0


(2.10)

2.2 Model of the Inner hair cellauditory nerve synapse

The basilar membrane motion is transformed into neural spikes of the auditory nerve

by the inner hair cells. The deflection of the hair-cell stereocilia opens mechanically

gated ion channels that allow any small, positively charged ions (primarily potassium
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and calcium) to enter the cell [50]. Unlike many other electrically active cells, the hair

cell itself does not fire an action potential. Instead, the influx of positive ions from the

endolymph in the Scala media depolarizes the cell, resulting in a receptor potential.

This receptor potential opens voltage-gated calcium channels; calcium ions then enter

the cell and trigger the release of neurotransmitters at the basal end of the cell. The

neurotransmitters diffuse across the narrow space between the hair cell and a nerve

terminal, where they then bind to receptors and thus trigger action potentials in the

nerve. In this way, the mechanical sound signal is converted into an electrical nerve

signal. The IHC chronically leak Ca+2. This leakage causes a tonic release of neuro-

transmitter to the synapses. It is thought that this tonic release is what allows the hair

cells to respond so quickly to mechanical stimuli. The quickness of the hair cell re-

sponse may also be due to that fact that it can increase the amount of neurotransmitter

release in response to a change as little as 100µV in membrane potential.

Many models were developed for explaining the IHCs transduction abilities [46].

Some models focused on possible mechanisms for adaptation [57].

One commonly simplified modeling approach to explain the IHCs role in the audi-

tory system posits a nonlinear system that combines AC and DC responses followed

by a random generator that creates spike trains [57]. The model presented in this chap-

ter is consistent with these principles.

Furst 14 calculates at Section 3 The BM displacement stimulates the IHC cilia to

move, its velocity ξ̇ ihc corresponding to the BM velocity (ξ̇bm) by a nonlinear function,
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e.g.
ξ̇ihc = α1 · tanh(α2 · ξ̇bm)

≈ α1 · [α2 · ξ̇bm − (α2·ξ̇bm)
3

3 + 2(α2·ξ̇bm)
5

15 · · · ]
u ξ̇bm

(2.11)

Since the BM displacement in this model is nonlinear as described by the mechani-

cal model above, we ignore the nonlinear terms in Eq. (2.11) and assume that α1α2 = 1

to approximate ξ̇bm;

The electromechanical receptors that are located in the IHC membrane yield an

increase in the electrical potential (ψihc) of the IHC membrane. A common modeling

approach for the IHCs role in the auditory system is based on a nonlinear system that

combines AC and DC responses. The DC level represents the firing responses without

any synchrony to the input stimuli and the AC level represents the synchronized firing

response (typical at low frequencies). The DC component includes a high-pass filter

followed by a moving average filter of 2 ms long; the AC component consists of a

low-pass filter. In order to account for physiological observations that demonstrated

a reduction in synchronization as the frequency of the stimulus increases, a low-pass

filter with a cutoff frequency of 300Hz was chosen with attenuation of 1800Hz. In

practice, ψihc is obtained by

ψihc(x, t) = eγihc(x) ·
[
ηAC · ξ̇ihc(x, t) ? hihc(t)

+ ηDC ·
∫ t

t−δ

{
ξ̇ihc(x, τ) · [1− hihc(t)]

}2dτ
] (2.12)

where x represents the location of the IHC along the cochlear partition, hihc(t) is the

impulse response of the low-pass filter that represents the IHC response, and ηAC, ηDC,

and ∆ are constants Table A.1. The parameter γihc(x) represents the IHC efficiency

index. It was defined as a function of x, to allow variability in IHC efficiency along

the cochlear partition. For normal cochlea, we chose γihc(x) = 8, which was found



CHAPTER 2. DESCRIPTION OF THE HUMAN EAR ANATOMY 13

to match experimental data. The efficiency of the IHC is reduced with a decrease of

γihc(x).

This IHC receptor potential opens voltage-gated calcium channels; calcium ions

then enter the cell and trigger the release of neurotransmitters at the basal end of the

cell. The neurotransmitters diffuse across the narrow space between the hair cell and

a nerve terminal where they then bind to receptors and thus trigger action potentials

in the nerve.

The neural activity in the auditory system is irregular since a specific neuron might

respond with a single spike or several spikes to a given stimuli. The origin of the

stochastic activity of neurons is poorly understood. This activity results in both in-

trinsic noise sources that generate stochastic behavior on the level of the neuronal

dynamics and extrinsic sources that arise from network effects and synaptic transmis-

sion. Another source of noise that is specific to neurons arises from the finite number

of ion channels in a neuronal membrane patch. [14]

There are a number of different ways that have emerged to describe the stochas-

tic properties of neural activity. One possible approach relates to the train of spikes

as a stochastic point process. For example, studies suggested that the spontaneous

activity of the cochlear nucleus can be described as a homogeneous Poisson process.

Further investigations of the auditory system described the neural Cochlear Model for

Hearing Loss response as a non-homogeneous Poisson point process (NHPP) whose

instantaneous rate depends on the input stimuli. [14, 17, 37]

In the present chapter, we relate to the neural activity as NHPP, and thus only the
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instantaneous rate (IR) should be extracted. In order to derive IR, we use the Weber-

Fechner law, which describes the relationship between the magnitude of a physical

stimulus and the intensity or strength that people feel. This kind of relationship can

be described by a differential equation:

dP = K
dS
S

(2.13)

2.2.1 ANR response

where dP is the differential change in perception, dS is the differential increase in the

stimulus, and S is the stimulus at the instant. Integrating the above equation reveals

P = klnS +C. Let us define λAN(x, t) as the IR obtained by the auditory fiber attached

to location x along the cochlear partition, and let us assume that it relates to the per-

ception of the physical parameter. On the other hand, ψihc(x, t), the IHC electrical po-

tential corresponds to the stimulus. Therefore, by applying the WeberFechner law, we

obtained the relationship λAN(x, t) = ln(ψihc(x, t)) + C. However, the ANs IR should

satisfy the following conditions: 0 < λspont ≤ λAN(x, t) ≤ λsat, where λspont and λsat

are the spontaneous and saturation rates of the AN, respectively. Therefore,λAN(x, t)

is obtained by

λAN(x, t) = min{λsat, λspont + max{0, Aihc(x) ∗ ln(u(ψihc(x, t)))}} (2.14)

Aihc is constant (see Table A.1)

In general, the auditory nerve response is divided into three types of fibers accord-

ing to their spontaneous rates: a high spontaneous rate (HSR) that usually codes low-

level stimuli, a medium spontaneous rate (MSR), and a high spontaneous rate (LSR)
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that generally codes high level stimuli. In order to include all types of auditory nerves,

we substitute in Eq. (13) the relevant constants [λ
(H)
spont, AH; λ

(M)
spont, AM; λ

(L)
spont, AL] for

the HSR, MSR, and LSR that yield the instantaneous rates [λ(H)
AN (x, t), λ

(M)
AN (x, t), λ

(L)
AN(x, t)]

respectively. The different types of ANs are distributed uniformly along the cochlear

partition, with frequency of 61%,23%,16% to high medium and low rates.

2.3 Hearing Threshold,JND, Based on Auditory Nerve

The hearing threshold, defined as the lowest threshold of acoustic pressure sensa-

tion, is usually determined by quantitative psycho-acoustical experiments in which

the human ability to detect the smallest difference in the stimulus physical property

is obtained. This difference is referred to as a just-noticeable difference (JND). In such

experiments, a subject must distinguish between two close time (t) dependent stimuli:

s(t, α) and s(t, α + ∆α), where α is a given physical property. The JND(α) will be the

minimum ∆α a person can perceive. The parameter represents any physical property

of the stimulus that can be measured such as frequency or level in monaural stimulus.

Comparing the behavioral JND and the neural activity is possible if one assumes

that the neural system estimates the measured parameters. Siebert 41 obtained such a

comparison when the JND of a single tones frequency and level was compared to the

neural activity of the auditory nerve. Sieberts findings were based on the assumption

that the auditory nerve (AN) response behaves as an NHPP, and the brain acts as an

unbiased optimal estimator of the physical parameters. Thus, the JND is equal to the

standard deviation of the estimated parameter and can be derived by lower bounds

such as the CramerRao lower bound. Heinz and Carney 19 generalized Siberts results
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to a larger range of frequencies and levels.

In a psychoacoustical JND experiment, the yielded JND value is obtained when

d′ = 1, which is expressed by Furst 14, Section 4:

d′ =
E[α̂ | α∗]− E[α̂ | (α∗ + ∆α)]

std(α̂ | α∗) =
∆α

std(α̂ | α∗) (2.15)

where E[α̂ | α∗] = α∗ , α∗ is the true value of α, and α̂ is the estimated value of α.

Therefore, d′ = 1, yields the relations ∆α = std(α̂ | α∗), which implies

JND(α∗) = std(α̂ | α∗) (2.16)

When the estimation is based on neural activity that behaves as NHPP, there are

two possible ways to analyze the performance. The first way is referred to as ”rate

coding” (RA), which means that the performance is analyzed on the basis of the num-

ber of spikes. The second way is referred as ”all information coding” (AI), indicating

that in addition to the number of spikes in the interval, the timing of the discharge

spikes is considered as well.

Let us define N(0, T) as the random variable that represents the number of spikes

in the time interval [0, T] . For the RA coding, the probability density function (pdf) of

getting n spikes in the time interval of length T is obtained by

PRA(N(0, T) = n) =
1
n!
·
[∫ T

0
λ(t, α)dt

]n

· exp
{
−
∫ T

0
λ(t, α)dt

}
(2.17)

where λ(t, α) is the instantaneous rate of the nerve fiber that depends on both the

time t and the physical parameter α. Given the RA pdf (Equation (2.17)), the resulting
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CramerRao lower bound (CRLB) is obtained by [3]

CRLBRA(α
∗) =

{
T

λ̄(α∗)

[
∂λ̄(α∗)

∂α

∣∣∣∣
α=α∗

]2
}− 1

2

(2.18)

λ̄(α∗) = 1
T ·
∫ T

0 λ(t, α)dt is average rate for interval [0, T].

For the AI coding, the probability density function of getting n successive neural

spikes at a set of time instances is t1, t2, · · · , tn , where 0 ≤ t1 < t2 < · · · < tn ≤ T is

obtained by

PAI(N(0, T) = n, t1, · · · , tn) =
1
n!
·Πn

k=1λ(tk, α) · exp
{
−
∫ T

0
λ(t, α)dt

}
(2.19)

and the CRLB yields

CRLBAI(α
∗) =

{∫ T

0

1
λ(t, α∗)

[
∂λ̄(α∗)

∂α

∣∣∣∣
α=α∗

]2
}− 1

2

(2.20)

For the unbiased system, the rule is

std(α̂ | α∗) ≥ CRLBRA(α
∗) ≥ CRLBAI(α

∗) (2.21)

In an optimal unbiased system, the standard deviation of the estimator can achieve

the lower bounds. Since JND(α∗) = std(α̂ | α∗) (Equation (2.16)), JND(α∗) can be es-

timated by calculating CRLBRA(α
∗) or CRLBAI(α

∗). Comparing the estimated thresh-

olds to experimental results can resolve the question whether the brain estimates the

auditory thresholds according to RA or AI coding.

In order to apply the above-mentioned method for determining the auditory thresh-

old, we should consider the responses of all 30,000 AN fibers that innervate each ear.
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Since the AN fibers are statistically independent [20], the d theorem can be applied,

which yields

(d′)2 =
M

∑
m=1

(d′m)
2 (2.22)

where M is the number of nerve 1 fibers and d′m is the d (Equation (2.15)) that was

derived for the mth fiber. Moreover,

std(α̂ | α∗) = 1

∑M
m=1[stdm(α̂ | α∗)]−2

(2.23)

where stdm(α̂ | α∗) is the standard deviation of the estimator obtained by the mth

fiber. Since the threshold is obtained when d′ = 1, it implies that in an optimal system,

JND(α∗) =
1√

∑M
m=1[CRLBm(α∗)]−2

(2.24)

where CRLBm(α∗) is the CRLB of the mth fiber.

Let us define the number of fibers attached to each location along the cochlear

partition as M(x). Thus,σx∈[0,Lco]M(x) = 30, 000, where Lco is the cochlear length.

For every location, three IRs were derived λ
(H)
AN (x, t), λ

(M)
AN (x, t), λ

(L)
AN(x, t) Eq. (2.14),

which correspond to the HSR, MSR,and LSR fibers, respectively. They are distributed

uniformly along the cochlear partition with corresponding weights wL, wM, wH (see

Table A.1). Therefore,

JND(α∗) =
1√

FH + FM + FL
(2.25)
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Such that

FH = ∑
x∈[0,Lco]

ωH ·M(x)
∑

m=1

{
CRLB(H)

m (α∗)
}−2

FM = ∑
x∈[0,Lco]

ωM·M(x)
∑

m=1

{
CRLB(M)

m (α∗)
}−2

FL = ∑
x∈[0,Lco]

ωL·M(x)
∑

m=1

{
CRLB(L)

m (α∗)
}−2


(2.26)

Replacing CRLB in Eq. (2.25) with the corresponding CRLBRA(α
∗) or CRLBAI(α

∗),

JND(α∗) is estimated by either RATE or AI coding.

In order to calculate both CRLBRA(α
∗) or CRLBAI(α

∗), the derivative of the instan-

taneous rate should be derived. We have used the following approximation:

∂λ(t, α)/∂α|α=α∗ ≈
λ(t, α∗ + ∆α)− λ(t, α∗)

∆α
(2.27)

Therefore, in deriving JND(α∗) for any stimulus s(t, α∗), the IRs for both stimuli

s(t, α∗) and s(t, α∗ + ∆α) should be calculated. Two types of thresholds will be pre-

sented for tones in quiet and in the presence of noise. The quiet threshold was derived

by substituting α∗ = 0 that yielded λ(t, α∗) = λspont. For the thresholds in the presence

of noise, s(t, α∗) is equal to the noise, and s(t, α∗ + ∆α) is equal to the noise +tone with

a level of ∆α.



Chapter 3

GPU With CUDA Architecture Updates

GPU is specialized computer for fast image processing and construction for display.

However more than decade ago NVidia start to adjust the architecture for general ap-

plications that can be parallelize. the GPU consists of multiple clusters of core arrays,

each core array has shared cache memory and registers for execution. this architecture

allow to run program in SIMD (Same Instruction Multiple Data), each clock cycle all

active cores run the same operation for different memory parts. NVidia architecture

divided to 3 types

1. Global is accessible for all Streaming multiprocessor (clusters of core arrays), this

make access relatively slow, hundreds of cycles per read or write, however ex-

ecution control can switch between active cores while memory is loaded and

conceal the delay.

2. Cache is accessible for each Multiprocessor separately, is order of magnitude

faster to access but is much smaller than the Global Memory, its advised to use

this for synchronizing data between threads of the same block or overflow of

data that cant be stored in the registers.

20



CHAPTER 3. GPU WITH CUDA ARCHITECTURE UPDATES 21

3. Register File are very limited amount of memory close for the processors, they

are accessible in single clock cycle, all instructions executions can be done there.

4. Constant Memory, small amount of it accessible for each core array separately,

while this is read only memory when executing code from the device, the host

can upload data before kernel execution. this memory can be accessed fast if all

threads in warp access the same cell at clock cycle, otherwise, it will be serialized

and slow the read operation by number of different cells needed to be accessed.

CUDA (Compute Unified Device Architecture) has 2 contexts of execution, host is

the CPU, all CUDA programs starts with host execution, control all memory copy to

the GPU and from the GPU and launches the device (GPU) context procedures called

kernels. each kernel has 2 level hierarchy

1. Blocks each block run on single multiprocessor and has access to the same cache

memory, each multiprocessor can run multiple Blocks but they order of exe-

cution is not guaranteed. while multiple blocks can communicate trough the

atomic actions, its slow and mostly unadvised, since core array need to stop and

switch execution to another block or stop completely if all blocks are waiting

2. Threads, each Block can contain up to 1024 they execute concurrently (32 of them

each cycle), they can access the same share memory array with few limitations.

each time threads need to read memory that need multiple clock cycle to be ac-

cessible the multiprocessor can switch context and make this threads dormant,

this is fast operation.
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all Threads on each block has access to the same shared memory array (SHM),

which defined on cache by the programmer. SHM access is divided to banks of either

4 bytes or on some cards 8 bytes. each thread can only access single bank, if n threads

read or write to distinct n banks, all can be serviced simultaneously which multiply

memory bandwidth by n. but if those threads read/write to the same bank, a conflict

is occurred, the chip will split the memory access to n free conflict serialized requests.

SHM is placed in L1 cache memory on chip is much faster to deliver requests (1 clock

cycle) than either the local or global memory, but n way bank conflict will reduce

access speed by n factor and should be avoided. if multiple threads of the same warp

read single bank, multi-casting occur and all threads gets memory at the same time,for

multi-write to the same bank, only a single thread will write, arbitrary selected.

3.1 Difference Between Generations of NVidia architec-
ture

SM basic properties While the Streaming Multiprocessor (SM) is the center of the

GPU and controls execution of the kernel. NVidia has changed over the years com-

ponents included in SM. each compute capability is identified with SM model. this

project optimized and run on several capabilities.

Compute Capability 1.x, Tesla Architecture NVidia architectures is divided to gen-

erations of processors (identified by the number before decimal point,major version).

the first generation architecture 1.x [31] , presented maximum capacity of 768 threads

per SM, had only 8 FP32 lane and 2 SFU for single and 1 double precision unit. since

threads executed in groups of 32 called warps, each multiply/add command took 4
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clock cycles to complete and intrinsic functions such as f divide f ,log f will take 16 cy-

cles to complete. our project needs 256 parallel threads per block to represent spatial

partition [40], this limits us to maximum 3 blocks on 1.0-1.1 and 4 on 1.2-1.3. another

critical resource is 32 bit registers per SM, with each has only 8K-16K, for maximum

capacity each thread would have to use 10-16 registers, effectively we can expect at

most single block on 1.0-1.1 or 2 blocks on 1.2-1.3 (32 registers per thread), this signifi-

cantly limit the parallelism of 1.x SMs relative to later generations. shared memory is

also limiting factor, architecture 1.x had 16 banks per warp. reading shared memory

took 2 cycles per warp, bank conflicts must be avoided between 2 halves of the warp.

this model has been deprecated and is not supported by CUDA.

Compute Capability 2.x, Fermi Architecture NVidia second generation of architec-

ture significantly modified relative to the first. Comparison Tables B.1 and B.2, for SM

2.0 doubling the amount of registers per SM to 32K and increase warps per SM to 48

allows more active threads, there are only 4 SFU for every 32 FP32 lane meaning that

intrinsic will take 8 cycles, single precision multiply,add and multiply-add take 1 clock

cycle to execute. With the number of FP32 lanes multiplied by 4 and registers 2, regis-

ter pressure increased, this phenomena consists reducing occupancy of kernel due to

not enough registers for the maximum number of threads, example, SM 2.0 can run

1536 simultaneously, if each requires 32 registers maximum occupancy will achieved

with use of 48K, but SM 2.0 has only 32K so maximum occupancy cant rise above

66%. The 2nd generation architecture also doubled the number of warp schedulers,

while occupancy defined amount of warps hold in SM registers at once, each sched-
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uler execute warp if enough FP32 lanes available,which happens when warp need to

read from memory and is stalled. SM 2.1 increased number of FP32 lanes to 48 and

SFU units to 8, allowing also for 2 instructions to execute per warp, if they are inde-

pendent. this configuration while increase register pressure improves throughput for

arithmetic intense programs as well as intrinsic operations. this model also deprecated

since CUDA 8 and is not supported.

Compute Capability 3.x, Kepler Architecture Third generation of CUDA supported

architecture(SM 3.x, called SMX),shown in Fig. 3.1 left side. Increased amount of FP32

lanes to 192 (light green boxes),and SFU to 32 (forest green boxes), doubling number of

warp schedulers to 4 (orange boxes on top), which improves the ratio of FP32 lanes per

scheduler allowing more arithmetic intense programs. increasing maximum threads

per SM to 2048 while doubling registers number to 64K (Dark blue box under brown

boxes) Reduce register pressure permit 32 per thread even for maximum occupancy.

the number of double precision units per SM is only 6 (yellow boxes, note since the

figure shows the Quadro variant of the core described at Section 3.1 we see 64 of them,

on Geforce there are only 8 per SMX), this makes 64-bit operations to be avoided,

however the 2 instructions per scheduler (brown boxes are dispatchers) expanded to

execute 64 bit instruction with 32-bit one if independent, Kepler’s schedulers assigned

. Each SMX can read/write 128 byte (Olive boxes can read 4 Bytes each) architecture

3.5 added dynamic parallelism [33], this feature allow kernel launching from kernels,

this improve speeds by avoiding copy kernel data and instructions from host to device

for run time decisions.the launched kernel called child, and is guaranteed to execute
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and return before parent completion. the Kepler Cache memory divided to L1, allo-

cated per SMX and L2 cache shared for all SMX. the L1 has 64KB (Cyan box near the

bottom) and can be configured as 48/16, 32/32 or 16/48 KB between L1 (used for reg-

ister spilling) and shared memory, allocated per block must be reduced, or CUDA will

reduce occupancy so each remain block will have enough shared memory.

Compute Capability 5.x and 6.1-6.2, Maxwell and Pascal Architecture The Maxwell

SM (CC 5.x), designated SMM, has been restructured to improve energy efficiency,

[32],shown in Fig. 3.1 right side. The colored boxes functions identical to those in Ke-

pler’s SMX chart. The SMM divided to 4 warp schedulers,each can dispatch 1 instruc-

tion per cycle (Table B.2), each physically connected to its 32 FP32 lanes, 8 SFU and

single DP unit. this doubles energy efficiency and allows NVidia to also double num-

bers of SM with decrease in energy consumption and die size increase from 294mm2

to 398mm2. Note that while number of instructions per cycle executed reduced from

2 to 1, number of ALUs per SM decreased too, so more SM per Card can be set (on

comparable tiers of cards). With both architectures limited to 2048 threads per SM

and 64K registers per SM, Maxwell architecture can run double number of threads on

single card. note however that count of DP units/FP32 lanes lowered from 1/24 in

Kepler to 1/32 (this relevant for Geforce, Section Quadro and Tesla series Differences

from GeForce), make the use of double precision inadvisable. Maxwell Architecture

also introduce separation between L1 cache (24KB) and shared memory (64KB in 5.0,

96K from 5.2, Table B.1). In difference from Kepler unified 64KB that can be configured

between the shared and L1 cache. Pascal, CC 6.1-6.2,designated SMP, has mostly same
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features as the CC 5.2 with increase in L1 Cache from 24 to 48KB, this allows to bet-

ter ratio of cache hits/miss from global memory. register spills are stored on L2 from

Maxwell, not L1 like in Kepler and this need to be considered when limiting number

of registers per thread.

Figure 3.1: Comparison of Kepler (CC 3.x) and Maxwell (5.x) SM based on figures
from [30] and [32]

Quadro and Tesla series Differences from GeForce NVidia manufacture several

variations for each CC version, this versions of SMs are differed by the number of

DP units on SM. numbers in previous paragraphs described GeForce model, which is

available for this project, for Quadro and Tesla Versions there is 1/2 ratio of DP unit-

s/FP32 lanes in Fermi,Maxwell and 1/3 ration in Kepler (available in CC 3.7). the ratio
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is 1/2 on Pascal 6.0 as well, however CC 6.0 has SM with 64 FP32 lanes and 2 warp

scheduler, with double number of SM per FP32 lane and limitation of 2048 threads per

SM, CC 6.0 can run double number of threads per lane if registers count is below 16

per thread.

3.2 NVidia Nsight

The NVidia Nsight tool allow for both CUDA debugging and performance analysis

[2]. Since our project aim is to accelerate solution of the Cochlear equations, Nsight

enable us to test multiple aspects of card workload and find bottlenecks. We present

here the tests used to optimize performance in this project.

Achieved Occupancy describes actual number of warps that are executed for the current kernel on the

SM, Kepler Architecture can run 64 warps on each SM in granularity of blocks,

if kernel needs between 49 to 64 registers per thread and block contains 256

threads, no more than 1024 will be able to run (4 blocks) per SM and Achieved

Occupancy will be 1024
2048 = 50%. its advisable to feed amount of block that will be

larger than achieved occupancy times number of SM and will divide it as well, to

prevent small number of last blocks being processed while most of the SM idle,

called Tail End effect.

Achieved FLOPs describes the number of floating point operations per second executed on the

device. its common method evaluate performance which can be assembled from

several independent sequential tasks that run on multi-core or any device with

shared memory and can be adjust for use of cores with different operation fre-
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quency [23], this metric is useful for optimization process of time-to-solution.

Achieved IOPs indicates number if Integer Operations per second executed on the card, while

similar to Achieved FLOPs this methodology is useful for differentiating be-

tween solutions performance and not to derive the causes of bottlenecks.

Instruction Statistics is basic measurement of the global work distribution scheduler and has several

indicators, Instructions Per Cycle (IPC) is measured average for warps across the

SM. Issued IPC describe the amount of dispatched instructions for the warp and

will be ideally identical to the Executed IPC, however some instructions has to be

issued multiple times. Instructions Per Warp (IPW) shows average executed per

warp/cycle. Warps Launched, per SM. if this number varies greatly, most likely

cause is insufficient warps to get Achieved Occupancy across all SM, called tail

effect and reduce average time-to-solution across the device due to idle warp

scheduler that wait for remained active warps to finish kernel.

Issue Efficiency measures he ability of the device to allocate instruction for execution per cycle,

composed from several indicators, Active Warps measured for each SM and av-

erages number of allocated warps for the SM across kernel, this cant be higher

than Achieved Occupancy but if significantly lower there aren’t enough warps

to exploit device parallelism, if varied greatly some of SMs finish before others

and waiting idle, should consider workload redistribution. the eligible warps is

average number of warps that can execute instruction each cycles, this number

cant be higher than warp schedulers count per SM. warp issue efficiency is the

percentage of time that scheduler can issue instruction for one of its warps, if too
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low, the graph of issue stall reasons indicates division of failures for schedulers to

allocate instructions, such as memory dependency, waiting for load/store units

to be available to read/write to memory. execution dependency, data for exe-

cuted instruction is not available etc.

Memory Statistics measures number of requests and bytes across all memory modules, includes

shared, constant, local and global memory as well as L1, L2 cache. this can indi-

cate bottleneck of stalls issues due memory calls.

Source Level Experiments offer several indicator in resolution of single instruction, include total number of

times executed in the kernel, percentage of threads inside warp that executed the

instruction.

Occupancy Calculator This NVidia tool is an Excel sheet that can feed the CC,threads

per block for kernel, registers per thread and SHM to calculate maximum blocks per

SM. this tool gives target registers number to increase occupancy.



Chapter 4

Cochlear Model Implementation
Updates

While Sabo et al. 39 Shown that the Cochlear Model Equations can be approximated

using NVidia GPU. An updated version of the Hardware require some optimizations

to fit for updated version of CUDA supporting devices

4.1 Single precision computations updates

4.1.1 Serial Solution of boundary conditions equations

Sabo et al. 39 get boundary conditions from partial difference equation Eq. (2.1) by

substituting Eqs. (2.2) and (2.3) yields:

∂P(x, t)
∂x2 =Q(x) · [P(x, t)− G(x, t)] (4.1)

G(x, t) =− [Rbm(x)ξbm(x, t) + Kbm(x)ξ̇bm(x, t) + Ptm(x, t)] (4.2)

Q(x) =
2 · ρ · β

A ·Mbm(x)
(4.3)

With t as parameter Eq. (4.1) is second order regular differential equation and is de-

pend on x it can be solved by applying boundary conditions from Eqs. (2.8) and (2.9)

The boundary condition problem is solved for every time point by converting the

problem from the continuous to the discrete domain. The cochlear length is divided

30
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Figure 4.1: Flow chart to replace t + ∆t.

into N equal sections where x = n · ∆x for 0 ≤ n ≤ N and

∆x = Lco
N . The first and second derivatives of P are approximated using the Taylor

series in the discrete domain:

∂P(xn, t)
∂x

≈ P(xn+1, t)− P(xn, t)
∆x

(4.4)

∂2P(xn, t)
∂x

≈ P(xn+1, t)− 2 · P(xn, t) + P(xn−1, t)
∆x2 (4.5)

substitute Eq. (4.4) with first boundary condition in Eq. (2.8) for x = 0 yields

P(∆x, t) = P(0, t) + ∆x · 2ρ · Cow ·
∂2ξow(t)

∂t2 (4.6)

∂2ξow(t)
∂t2 is obtained from Eq. (2.9) modifies Eq. (4.6) to

P(∆x, t) = (1 + ∆x · 2ρ · Cow

σow
) · P(0, t) + Y0 (4.7)

where

Y0 = 2ρCow[
ΓME

σow
Pin(t)− γowξ̇ow(t)−ω2

owξow(t)]∆x (4.8)
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The second boundary condition of Eq. (2.8) for x = Lco yields

P(xN, t) = 0 (4.9)

substituting Eq. (4.5) in Eq. (4.1) for 1 ≤ n ≤ N − 1 yields

P(xn+1, t)− (2 + ∆x2 ·Q(xn)) · P(xn, t) + P(xn−1, t) = ∆x2 ·Q(xn) · G(xn, t) (4.10)

Equations (4.7), (4.9) and (4.10) can be expressed as matrix form

ΛP(t) = Y(t) (4.11)

where Λ is tridiagonal matrix with main diagonal

[−(1 + ∆x · 2ρ · Cow

σow
),−(2 + ∆x2 ·Q(x1)), · · · ,−(2 + ∆x2 ·Q(xN−1)), 1] (4.12)

and the two other non-zero diagonals are ones,except for the(N,N1) element of the

matrix,which is zero.P(t) and Y(t) are shown below.

P(t) = [P(0, t), P(x1, t), · · · , P(xN−1, t), P(xN, t)]T (4.13)

Y(t) = [Y0, ∆x2Q(x1)G(x1, t), · · · , ∆x2Q(xN−1)G(xN−1, t), 0]T (4.14)

given Y(t) the solution of Eq. (4.11) is pressure of cochlear partition

P(t) = Λ−1Y(t) (4.15)

The inversion of the matrix Λ was obtained by LU decomposition.
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4.1.2 Serial Solution of initial conditions equations

A set of initial conditions of second order ordinary differential equations for ξbm(x, t),

ξtm(x, t), ξow(t) and a first order differential equation of ψ(x, t) as a function of t is

obtained by Eqs. (2.5) and (2.9) along with the substitution of Eqs. (2.2) and (2.7), and

Eq. (2.6) in Eq. (2.3).This set is solved by using the modified Euler method for first

order initial condition equations with adaptive step size [28]. The second order differ-

ential equations are solved by defining the first derivative of ξbm(x, t),ξtm(x, t),ξow(t)

as additional unknown variables ξ̇bm(x, t), ξ̇tm(x, t), ξ̇ow(t). Thus five first order differ-

ential equations have to be solved for every point (x) along the cochlear partition and

two additional first order differential equations for ξow(t) and ξ̇ow(t). If N is the num-

ber of samples along the cochlear partition,there are a total 5N + 2 initial conditions

to solve. The solution algorithm is explained shortly as follows.Lets define a typical

initial condition problem as:

dy
dt = f (t, y(t))

y(0) = Y0

}
(4.16)

the solution use Euler method and yields for step size ∆t

y(t + ∆t) = y(t) + ∆t · f (t, y(t)) (4.17)

In particular, for t = 0, y(∆t) = y0 + ∆t · f (0, y0):

However, when the Euler method is used convergence is ensured only when

t is very small (in the order of 1015s ). Such a step size is time consuming and

unpractical. In order to increase the step size the modified Euler method was used.An

iterative series {ωn} is defined for deriving y(t + ∆t) for a known y(t):
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ω0 = y(t) + ∆t · f (t, y(t))
ωn = y(t) + ∆t

2 · [ f (t, y(t)) + f (t + ∆t, ωn−1)], n ≥ 1

}
(4.18)

The first element in the series is obtained by the Euler method. If the iterative series

is convergent,then ωn → y(t + ∆t). The condition for convergence can be determined

by the Lipschitz constant for a function f (t, y(t)) that obeys the condition:

| f (t + ∆t, y(t + ∆t))− f (t, y(t))| ≤ L|y(t + ∆t)− y(t)| (4.19)

where L is Lipschitz constant. By substituting Eqs. (4.17) and (4.19) and replacing

ωn−1 and ωn by y(t + ∆t) in Eq. (4.18) Sabo et al. 39 get constraint

L · ∆t
2

< 1 (4.20)

thus, when ∆t < 2/L. ωn will converge to y(t + ∆t). Since it is rather complicated

to evaluate the Lipschitz constant for the set of the differential equations described

above, an estimate for the Lipschitz constant was derived from Eq. (4.4) as follows

[28]

L̂ =
| f (t + ∆t, ωn)− f (t, ωn−1)|

|ωn −ωn−1|
, n ≥ 1 (4.21)

In order to solve 5N + 2 initial conditions, time step ∆t must satisfy Lipschitz con-

straint Eq. (4.20) for every equation. To lower computation load, Sabo et al. 39 chose to

verify the most sensitive variable, ξ̇bm, such that ∆t < 2/L for N equations. it means
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that the existing time step, ∆t, was sufficient for convergence thus the resulted deriva-

tion was stored. The size of the time step was multiplied by 2 if maxN{ L̂∆t
2 } < 0.25.

when L̂∆t ≥ 1, time step ∆t was to large for convergence and was divided by 2 and

procedure repeated with the smaller time step.

4.1.3 Run Time Estimation

Sabo et al. 39 algorithm started by set time t and variables ξbm, ξtm,ξow, ψ to 0 to fulfill

initial conditions at Eq. (2.10), than compute Y(t). The next phase is deriving P(t) by

solving equations system (4.15) by the LU decomposition and than update t to t + ∆t

and start next iteration. The input of the algorithm is acoustic stimulus of Pin(t). Fs

denotes sample frequency of the system, thus the interval time between to consecutive

samples is Ts =
1
Fs

. Since the algorithm convergence requirements yields higher time

resolution then the input signal, linear interpolation is done in order to compute the

input pressure for time t as follows:

ns =
⌊

t
Ts

⌋
, ∆τ = t−ns·Ts

Ts
,

Pin(t) = (1− ∆τ) · Pin(ns · Ts) + ∆τ · Pin((ns + 1) · Ts)
(4.22)

For convergence of the partial differential equation and according to CFL condition

Courant et al. 7 and given N = 256, condition c∆t
∆x < 1 when c is speed of sound

inside perilymph. Given a cochlea length of 0.035m,c = 1500m/s condition met when

∆t < 9.11 · 10−8. In the simulations, the typical time step was in the range of 1 · 10−7 to

1 · 10−7 and maximum value was 1 · 10−6 with 6 iteration guarantee convergence. [39]

calculates 226 instructions per iteration with 2.5 · 10−7s as average calculated for N =

256 cochlear sections, estimated execution time for 1 second of acoustic simulation is

107

2.5 · 6 · 226 · 256 = 1.388 · 1012 clock cycles, given 3 − 4GHz CPU, about 350 to 500
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seconds execution time for 1 second of stimulus.

4.2 Parallelizing the algorithm

Serial solution of the algorithm depends on LU decomposition in the longitudinal di-

mension and iterative steps on time dimension. This methods takes duration which

is several orders of magnitude longer than real time voice signal. Sabo et al. 39 devel-

oped massive parallel algorithm solution which efficiently use massive parallelism of

GPU.

4.2.1 Parallelism in time dimension

The model uses a one dimensional description of the cochlear partition, hence it was

natural to chose a one dimensional grid in the parallel implementation. The cochlear

partition was divided into Nx sections along the x-axis, each section processed by one

thread. The parallel algorithm uses large amounts of constant data in its computations.

The data are read from the CPU host to the global memory of the GPU during the

initialization phase of the launch of the CUDA kernel. At the end of a time step, when

that time step converges, the algorithm stores the current results and advances to the

next time step. The memory traffic can slow down the execution time dramatically.

To prevent excessive memory accesses the equation is solved for a long time interval

in one kernel launch, so that the traffic to and from the global memory is done once

for a long segment of input processing. Each thread handles one cochlear section and

resolves the basilar membrane velocity for block time interval tbti seconds. The thread

stores results to global memory once in each ∆tOUT seconds, where ∆tOUT represents
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Figure 4.2: Partitioning in the time dimensioneach bar represents a time interval han-
dled by one CUDA block. Overlapping sections are discarded

the desired temporal resolution of the output.

To achieve parallelization in the time dimension Sabo et al. 39 partitioned the pro-

cessing into Nt CUDA blocks,such that each block solves the equations for all the

cochlear sections for a different time interval. Hence the number of time intervals

is equal to the number of CUDA blocks. The time intervals are handled by blocks

that are not completely independent, and two consecutive time intervals, mapped to

two consecutive CUDA blocks, have an overlapping interval of tBOP seconds. This

requires each block to run the algorithm for a total of tBTI + tBOP seconds. That is,

a specific block BL solves the model for the interval T(BL) = [(BL − 1) · tBTI ≤ t ≤

BL · (tBTI + tBOP)], Since the output is required to have a temporal resolution of ∆tOUT,

for each kernel launch each thread returns tBTI+tBOP
∆tOUT

+ 1 results of a specific cochlear

section. The results computed in the first tBOP seconds for each block are discarded.

Figure 4.2 illustrates the time dimension partitioning graphically, showing the time
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interval processed by each block, including the discarded (overlapping) interval. The

non-overlapping intervals processed by each block are connected together to form the

final result.

4.2.2 Parallelism in longitudinal dimension

Sabo et al. 39 found that the boundary conditions described at Eq. (4.10) are the main

obstacle for parallelism due to inter dependency between the sections. the serial solu-

tion use LU decomposition to solve the equation. However this is not good solution

for massive parallel algorithm, hence incompatible for GPU.

Basic smoothers (numerical algorithms used for solving a system of linear equa-

tions) like the Jacobi method and SOR (successive over relaxation) can be used to

parallelize a linear system. The purpose of smoothers is to reduce, or smooth, in an

efficient way the approximation error [53]. More advanced smoothers are difficult to

solve in parallel [16].

Taking advantage of the tridiagonal shape of the equations set, we used Jacobi

relaxation and implemented it with only a few floating point operations for each Jacobi

iteration. Manipulating Eq. (4.10) yields for 1 ≤ n ≤ N − 1

Q̂(xn) = 1
−(2+∆x2Q(xn))

P(xn, t) = (Yn(t)− 1 · P(xn−1, t)− ·P(xn+1, t)) · Q̂(xn)

}
(4.23)

by denoting the following

Âl = [0, 1, ..., 1, 0]T

Âu = [1, 1, ..., 1, 0]T

and
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Âm = [
1

−(1 + ∆x · 2ρ·Cow
σow

)
,

1
−(2 + ∆x2 ·Q(x1))

, · · · ,
1

−(2 + ∆x2 ·Q(xN−1))
, 1]T

combining Equations (4.7), (4.9) and (4.23) yields

P(xn, t) = (Yn(t)− Al[n] · P(xn−1, t)− Au[n] · P(xn+1, t)) · Am[n] (4.24)

Computation of P(t) implemented, running Jacobi relaxation for J iterations. Sabo

et al. 39 assumes that the convergence tests will catch the cases in which the computa-

tion of P(t) does not converge after J iterations. The equation of iteration j is:

Pj(xn, t) = (Yn(t)− Al[n] · Pj−1(xn−1, t)− Au[n] · Pj−1(xn+1, t)) · Am[n]; 0 ≤ n ≤ N

(4.25)

Al, Am and Au are constant, solved in advance and stored on shared memory. Divi-

sion my mass replaced by multiplication by 1
Mn

. The pressure P(xn, t) computed per

cochlear section xn on different thread. Hence each thread performs three multipli-

cations, two add/sub operations and seven shared memory accesses for one Jacobi

iteration. Inter-thread synchronization is required however after each Jacobi iteration

since each thread uses the result of its neighbors for the next iteration. Since syn-

chronization between threads that belong to the same block is much more efficient in

CUDA Sabo et al. 39 limited Nx to the size of each CUDA block.While CUDA block

can contain up to 1024 threads, main limitation for resources were shared memory

available per block, therefore Nx = 256. This resolution proves to ensure convergence
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of the algorithm and meet resource limitation demands on block size. The block starts

solving the model for time t = tBTI · (BL− 1).

4.3 Updating The computing algorithm to reduce errors

In Section 4.1.3 the signal pressure Pin(t), is being used at the Y0 initial condition due to

the pressure transmitted trough the oval window Eq. (4.8) therefor we need to evaluate

Pin(t + ∆t), since Pin is defined for

Pin(Ts · k), k ∈N (4.26)

To evaluate Pin(t) for every time t which doesn’t satisfy integer of t/Ts, a linear time

interpolation was implemented Eq. (4.22).

This was implemented in code by using single precision variable to indicate time

from the start of signal denoted as t and another indicator for the start of block time

interval tbti offset from the start will be denoted nearests . the formula for ∆τ,

nearests =

⌊
t− tbti

Ts

⌋
(4.27)

∆τ =
t− tbti − nearests · Ts

Ts
(4.28)

∆τ is single precision variables, all arithmetic binary floating point calculations on

CUDA compatible devices are done by IEEE-754 2008 standard [34, Section G.2]. IEEE

754 floating point register is divided to 23 mantissa, 8 exponent and one sign bit.decimal

precision is

dprecision =
23 · log(2)

log(10)
=

23
log2 10

= 7.2 (4.29)
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if ∆τ ≤ 10−dprecision · t than

Pin(t + ∆τ) == Pin(t) (4.30)

Sabo et al. 40 used 0.32 input signals, this means that for t > 0.1seconds Eq. (4.30)

for ∆τ < 10−8seconds, convergence for this intervals is not guaranteed. 2 methods

considered to solve this time interpolation domain

1. using double precision calculations - will lose 87.5% and 96.88% for throughput

for compute capabilities 2.0 and 6.0 respectively. due to 4 units of add,multiply

and fused add-multiply double precision for every 32 or 128 single precision

respectively.

2. using single precision Eq. (4.22) representing time as combination of ns and tδ,

therefore each time we need t we substitute t = ns · Ts + tδ.Time step was set

maximum value ∆τ = 10( − 6)seconds, Section 4.1.3, with those parameters,

algorithm ensures

tδ ≤ Ts + ∆τ (4.31)

with ∆τ << Ts we claim that effectively tδ ≤ Ts, [43] set Ts = 50µsec,linear

approximation of Pin(t) will be updated for

∆τ > 10lg10(Ts)+dprescision ≈ 3 ∗ 10−11 (4.32)

regardless of t.

4.3.1 Error Measurements

Basilar Membrane Velocity The difference between outputs for old input interpola-

tion method and ours can be shown for both the Membrane Velocity(BMV) and Nerve
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Response. Fig. 4.3 shows difference between the peak envelopes of BM velocity at

Figure 4.3: Envelope of Basilar Membrane velocity section in response for 4KHz tone
36dB with old(Red) and new(Blue) interpolation methods

section 0.64cm from OW for both the old and new algorithm. Response at relatively

low power does not have feedback ripples, therefore an expected envelope needs to be

approximately constant (except transition state). In the old interpolation method we

see rippling, we also see peak jump at 0.025 and 0.25 seconds, since precision drop as

direct function of log10(t). HSR fibers excitation,λhigh measured in spikes
second , in response

for 4KHz tone 40dB with old, Fig. 4.5, and new,Fig. 4.4, interpolation methods. At low

Amplitude input and single tone signal, ANR expected to be cyclic (except transient

stage).

As Sabo et al. 39, Ch 6 shown we need to ensure that our mismatches from the refer-

ence software are smaller than previous version. since this work intended to calculate

Auditory Nerve Response difference will be measured both for Basilar Membrane Ve-

locity and λhigh(x, t) from Eq. (2.14). both velocity and auditory nerve errors will be
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measured. For ξ̇bm old and new interpolation errors will be tested and compared.

1. first defined average speed for membrane section with normalized input with

power P

|ξ̇bm[i, P]| = 1
tend − tstart + 1

·
tend

∑
t=tstart

|ξ̇bm[i, P, t]|

defines signals average speed from index tstart to tend at longitudinal section i.

2. to measure error for signals with range of amplitudes, an energy for the mem-

brane measured on the reference program

ERe f erenceMean[P] =
N

∑
i=0
|ξ̇bm[i, P]|2re f erenceSo f tware

3. we then measure energy difference between the CUDA and reference program

for both interpolation methods.

EInterpolationError[P] =
N

∑
i=0

[|ξ̇bm[i, P]|CUDA − |ξ̇bm[i, P]|re f erenceSo f tware]
2

4. the normalized error will be function of input signal power P

Err[P] =
EInterpolationError[P]
ERe f erenceMean[P]

since we are interested to calculate JND from the results and this requires testing for

multiple Pure Tone inputs, 3 frequencies chosen to examine effectiveness. with Oval

Window self frequency of 1KHz and AC filter described at Table A.1, 500Hz, 1KHz, 2KHz, 4KHz

examined for below cutoff and in AC range, on the Oval window cutoff and on slope

of the AC filter, slightly after slope of AC filter and significantly DC response,
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Auditory Nerve Response the AN errors measured against difference from λspont

to ensure the rate will reflect JND measurements. we use HSR fibers as those are

dominant when search for JND.

1. define average activity above static level for cochlea section i with signal power

P and interval [tstart, tend]

∆λAN[i, P] =
1

tend − tstart + 1
·

tend

∑
t=tstart

(λAN[i, P, t]− λspont)

2. creating reference software energy equivalent by square ∆λ along the cochlea.

Eλ Re f erenceMean[P] =
N

∑
i=0

(∆λAN[i, P])2
re f erenceSo f tware

3. measuring equivalent error for cochlear sections for both the interpolation meth-

ods

Eλ InterpolationError[P] =
N

∑
i=0

[(λAN[i, P])CUDA − (λAN[i, P])re f erenceSo f tware]
2

4. finally normalize error defined as

Errλ[P] =
Eλ InterpolationError[P]
Eλ Re f erenceMean[P]
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Figure 4.4: Result yielded by new interpolation method for Pin(t), at 4KHz the nerves
cant follow the membrane phase and gives constant yield which is proportional of
|Pin(t)| as observed experimentaly

Figure 4.5: Result for old method of interpolation, we see nerves response change
phase both temporarily and spatially in response for the degraded dprecision
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Figure 4.6: Error Mean difference show improvement for All frequencies and powers
of relative error of 0.4 · 10−3, for lower frequencies error is lowered for less then half of
its former value
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Figure 4.7: Error Mean difference show improvement for All frequencies, the effect
however is most significant for 4KHz, error minimized from 16% to less than 1% for
40dB makes the new interpolation fit to calculate JND where the old version will err
significantly



Chapter 5

Implementing Neural Response and
JND evaluation

5.1 Neural Response Calculation

Here we will implement Massive parallel computing process to calculate Neural re-

sponse from Section 4.2 results of Bassilar membrane velocity solution.

As shown at Section 2.2 Neural response can be described as homogeneous Pois-

sion when no signal is present but non homogeneous Poission (NHHP) response when

signal is present. to calculate Neural response, IHC must be calculated first. paral-

lelization of equation Eq. (2.12). hihc can be any linear filter, chosen parameters for tests

described at Table A.1. this paralleled by first calculating IIR filter coefficients locally,

and then solve on GPU, since IIR is recursive, parallelization is done over longitude

dimension and over multiple power levels (JND section) but not on time domain, cal-

culating is done by convolve the output for each section by the b and than convolve

recursively the result with negative a coefficients.Implementation of the AC part from

Eq. (2.12)

48
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Figure 5.1: Flow chart of the Calculation of Auditory Nerve Response.
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ACresponse(x, t) =
n

∑
i=0

(
b(i) ∗ BMvelocity(x, t− i)

)
−

n

∑
i=1

(
a(i) ∗ ACresponse(x, t− i)

) (5.1)

Denote n, number of coefficients in hihc, t is time index (results time is t · Ts), x Cochlear

Longitudal Position, BMvelocity is sampled Basilar membrane velocity,ξ̇bm from Eq. (2.11)

and ACresponse is the result. Program supports using FIR filters as well for this calcu-

lation, if FIR filter is chosen, paralleling will be done on time domain as well. We use

the AC part of the IHC response to calculate the DC part,
{

ξ̇ihc(x, t) · [1− hihc(t)]
}2,

by calculating intermediate result

dShigh(x, t) =
{

BMvelocity(x, t)− ACresponse(x, t)
}2 (5.2)

Equation (5.2) depends on on results of Eqs. (2.11) and (5.1) at single time index, there-

fore can be done without synchronization. we approximate the DC part of the IHC

voltage,
∫ t

t−δ

{
ξ̇ihc(x, t) · [1− hihc(t)]

}2dt, from Eq. (2.12). this is DC response, by sub-

stitute dShigh in last equation and synchronizing before summary due to Eq. (5.3) relies

on multiple time indexes.

DCresponse(x, t) =
1

Fs ∗ δ
∗

t

∑
t1=t−Fs∗δ

dShigh(x, t1) (5.3)

calculating log10 (ψihc(x, t)) as

Vihc(x, t) = ηAC · ACresponse(x, t) + ηDC · DCresponse(x, t) (5.4)

and substitute Eq. (5.4) in Eq. (2.12)

log ψihc(x, t) = log10
(
ψihc(x, t)

)
=

log10
(
ε + max{0, (10γihc(x) ·Vihc)}

) (5.5)
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computation stages divided to ensure both data integrity (prevent reading result

that not yet calculated) and maximum speed, since dependency on results on another

time sample are present only in filters (calculating the ACresponse and Eq. (5.3) stages,

all calculation that can be done on single time coordinate unified to single function

such as the Eq. (5.2) result and Eq. (5.5) stage (implementing ln (1 + u (ψihc(x, t))) from

Eq. (2.14)), since lambda has 3 sets for the different types of neurons Section 2.2.1 as

found at [43] , Aihc is dependent both on nerve type and spatial position,and solution

for Eq. (2.14) is

λH
AN(x, t) = min

{
λsat, max

{
λ
(HSR)
spont , A(HSR)

ihc (x) · log ψihc

}}
(5.6)

λM
AN(x, t) = min

{
λsat, max

{
λ
(MSR)
spont , A(MSR)

ihc (x) · log ψihc

}}
(5.7)

λL
AN(x, t) = min

{
λsat, max

{
λ
(HSR)
spont , A(LSR)

ihc (x) · log ψihc

}}
(5.8)

5.2 JND Calculation

Here we will implement JND calculation by methods of Rate Mean Square and All

Information. Solving Eqs. (2.18) and (2.20)

where α is the signal amplitude, since both the signal+noise and noise only inputs are

calculated together, JND computation will be ordered such that all dependent on an-

other interval calculation will be solved first since CUDA cannot synchronize between

blocks on the same kernel run [35]

5.2.1 Calculate Fisher Information
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Figure 5.2: Flow chart of the Just Noticeable Difference Calculation.
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Averaging Neural Response over time first stage will be to calculate for each signal

and for every type of lambda

AN ∈ (HSR, MSR, LSR)

α ∈ {α∗NL + ∆αSL, α∗NL}

λAN,RMS(x, α) =
1
T
·

T

∑
t=0

λAN(x, t, α)

(5.9)

since calculation happens in parallel, most stages will process data that was not result

of other CUDA block on the JND calculation procedure.

However since Eq. (5.9) on RMS needs to subtract the averaging of the reference sig-

nal (silence or noise only) since each signal is calculate on separate CUDA block the

averaging will be done in different kernel to synchronize the entire data [34].

From this point, all threads calculate process only their own data (or data processed

on previous kernels).

Calculate Fisher formula for each Neural Group To evaluate CRLB in Eqs. (2.18)

and (2.20) we need to substitute λ(α, x) with Eq. (5.9) result.

∆λAN,RA(x, α∗NL, ∆αSL) =
λAN,RMS(x, α∗NL + ∆αSL)− λAN,RMS(x, α∗NL)

∆αSL
(5.10)

For AI will implement Eq. (2.27) for each longitudinal section x, by substituting α

with α∗NL and ∆α with ∆αSL to get effect of signal over noise base response. Since ANR

calculated on different kernel, data synchronization is guaranteed.

∆λAN,AI(x, t, ∆αSL, α∗NL) =
λAN(x, t, α∗NL + ∆αSL)− λAN(x, t, α∗NL)

∆αSL
(5.11)

Each λ difference from same coordinate longitudinal and temporal from nerve re-

sponse to noise only input (or silence), as noted, parallelization utilized to compute
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response for different α in this case amplitude in parallel, so response is available.

than integrate Eq. (5.11) across temporal dimension

FisherUnweighted
AN,AI (x, t, ∆αSL, α∗NL) =

∆λ2
AN,AI(x, t, ∆αSL, α∗NL)

λAN(x, t, α∗NL)
(5.12)

We calculate Fisher formula for all information by first aggregate each longitudinal

section Eq. (5.12) results over time to FisherSpaced

FisherSpaced
AN,AI(x, ∆αSL, α∗NL) =

M(x)
T
·

T

∑
t=0

FisherUnweighted
AN,AI (x, t, ∆αSL, α∗NL) (5.13)

We substitute Eq. (5.9) in Eq. (2.18) to get the inverse square of CRLBRA per spatial

section.

FisherUnweighted
AN,RMS (x, ∆αSL, α∗NL) =

λAN,RMS(x, α∗NL)

T · ∆λ2
AN,RMS(x, α∗NL, ∆αSL)

(5.14)

We than substitute Eq. (5.14) in Eq. (2.18) and multiply by number of nerves per

section to get CRLBRA.

FisherSpaced
AN,RA(x, ∆αSL, α∗NL) =

M(x)

FisherUnweighted
AN,RMS (x, ∆αSL, α∗NL)

(5.15)

CRLB use nerve density function M(x) as tuned by [43], to calculate Fisher on both

methods (Rate Mean Square and All Information) will average across longitudinal

dimension

Aggregate Fisher Information over space

FisherAN(∆αSL, α∗NL) =
1

Sections
·

Sections

∑
x=1

FisherSpaced
AN (x, ∆αSL, α∗NL) (5.16)
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since Sections = 256 we parallelize the process by using the modified parallel reduc-

tion algorithm 5.1, at this point we have signals · AN which is few hundreds to few

thousands points.

unsigned int tid=threadIdx.x;

unsigned int i=blockIdx.x*( blockDim.x*2)+threadIdx.x;

sm[tid] = d[i]+d[i+blockDim.x];

__syncthreads ();

for (stride=blockDim.x/2;stride >=1;stride >>=1)

{

if (tid <stride) sm[tid]+=sm[tid+stride ];

__syncthreads ();

}

Algorithm 5.1: CUDA implementation of parallel reduction algorithm page 113 of [24]

Aggregate Fisher Information over neural groups since last stage require to sum-

marize over AN use of GPU is unnecessary since run time is small fracture of percents

from the program, optimizing it will not give us noticeable speeding factor, from this

stage forward calculation done identically for both Rate Mean Square and All Infor-

mation, solving Eq. (2.25), this will be done as it seen

JND(∆αSL, α∗NL) =
1√

∑
∀AN∈(HSR,MSR,LSR)

FisherAN(∆αSL, α∗NL)
(5.17)

Calculate Just Noticeable Difference per noise level since JND depends on α, it is

necessary to find an optimal alpha, to do this we will use gradient decent, the JND

is low barrier and as [43], show, 2 possible methods for optimal alpha, calculation is

done from the signal processed multiple times in parallel as shown in Section 6.1

1. Minimum JND - solve by finding α∗ + ∆αlevel such that

JND(α∗NL) =max
SL

JND(∆αSL, α∗NL) ≥ JND(∆αSL−1, α∗NL)

∧ JND(∆αSL, α∗NL) ≤ JND(∆αSL+1, α∗NL)
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2. Wanted JND - solve by finding α∗ + ∆αlevel such that

JND(α∗ + ∆αlevel+1)− JND(α∗ + ∆αlevel ) > ε(∆α)

with ε decided as function of ∆α, we approximately solving Eq. (2.27)



Chapter 6

Optimizations

6.1 Parallel Input Generation

6.1.1 Requirements

To calculate JND of signal either pure tone or recorded signal as show at Section 5.2.1.

We need to measure JND for multiple ∆αlevel , we define set of power instances in dB

∆α0, ∆α1, . . . , ∆αlevel with

∆αlevel = ∆α0 + SL · dBJump (6.1)

The series of ∆αlevel can be decided at input level allow search for JND(α∗) at

different resolutions. testing can be done on

• pure tone - pure tone is cosine signal and can be defined by its frequency, its

amplitude (noted as SL - signal level) and length

• recorded signal - can be any signal

since α∗ is noise amplitude,Eq. (2.27) requires Auditory Nerve response to s(t, α∗), we

implemented 3 types of noise

• Quiet - nUF(t) = 0 for every 0 ≤ t ≤ Fs · T

57
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Input parameters: Fs,T,
0 ≤ t ≤ T · Fs

Is Input Type ar-
ray of frequencies?

f (t) = cos(2 · π · f reqi · t)Input: Signal

f (t) = Signal(τ)|τ∈t

fBase Input(t) = Normalize( f (t))

Input: Noise, nUF(t)

nUF(t) 6= 0
HNoise Filter(z) 6= 1

?

n(t) = hNoise Filter(t) ∗ nUF(t)

Compute fSL(t),nNL(t)

Yes

f req1 . . . f reqd

No

No,
n(t) = nUF(t)

Yes

Figure 6.1: Flow Chart of Input generation. Continues at Fig. 6.2
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Compute fSL(t),nNL(t)

Compute
SNL,0(t) = s(t, α∗NL),
SNL,SL(t) = s(t, α∗NL + ∆αSL)

HHearing Aids(z) 6= 1?

Pin(t) = SInput
NL,SL(t)

= SNL,SL(t)
hHearing Aids(t) = F−1{HHearing Aids(z)}

Pin(t) = SInput
NL,SL(t) =SHA

NL,SL(t)

=hHearing Aids(t) ∗ SNL,SL(t)

YesNo

Figure 6.2: Flow Chart of Input generation continues from Fig. 6.1
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• White Noise - nUF(t) = N (0, 1) for every 0 ≤ t ≤ Fs · T UF is unfiltered

• Recorded noise - can be any noise at length of M ≤ Fs · T, if M < Fs · T than

nUF(t) = 0, M ≤ t ≤ Fs · T

• Filtered - takes white noise or recorded signal and pass them trough linear filter

if filter noise isn’t used n(t) = nUF(t) to solve Eq. (2.27) for array of Noise Levels

amplitudes, NL, gains α∗1 . . . α∗NL therefore we wish to calculate IR to S

S =


s(t, α∗1 + ∆α0) . . . s(t, α∗1 + ∆αSL) s(t, α∗1)

... . . . ...
...

s(t, α∗NL + ∆α0) . . . s(t, α∗NL + ∆αSL) s(t, α∗NL)

 (6.2)

6.1.2 Normalization

as shown by [43] multiple Signal Pressure Level (SPL) reference levels needed to be

tested in order to find numerical approximation to much experimental results at [42].

if noise filtered is present,

HNoise Filter(z) =
∑hn1

j=0 bj · z−j

∑hn2
j=0 ak · z−k

hNoise Filter(t) = F−1{HNoise Filter(z)}

n(t) = hNoise Filter(t) ∗ nUF(t)

different normalization methods are tested for signal f or noise n, denoted as χ

with time length of T. process will be defined as χBase Input(t) = NormalizeInput(χ(t))

• normalize by power, getting 1
T ·
∫ T

0 χ2(t)dt with χ(t) is the un normalized signal

pressure over time the input function is

χBase Input(t) =
1(

1
T ·
∫ T

0 χ2(t)dt
) · χ(t)
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• normalize by energy, to testing various signals at same strength, division will be

done on summary of signal energy.

χBase Input(t) =
1(∫ T

0 χ2(t)dt
) · χ(t)

• skip normalization for experiments values decided outside the program

χBase Input(t) = χ(t)

• normalize for power of different length, since signal period effects JND, this al-

lows to test if short signals with period Ts with same energy as long signals,

period Tl will have same JND.

χBase Input(t) =
1(

1
T ·
∫ T

0 χ2(t)dt
) · χ(t)

as shown at Section 5.2.1, we need to calculate signal for range of ∆αlevel hence the

equation is

fSL(t) = SPLre f · 10
∆αlevel

20 · fBase Input(t) (6.3)

nNL(t) = SPLre f · 10
α∗NL

20 · nBase Input(t) (6.4)

s(t, α∗NL) = nNL(t) (6.5)

s(t, α∗NL + ∆αSL) = nNL(t) + fSL(t) (6.6)

SPLre f ,Table A.1, is the pressure level at 0dB SPL.

6.2 Optimizing For Kepler Architecture

Our project was developed from Sabo et al. 40 work, which was implemented on

GTX590, CC 2.0, its architecture includes 32K registers per SM Section 3.1, to pre-

vent Tail End effect described at Achieved Occupancy. BM velocity calculation kernel
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Figure 6.3: Example for Eq. (6.2) implementation.Generated Input for ∆αSL as 40dB
and 50dB SPL and α∗NL of 0 (Noiseless), Pure tones at frequencies of 0.5, 1 and 4 K Hz.

limited to 2 blocks per SM, this gives 512 threads with 63 registers, 31.5K per SM, full

capacity. improvements factors for each configuration shown at Fig. 6.5 and registers

needed per thread at Fig. 6.4.

M1 Kepler, CC 3.0 has 64K registers, twice the amount. this will allow 4 blocks to

run on SM without register spilling as shown by Section 3.2. Kepler use the

L1 Cache for temporary register spilling [34, G.4.1] and configurable between

cache and SHM. optimizing for cache require reducing SHM use to 16kB per SM,

increasing occupancy to 5 blocks allows 3.2KB. original program required 11KB

shared memory, even under 4 blocks.

M2 Cache would have 3KB per block and would have problem to contain temporary

register spills. examining Eq. (4.23), A and P(Xn, t), by denoting P(xN, t) = 0

boundary condition Eq. (4.9), we can change all values of Au to 1 and ignore
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it completely,this saves 1028B. the Al can be replaced by formula n < N − 1,

reduce another 1028B of SHM. the kernel needs to synchronize memory fence 3

arrays in SHM, P to calculate P(j) from P(j−1), | f (y(t + ∆t), t + ∆t)− f (y(t), t)|

from Eq. (4.19) to calculate maximum value and third parameter can be seen at

Oded and Furst 36(Pg. 37)

e = ∑
xn

‖ξ̇(L)
bm (xn, tn+1)− ξ̇

(L−1)
bm (xn, tn+1)‖2 (6.7)

to calculate summary across dimension x. the remain SHM representing ξ̇(L),

ξ(L), PTM, Kbm from Table A.1 are replaced by registers. last parameter stored

L · ∆t
2

need to test between threads is that maxxN

L · ∆t
2

> 1, Section 4.1.2 re-

placed by register and using syncthreads or allow to synchronize test between

the block threads without using SHM. while this increase register pressure to 62

per thread, effect is minimal due to requirement of copying the SHM to register

before using the value. this also reduce usage of SHM to less than 3.2KB per

block allow us 5 blocks.

M3 Many of the operations require arithmetics of the same constants, Kepler Archi-

tecture allow fast access to Constant memory Chapter 3 with 64KB, this allow us

to replace most of those calculations with constants, thus both reduce unneces-

sary arithmetics and lower register pressure to 58. the calculation replaced are

αs/αl, ∆x2,∆x · σow · γow. we also remove previous tests of linearity that were set

already and added unnecessary commands to the code.

M4 we note that Oval window parameter to calculate (Eq. (4.7),Y0) require ξ
(L)
OW , ξ̇

(L)
OW ,

ξ̈
(L)
OW , ξ

(L−1)
OW , ξ̇

(L−1)
OW , ξ̈

(L−1)
OW . this calculations applied only to thread 0 which han-
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dle the oval window boundary condition calculation and takes only 24 Bytes,CUDA

compiler optimizing registers allocation to satisfy executive branch, if needed in

another registers will be used for different functions on separate branches. this

reduce registers used per thread to 54.

M5 CUDA fused multiply-add command allows both operations without passing

trough the registers.by fusing all possible multiply-adds this reduce registers

used per thread to 51.

M6 by setting launch bounds maximum number of blocks to 5 the compiler attempts

to reduce register pressure to maximum that allows 5 blocks occupancy, 48 in this

case. the other 6 spilled to L1. occupancy is 256 · 5 = 1280 threads which take

7680 Bytes in L1 by increasing capacity of L1 to 48KB we avoid round trips to

L2 due Cache miss. 5 blocks occupancy gives on configuration of 7 frequencies,

10 levels of power (∆α),3 noise levels, 40 m sec for each input (20 m sec for each

block interval) + reference for each noise 3 ∗ (10 ∗ 7 + 1) ∗ 2 = 426 Blocks in-

tervals. GTX 760 has 9 SM, handling improves from 36 to 45 at once. run time

change from 6.08 to 5 seconds, 21.5% improvements.

6.3 Optimizing For Pascal Architecture

Main GPU Structure changed between Kepler & Pascal/Maxwell Fig. 3.1. optimiza-

tions for higher occupancy did not give us faster algorithm. due to register spilling,

on Pascal devices, it stored on L2 Cache as oppose to L1 on Kepler. we have tested

multiple algorithms to compare several convergence methods and division, the large
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M1 M2 M3 M4 M5 M6

61 62
58

54
51

48

Registers Usage per thread

Figure 6.4: Comparison of Kepler Register Per Thread Requirements for implementa-
tions M1 - M6 from Section 6.2

L2 cache allows to compile with launch bounds of 6 blocks per SM, the register are

spilling to cache. we use GTX 1080 Ti with 28 SM, we setup a run of 4 noise power lev-

els(none,10,15 and 20dB),25 signal’s (0-72dB by jumps of 3) on 7 different frequencies

with each interval set to 40ms, thats 1400 blocks on the entire card, this gives 10 blocks

per SM on 5 blocks. we compared the 6 methods factor of speed(normalized) and get

for the first 6 optimizations only M2 gives significant acceleration of 66%. CUDA 8

M1 M2 M3 M4 M5 M6 M7

1

1.66 1.66 1.66 1.66 1.65
1.84

Run Time Normalized Improvement

Figure 6.5: Comparison of Pascal Run times for different configurations, each number
indicates runtime(M1)

runtime(Con f iguration) . for example, if M1 to 3.52 seconds M2 will take 3.52
1.66 =

2 seconds

compiler changed to standard of C++ from C. we combined template functions with
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warp shuffle to reduce synchronizations. as noted at M2, we require 3 aggregations to

test (maximum and 2 additions). we use modified warpReduceSum algorithm with

template to get 3 accumulator operate on each value, with block of 256 we reduced to

8 mid values for each function, we run single thread synchronization and take 3 values

for each of the lower threads and run second partial summary on the remained 8. this

gives another run time reduction by 10% to total improvement of run time by 84%.

6.4 Testing Congestion With Nsight

To test critical bottlenecks when optimizing at 6.3 ,for M5,M6 and M7. several criteria

from Section 3.2 tested include Instruction Statistics,Issue Efficiency and total run time

for the kernel as measured by Nsight, since architecture counters are limited Nsight

configuration measured for noiseless input at 16 - 20 levels of signals (depends on

the maximum occupancy of the configuration) and very short interval of 8ms. we

verified against run time for standard run of 4 noise levels (none,33,43 and 53dB) for 7

frequencies and 10 levels of δα (40 ms), M8 is M6 with synchronization method of M7

while Nsight is not indicative for run time of the kernel, it can be used to analyze

stall issues, for cases without the triple synchronization mechanism (M5,M6). syn-

chronization is stalling issue 38% against 27% when mechanism added.

6.5 Optimizing Convergence Parameters

The program optimized to generate large Database of mapping damage (In Outer and

Inner Hair cells) profile to JND, optimal upper bounds to speeds measured in Lipschitz

criteria Eq. (4.19) searched by detect, run time of BM velocity kernel for 100 damage
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M5 M6 M7 M8

1.35

1

1.5 1.45

0.7

1.4

1 1

1.25

1 1

1.25

0.83

1.15

0.96

1.13

Run Time
Run Time On Nsight

Intervals tested on Nsight
Instructions Per Cycle

Figure 6.6: Comparison of run time on Nsight as debug mode and on Matlab as run
time, Intervals amount tested, M5-8 described at Sections 6.2 and 6.3. Instructions Per
cycle can be maximally 8 if there are 4 warps that can issue 2 instructions every cycle.
this is not the case here, as stall issues block warps around 75% of the clock cycles. It
is also noticeable that Nsight run time is negatively predict tested run time

profile (cartesian product of OHC and IHC by 10% jumps). each profile tested with 4

level of noise. silent, 33,43 and 53dB

Testing show non significant error increase when increasing minimal ∆t for the

algorithm from order of 10−15 to 10−8 and speed increase of nearly 30%.

6.6 Optimize JND calculation for single tones

Examination of the Eq. (2.18) shows us that CRLB depends on T linearly, if we can

prove that for large enough T λ independent of T for pure tone input. we can show

by numeric evaluation that after initial conditions pass t > Tstart for every input with
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Figure 6.7: Testing JND accuracy and algorithm acceleration as function of minimum
∆t in Lipschitz criteria. We tested 2 criteria. First run time acceleration factor over
base algorithm run time at convergence speed of 10−15cm. Second is percent of JND
measurements differs more than 2dB from reference algorithm of Oded and Furst 36
to avoid large differences.

form of Sinput, and with frequency which is multiplication of 250Hz. since, it has been

shown [6, 36] that WKB linear approximation over gain by 10-20dB and become un-

reliable near the ωCF due to backward propagation. we will test numerically, optimal

interval will be short as possible but will vary minimally from similar interval, we

denote the main Int with length of T, composed of concatenated k JND (Eq. (6.8a)) (in

case of k JND not integer, we round down) intervals each of length Eq. (6.8a)

Tshortened =
T

k JND
(6.8a)

Int = [I1...Ik JND ] (6.8b)
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we than process for each interval sine function of length tBOP + Tshortened with tested

part of Tshortened. instead of tBOP + T and replace Equation (2.18) with

CRLBsubstituted(α
∗) =

k · Tshortened

λ(α∗)

[
∂λ(α)

∂α

∣∣∣∣
α=α∗

]2

− 1

2

(6.9)

By substituting Eqs. (6.8a) and (6.8b) in

λ(α) =
1

Tshortened
·

tBOP+Tshortened∫
tBOP

λ(t, α)dt (6.10)

covariance of Ij from Ik calculated as

I1 Ik

Tshortened TshortenedtBOP

Int, T

Figure 6.8: Division of Interval to measure JND, Tshortened from Eq. (6.8a) and Int from
Eq. (6.8b) and tBOP described at Fig. 4.2

To f f set(j) = Tr + (j− 1) · Tshortened (6.11a)

Ij − Il = λ(x, t + To f f set(j), α)− λ(x, t + To f f set(l), α) (6.11b)

var(Ij, α) =

√√√√√ Tshortened∫
0

Lco∫
0

[λ(x, t + To f f set(j), α)]2dtdx (6.11c)

=

√√√√Tshortened/Ts

∑
t=0

Sections−1

∑
x=0

[λ[x, t + To f f set(j), α]]2dtdx

covar(Ij, Ik, α) =
var(Ij − Ik, α)

var(Ik, α)
(6.11d)

covaravg(Ij, Ik, α) =
1

k− 1

k−1

∑
m=1

covar(Im, Ik, α) (6.11e)

We use Eq. (6.9) with Eq. (2.18) to find the bound

|CRLB(α∗)− CRLBsubstituted(α
∗)| ≤ covaravg(I1, Ik, α∗) (6.12)
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Figure 6.9: Testing JND accuracy as function of interval length,X axis
is tested interval length in seconds, Y axia is normalized covariance
from Eq. (6.11e)

, each plot measures for different frequency tone, described at legend

we now can test multiple Tshortened values to find optimal value.

From Fig. 6.9 optimal Tshortened is 20ms instead of 0.2seconds, acceleration by factor

of 200ms+Tr
20ms+Tr

= 212ms
32ms , 6.625.

6.7 Optimizing Execution Flow

One of our main goals is to improve run time for BM velocity, ANR and JND calcu-

lation we also need to present results afterwards. We do it graphically using Matlab.

Sabo et al. 39 used to launch dos [26] command that would run program from the Op-
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erating System. This methodology has several drawbacks which slows the program,

We upgrade the flow for Matlab to load DLL from .mex file. The process described

in Figs. 6.10 and 6.11, it is high level description of the flow which for box contains

/ the text before it describe Sabo at al version and the text after describes ours. The

stages in light orange are identical for both versions, while the older program didnot

contained ANR or JND calculation, at this level of abstraction they are identical to BM

velocity flow. Identical stages are of 2 kinds, first is upload data to GPU Read Access

Memory,RAM, and download it to the CPU RAM. The second kind is the calculation

themselves, done on the GPU.

1. First change in the flow described in the purple boxes. executing the dos com-

mand cause the operating system to open new process for each run, involving

the scheduler [52], creates stack and heap for the program, at the end of the exe-

cution process those resources are released. our implementation shares memory

space with Matlab, that means that we do not need to allocate and release those

resources for each run, Matlab preserve the loaded function in memory after the

first run. this saves 0.7seconds each run regardless of the Input/Output size.

2. Second change involves Input/Output, older program and Matlab did not shared

memory space, their only option to communicate was trough HD read and write

which is slow. the differences are in the green boxes. Older method required

reading data from multiple files, albeit small ones and write data, including large

files, ANR and BM velocity output takes together 80MB per 1 second of input at

20KHz sampling rate. typical execution can process up to 20 seconds of Sound
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at one time, if we want to see the results our program will needs write 1GB to

the disk and Matlab read same amount of data, this takes 2 seconds, rest of the

programs took only 4. Reading and writing to the HD should be avoided. Our

program shares memory space with Matlab and can copy results trough C Ma-

trix Api [25]. memory copy of 1GB to matlab array took less than 50ms, made it

40 times faster.

3. Third change is result of memory allocation and deallocation. When the pro-

gram executed from Operating System it needs to acquire and release its own

memory, else it will become inaccessible. Arrays are allocated both on GPU for

computation and on CPU for the output this takes approximately 20 seconds for

1.25 GB. our program allocates memory only when current buffers are not large

enough or program runs for the first time, which usually happens few times in

normal mode of operations (creating large database involves running thousands

time on same size input)
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Run Program/Call matlab
procedure

Operating System cre-
ates Program Execu-

tion/Matlab loads DLL

Read and parse parametes

Is it new run
or necessary

buffers large than
existing ones?

Allocate Memory on the GPU and CPU

Upload Input Signal
and Cochlear Physi-

cal properties To GPU

Generate Input Data for
multiple power levels,BM

Velocity,ANR and JND
calculation as necessary

Did all input
buffers processed?

Yes

No

No

Figure 6.10: Flow chart of program.Input and Cochlear solver
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Did all input
buffers processed?

Write (BM veloc-
ity,ANR,JND)?

Download (BM veloc-
ity,ANR,JND) array to CPU

Write (BM velocity,ANR,JND) to
HD / Copy to Matlab output vector

Release Memory on the GPU and CPU

Operating System close
Program Execution/ ...

Matlab read results
and draw graphs

Yes

Yes

No

Figure 6.11: Flow chart of program.Output and release memory
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Hearing Aids Effectiveness

7.1 Characteristics

Hearing impairments happens in multiple forms but the most common among them

is the sensory neural hearing loss [10]. difficulties in speech understanding come from

reduce audibility on some of the frequencies and complete loss on others. this cause

the processed waveform for the patient to be different from original signal. the most

critical frequencies for speech understanding are between 500Hz and 4KHz. since

most energy of the speech is in bands below 500Hz, but most information is above it

loosing audibility in the range cause speech to be detectable but not understood. lead-

ing to statements about lack of clarity and mumbling of the speakers to hearing im-

paired. for correcting this situation, aids must amplify different frequencies according

to specific loss at the band. Gain-frequency response defines full profile of prescription

for the patient. if amplification is dependent on frequency alone but not amplitude, its

linear hearing aid. this chapter we will demonstrate the effectiveness of program to

analyze patient damage profile and different aids prescriptions.

75
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7.2 Hearing Aid History

while hearing amplification methods were used since ancient times, such hand to the

ear, until the 20th century all method were acoustical. this methods had several limi-

tations, they were large due to necessity of having large open end to collect maximum

possible acoustic energy and long tube to gradually concentrate the collected sound.

a too shorter tube will cause most of the pressure waves to reflect back. the lack of

active amplifier also means that amplification cannot be above collected energy, due

to energy preservation, gain-frequency profile is also limited, the device cant be ad-

justed to amplify specific band reliably. at 1902 the first commercial electronic hearing

aid become available. those are carbon based aids assembled from microphone with

diaphragm that pressed dust or granules which functioned as variable resistor that

control current inside the receiver, this system amplified sound by 20-30dB, with ad-

ditional carbon amplifier, 70dB gain is achieved, while gain-frequency response profile

can be set by arrange multiple systems in parallel with different, dust concentrations,

those were limited by their frequency resolution and the noise the dust itself created

limiting understandability. the vacuum tube (VT) had much better amplification pro-

file than the carbon dust but were too large and energy consuming to be practical as

mobile aids until the 1940’s. with transistor become commercial in 1952, all VT hear-

ing aids replaced with transistor aids in 1954. the transistor has better amplification

characteristics than the VT, it also does not need heating up and is smaller than VT,

which enable manufacturers to reduce of the device and create the first Behind The

Ear(BTE) aid. invention of the Integrated Circuit(IC) allow to put multiple transistors
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in single device. since 1980’s reduction in transistor size and use of FET meaning that

the signals can be processed numerically and use of digital control, users can adjust

their own setting by switch between multiple amplification profiles for different sit-

uations. reduction in size leads to aids completely inside the ear canal make them

hidden, according to the desires of the patients to avoid the stigma of hearing loss.

Audiology as scientific research started in 1930’s. originally amplifications adapted

to mirror the Audiogram HL, however this cause to over amplification at high ampli-

tudes, causing discomforts and saturations for the amplifier makes speech unintel-

ligible. at 1944 Lynbarger set the half gain principle, this means that gain for each

frequency will be half of the Audiogram HL

7.3 Hearing Aid, Gain Calculations

7.3.1 Hearing Aids Simulation

The program can simulate Linear Hearing Aids effects for patient, with FIR and IIR

transfer functions. if hearing aid is present we will use the SHA instead of S (Eq. (6.2)),to

define SHA, hearing aid frequency domain transfer function without loss of generality

can be

HHearingAids(z) =
∑n

j=0 bj · z−j

∑m
k=0 ak · z−k

with n and m as the number of coefficients in nominator and denominator accordingly.

we use in time domain as hHearing Aid(t) = F−1{HHearing Aids(z)},

Pin(t) = SHA
NL,SL(t) = hHearing Aid(t) ∗ SNL,SL(t)
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7.3.2 Database Generation

Our program allowed Starwitsky and Furst 43 to generate large database of more than

10000 different impairment profiles. to test hearing aid prescriptions for the patient

we will scan the database and take the OHC/IHC profile that satisfy

min
OHC/IHC

pro f ile

√
∑

f∈(Measured Frequencies)
(JNDPatient( f )− JNDpro f ile

SPL ( f ))2 (7.1)

we denote JNDPatient( f ) as the measured JND SPL at frequency f and JNDpro f ile
SPL ( f ) as

function that get frequency f for profile and return JND SPL in dB, value loaded from

the database. The program can emulate hearing aids formula as part of the cochlea 6.1,

thus allow to calculate JND with the hearing aids effect (α is calculated before passing

the signal trough hearing aid). we will use formulas based on [11], those give values

only for specific frequencies. to find full gain profile, we use linear interpolation for

the rest frequencies. we define NH as normal hearing such that JNDNH
SPL( f ) return

JND for healthy model at frequency f . the JND HL will therefore can be substituted

JNDpro f ile
HL ( f ) = JNDpro f ile

SPL ( f )− JNDNH
SPL( f ) (7.2)

a prescription method is function that get JND and returns gain. denoted as gainprescription.

our gain method will be

DiscreteGain(pro f ile, prescription, f ) =

gainprescription(JNDpro f ile
HL ( f ))

(7.3)

this however allow only use for known frequencies from [43] work. we denote series

f1 · · · fn that at speech bandwidth will satisfy fi+1− fi >> 20Hz. we denote Fnyq =
Fs
2

such that

f norm
i =

fi

Fnyq
(7.4)
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and f norm
−1 = 0, f norm

n+1 = 1. we can now define average gain for each bandwidth GBW
i ,

each defined between range of
f norm
i−1 + f norm

i
2 + ε f · · ·

f norm
i + f norm

i+1
2 . with ε f =

20Hz
Fnyq

. we will

define dense grid of frequencies with interval ∆ f such that 1
∆ f >> n and number of

points in grid are npt = 1
∆ f . the gain for interpolated point at index k that satisfy

f norm
i−1 < k · ∆ f < f norm

i will be

BWposition
k =

(k · ∆ f − f norm
i−1 )

f norm
i − f norm

i−1

MidGaink =BWposition
k · JNDpro f ile

HL ( f norm
i )

+ (1− BWposition
k ) · JNDpro f ile

HL ( f norm
i−1 )

(7.5)

the filter will than time shift by half length, to ensure real time domain filter, pre win-

dowed H will be inverse FFT from gain concatenated to its mirrored conjugate, In-

versed and than truncated to n

Gaink = MidGain · e−0.5·i·π·k·∆ f

cGaink = conj(Gaink)

Hpre window = [Gain1 · · ·Gainnpt cGainnpt−1 · · · cGain2]

hpre window(t) = iFFT{Hpre window}

(7.6)

calculating the hearing aid response filter h done by applying the window, tests show

Kaiser to fit.

h(k) = hpre window(k) ·
I0

(
β ·
√

1−
( k− n

2
n
2

)2
)

I0(β)
(7.7)

7.4 Hearing Aid, OHC damage

the patients detected profiles here based on the work of [43], using this program to

much volunteers audiograms to OHC and IHC profiles. simulating noise will use

Fig. 7.3 to emulate crowd noise.
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(a) Normal Hearing JND

(b) Normal Hearing ANR

Figure 7.1: Normal Hearing model Auditory Nerve(ANR) response for the Hebrew
word SHEN spoken by female at comfortable sound level,we see differences of de-
tected signals, Simulation results close to real experiments. Detection of consonant SH
shown on the neural response graph
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(a) OHC at 25% and IHC at 87% JND

(b) OHC at 25% and IHC at 87% ANR

Figure 7.2: Patient with OHC at 25% and IHC at 87% ANR response for the He-
brew word SHEN spoken by female at comfortable sound level,we see differences
of detected signals, comparing ANR and JND to healthy mode Fig. 7.1. We see for
hearing impaired patient most consonants disappeared, the remain sound is weak
HE, make the word difficult if not impossible to understand, also note that with IHC
loss is not constant the IHC’s pass 2.5-3KHZ frequencies are damaged substantially
more.this is also can be seen by the JND SPL graphs, using crowd noise passed trough
Butter-worth LPF with passband of 800Hz, spectrogram at Figure 7.3, stop-band of
1.2KHz with attenuations −3dB and −30dB respectively



CHAPTER 7. HEARING AIDS EFFECTIVENESS 82

Figure 7.3: show normalized energy density of noise for JND test at Figure 7.1(a) and
Figure 7.2(a)

first example at Figs. 7.1 and 7.2 shows comparison between hearing impaired and

normal model. OHC damage cause mostly reducing hearing sensitivity for signals

above 1KHz, the OHC characteristic frequency.

Measuring effects of different hearing aid prescriptions As denoted in Section 7.2,

most of linear hearing aids follows half gain rule with some minor adjustments for 2

factors. first is that while most of the speech’s energy is in the lower frequencies, less

than 500Hz. most of the information is at 2-4KHz, second factor is that since most

of high frequency sound pressure is absorbed by relatively small objects, most of the

noise is lower frequencies, combine this factors with upward masking of the hearing
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impaired means its preferable to amplify speech band (2-4KHz) much more than lower

frequencies. 3 types of linear hearing aids tested

NAL Revised Method the NAL procedure (Dylon &Bryn 1986) is working to amplify each frequency

to preferred hearing level, maximizing speech intelligibility. the formula takes

summary of Audiogram HL values for 0.5,1 and 2KHz and divide it by 20, it than

add 0.31 of the audiogram HL of amplified frequency plus fix factor that amplify

frequencies between 1-1.5KHz, lower amplification for frequencies below 1KHz

significantly, and slightly lower others, therefore contribute to prevent upward

masking from low frequencies.

Prescription Of Gain and Output (POGO) method is based on Lynbarger half gain principle with mild attenuations for

lower bands, which contains most of the noise. this ensures easy to calculate

method and improve speech intelligibility. POGO also includes formula to deter-

mine Maximum Power Output (MPO) by averaging user uncomfortable thresh-

olds at 0.5,1 and 2KHz. MPO was not implemented in our program due to this

research focus on the lower hearing thresholds.

Berger method, this linear approach based on th assumptions that comfortable speech

intensity is between 55 and 70dB with critical tones at 2-4KHz. as oppose to other

methods the amplification is stronger than the half gain principle and approach

the 2
3 . since band lower than 500Hz does not contribute for intelligibility, this

frequencies wont be amplified in berger method.
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Figure 7.4: show different Audiogram HL for patient with OHC damage, without aid
and with different aids prescriptions, described in 7.4 calculated by the program
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(a) NAL Revised

(b) POGO

Figure 7.5: Compare the 4 hearing aids prescriptions with Fig. 7.6, Pogo is the only
one that accentuate the higher frequencies
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(a) Berfer Behind The Ear

(b) Berger Inside The Ear

Figure 7.6: Compare the 4 hearing aids prescriptions with Fig. 7.5, Berger has much
more amplification.
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(a) NAL Revised

(b) POGO

Figure 7.7: Comparative results of ANR for Hebrew word SHEN, spoken by fe-
male at comfortable hearing level, with different aids, response without aid shown
at Fig. 7.2(b). both POGO and NAL methods are under severely amplified, the SH
consonant response is effectively disappeared, Berger methods sown at Fig. 7.8
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(a) Berfer Behind The Ear

(b) Berger Inside The Ear

Figure 7.8: Comparative results of ANR for Hebrew word SHEN, spoken by female
at comfortable hearing level, with different aids, response without aid shown at Fig-
ure 7.2(b). While the Berger methods give better results than NAL and POGO shown
at Fig. 7.7, it still significantly different from healthy cochlea. this makes OHC damage
unfit for hearing aids to fix.
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7.5 Hearing Aid, Combined OHC and IHC damage

as oppose to the patient evaluated at 7.4 who has mostly OHC damage but almost

none IHC, we will evaluate effectiveness of different prescriptions on patient with

moderate damage for both IHC and OHC.



CHAPTER 7. HEARING AIDS EFFECTIVENESS 90

(a) OHC at 40% and IHC at 68% JND

(b) OHC at 40% and IHC at 68% ANR

Figure 7.9: Model with OHC 40% and IHC 68% ANR when compared to Normal
Hearing Patient shown at Fig. 7.1. Response for the Hebrew word SHEN spoken by
female at comfortable sound level,compare it to the response of patient with sever
OHC damage to the same signal at Fig. 7.2(b), JND degrading is more significant for
the lower frequency, as seen both for the SPL audiogram at Fig. 7.9(a) and for the ANR
at Fig. 7.9(b), where for this patient very low response for the SH consonant remain,
the low frequency component of the E vowel is much weaker that other patient.
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Figure 7.10: The Comparison for patient Audiogram HL with different prescriptions,
major differences from Figure 7.10 are that the critical frequencies 2-4KHz are ampli-
fied much more than lower. this both prevent low pass noise amplification and avoid
upward masking from the signal lower bands components.
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(a) NAL Revised

(b) POGO

Figure 7.11: Compare the 4 hearing aids prescriptions, Berger methods shown at
Fig. 7.12. NAL and POGO significantly under amplify at higher frequencies relatively
to berger methods
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(a) Berfer Behind The Ear

(b) Berger Inside The Ear

Figure 7.12: Compare the 4 hearing aids prescriptions,NAL and POGO shown at
Fig. 7.11, Berger has much more amplification and pogo is the only one that accen-
tuate the higher frequencies
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(a) NAL Revised

(b) POGO

Figure 7.13: Comparative results of ANR for Hebrew word SHEN, spoken by female
at comfortable hearing level, with different aids, response without aid shown at Fig-
ure 7.9(b). The NAL and POGO methods amplification is insufficient
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(a) Berger Inside The Ear

(b) Berfer Behind The Ear

Figure 7.14: Comparative results of ANR for Hebrew word SHEN for Berger Behind
and Inside the Ear, spoken by female at comfortable hearing level, with different aids,
response without aid shown at Figure 7.9(b).This methods gives much better amplifi-
cation from POGO and NAL shown at Fig. 7.13



Chapter 8

Run time Comparison of fully Parallel
Algorithm against Only BM velocity
Parallelized and full Serial Algorithm

8.1 Run Times for different configurations

Table 8.1 show comparison between several modes of operations and run time for 3

system configuration

1. Oded and Furst 36 work, simulate the cochlear model on CPU without the using

GPU, model’s demands for 1.36 ∗ 1012 operations per each second of input signal

[39] makes this system unfeasible for real time diagnostics tool for audiologist.

some of the time measurements extrapolated from smaller runs due to inabil-

ity wait years for completion. this system however is useful tool to verify our

program correctness for chosen inputs.

2. Sabo et al. 40 work improves significantly calculation speed of Basilar Membrane

Velocity, the most resource intense part of the algorithm. by copying the results

to CPU memory, save it on Hard Drive and load it with Matlab we can than cal-

culate the ANR response. while this approach is superior to the first but it has

weakness. copying data from GPU to CPU and than HD takes time, and neces-

96
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sity of reloading it from HD take time too, computing ANR on CPU is also much

slower than GPU. our work show at Chapter 4 that due to error in calculating

of signal input time with desired precision, the output is not useful to calculate

ANR and therefore JND after first 80ms, lower parallelism significantly.

3. our work improved speed of generating database for diagnostics by observing

that input for each damage profile is small, few KB at most for OHC/IHC dam-

age across the cochlea and signal power and frequencies for testing and output

is also few KB, the audiogram at various levels of input. by implementing the

process of calculating the BM velocity + ANR + JND on GPU we avoid the ex-

pensive operations of copy large amounts of input data BM velocity to disk and

parallelizing ANR,JND. this allowed by setting amount of allocated memory on

GPU at run-time and calculating time so precision is constant.

8.1.1 Comparing run-time for different tasks

To examine the run time of our program, we compare it to 2 similar programs that pre-

ceded it at several typical tasks. the entire CPU algorithm developed by [36] and for

the CPU/GPU combination we took Sabo et al. 39 work and added ANR and JND cal-

culation on the results in Matlab. timing for each task can be shown at Table 8.1. the

acceleration factors differences have several reasons with most significant improve-

ment at the generating hearing impairments databases over [40] program. Several of

run-times for pure CPU approximated due to very long time required to run them

(days forM, years C). we also tested that this tasks have linear relationship between

their run-times and number of profiles results from serial nature of the CPU.
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1. A, calculating Audiogram for healthy by using [36] method of testing single in-

put power (adjusted from 7.5dB to 50 due to lower SPL Reference) for 4 levels of

noise.

2. B similar to A but with 10 levels of signal power to implement [43] minimum

required power method, note that are our program execution time multiplied by

less than 5 due to under utilizing of the GPU at A since profile signals were too

short to fully utilize the GPU.

3. C to create database we need profiles of damage at small intervals, 1% for OHC

and IHC gives 10000 profiles to test.

4. D examine the effect of single prescription for the Hebrew word ”bor”, length 0.8

seconds. for pure CPU method, processing time is similar to that of full damage

profile. the pure CPU approach preserve relation of 1000 seconds for every input

signal due to the processing time dominating every task. for other approaches

and short tasks copying data to CPU for graph presentation on Matlab requires

more time.

5. E simulate ANR of multiple words spoken by both male and female for single

prescription method, signals total length is 10.3 seconds, note that our method

loose lots of its relative improvement due to Matlab rendering time.

6. L ANR and JND calculation time for B, since both done on the CPU, pure CPU

method can work with 40ms input, but reliance on erroneous GPU calculation

demands 4 times more data. input length for tasks B and L is 45.44 seconds for
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HHH
HHH

HH
task

Method
Pure CPU BM Velocity on GPU,

ANR and JND on CPU
Full GPU process

A 1150 93 0.31
B 11500 928 1.35
C 1.15 · 108 9.28 · 106 1.35 · 104

D 811 13 0.66
E 10180 123 20.9
L 35 135 0.11
M 6 ∗ 106 60000 892

Table 8.1: Comparing run-time for different tasks, with CPU only, GPU + CPU and all
heavy calculation tasks on GPU measured in seconds.

combined method and 11.4 for other methods.

7. M test JND improvement as function of signal time detailed at 8.3. note that we

approximate run time on pure CPU as multiplication of #pro f iles
4 needed by the

amount of run-time for 4 profiles tested at A.

We have tested the pure CPU version of the algorithm on Single core described in

Table C.1 For the GPU implementation we ran the simulations on NVidia GTX1080Ti

Table C.2 shows the cards’ configuration.

1. fixing the linear interpolation between 2 input samples to ensure time invariance,

described at Section 4.1, previous program could process 0.3 seconds at every

execution but only first 80ms could be used by [43], since each block interval

handles 20ms of inputs, the card could only compute 4 block intervals at single

kernel run. we shown that optimal occupancy division of 112 intervals (28 SMs,

each execute 4 blocks), utilization of the GPU improved by factor of 28 for all

tasks.

2. to compensate for previous program calculation error, JND calculations required
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averaging 160ms of input to approach. we have shown however that using less

than 40ms and multiplication factor at Section 6.4. allow us improve factor of 4,

but only for database generation.

3. both previous works used to calculate ANR on the CPU this required copy of

BM velocity to memory and than hard drive + slow calculation on CPU, by up-

loading input of frequencies + powers + noise power + damage profile (which is

few KB) to the GPU and at the end of JND calculation downloading from GPU

memory

8.2 Acceleration from work-flow modifications

We examined in Section 6.7 changes to the work-flow that allow us to avoid both mem-

ory allocations and releases (except limited number of times). We can see the run time

saved for each run in Fig. 8.1, larger buffers make this difference more significant. We

also replaced Reading/Writing to HD by RAM trough Matlab Application Program-

ming Interface, API, time saved shown in Fig. 8.2 and is also relative to buffer size.

8.3 Additional Experiment

This improvement of speed allow for much more experiments in short time than the

old programs. We show example of Fig. 8.3.

we have examined the model assumption that calculation of JND by Cramer Raw

lower Bound with RMS method [14] will reflect approximately JND for every length

of signal.

however JND improves as function of time much beyond NH person. we added the
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Figure 8.1: Comparison for output copy time, HD and RAM for different buffer sizes,
The left Y has the combined time of write be the program and read by Matlab the
results. the right Y axis has relation between those times for HD and RAM
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Figure 8.3: test JND for healthy patient as function of signal time. JND for every tested
tone measured as function of interval.22 intervals were 100 to 500msec by jump of
100msec. and 1 to 9 seconds by jump of half second. 10 levels of power 10 to 100dB for
7 frequencies. accumulates to 6055 seconds of audio. times shown at 8.1,M.

factor k JND described at Section 6.6 to compensate.
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Conclusions

The purpose of this work was to design an efficient tool for audiologist by using paral-

lel algorithm. we took [39] work and expand it to measure ANR and JND. to gain real

time response,we implement both the ANR and JND on GPU which improve speed

by 200%. but our main improvement was to change input calculation such that preci-

sion will not decrease when time increase due to limitations of the 32bit floating point

standard. this allows us using the GPU to calculate 2.24 seconds of audio instead mere

80msec, 28 factor improvement from parallelism. the original program permit single

signal evaluation by adding overlap for the interval, by implementing selection mech-

anism to prevent some of the blocks from calculating the overlap, allow us to solve for

multiple signals at once. additional observation that [14, Eq. 17] allow emulate JND of

single tone at 0.15 seconds by test interval of 40msec and multiply by factor allow fur-

ther optimization for auditory damage to JND database construction speed. we also

allow to generate same signal wave form and noise wave form at different powers

on the GPU, preventing creating long signal on the CPU. we also modified program

to share memory with Matlab, an improvement by factor of 10 to the run time. this

improvements aggregate to multiply 720 of database generation, therefore [43] can cre-

104
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ate 1000 profiles under 4 hours instead of ~3.5 months. the algorithm os searching the

database + real-time measurement of effectiveness for different prescription methods

permit usage for clinical audiological diagnosis and hearing aid fitting, this tool can be

used for fast adjusting of hearing aids and reduce return rate due to unfit prescription.

improvement of hearing aid fitness should also help CHH that need proper hearing to

develop communications skills.
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Appendix A

Cochlear Constants

Parameter Value Description

Kbm
1.282 ·
104e−1.5x

Basilar membrane stiffness per unit
area [gr/cm2s2]

Rbm
0.25 ·
e−0.6x

Basilar membrane resistance per unit
area [gr/cm2s]

Mbm
1.286 ·
10−6e1.5x

Basilar membrane mass per unit area
[gr/cm2]

Ktm
3.97 ·
105e−3.06x

Tectorial membrane stiffness per unit
area [gr/cm2s2]

Rtm
0.25 ·
e−0.6x

Tectorial membrane resistance per
unit area [gr/cm2s]

α 1 · 10−6 Peak to peak electromotility displace-
ment [cm]

ωohc 1000 Outer hair cells cutoff frequency [Hz]
ωow 1500 Oval window cutoff frequency [Hz]
σow 0.5 Oval window aerial density [gr/cm2]

Cow 6 · 10−3 Coupling of oval window to peri-
lymph [none]

ΓME 21.4 Mechanical gain of ossicles [none]
γow 20 · 103 Oval window resistance [1/s]
ρ 1 Perylimph density [gr/cm3]
β 0.003 Width of the basilar membrane [cm]

A 0.5 Cross—sectional area of the cochlea
scalae [cm2]

Lco 3.5 Cochlear length [cm]

Frequencypass 600 hihc low pass filter transfer function
pass band frequency (HZ)

Frequencystop 1600 hihc low pass filter transfer function
stop band frequency (HZ)

Attenuationpass 3dB hihc low pass filter Frequencypass Gain
(dB)

Attenuationpass 30dB hihc low pass filter Frequencystop Gain
(dB)

λ
(HSR)
spont 60 rate of spikes per second for HSR AN

107
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λ
(MSR)
spont 3 rate of spikes per second for MSR AN

λ
(LSR)
spont 0.1 rate of spikes per second for LSR AN

ωH 0.61 weight of HSR AN
ωM 0.23 weight of MSR AN
ωL 0.16 weight of LSR AN

SPLre f 2 · 10−5 sound pressure level (Pascal) physical
from [49]

SPLre f 1.5 · 10−8 sound pressure level (Pascal) set by
[43]

ηAC 1 (V/s/cm) multiplication factor for
AC component of IHC voltage

ηDC 100 (V/cm) multiplication factor for DC
component of IHC voltage

Table A.1: Parameters for cochlear equations solution.



Appendix B

Architecture Features Comparison

SM Generation Fermi Kepler Maxwell Pascal
SM Architec-
ture 2.0 2.1 3.0 3.2 3.5 3.7 5.0 5.2 5.3 6.0 6.1 6.2

Maximum
number of res-
ident grids per
device (con-
current kernel
execution)

16 4 32 16 128 32 16

Maximum di-
mensionality of
grid of thread
blocks

3

Maximum x-
dimension of a
grid of thread
blocks

65535 231 − 1

Maximum y-, or
z-dimension of
a grid of thread
blocks

65535

Maximum di-
mensionality of
thread block

3

Maximum x- or
y-dimension of
a block

1024

Maximum z-
dimension of a
block

64

Maximum
number of
threads per
block

1024

Warp Size 32
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Maximum
number of resi-
dent blocks per
multiprocessor

8 16 32

Maximum
number of resi-
dent warps per
multiprocessor

48 64

Maximum
number of res-
ident threads
per multipro-
cessor

1536 2048

Number of 32-
bit registers per
multiprocessor

32K 64K 128K 64K

Maximum
number of 32-
bit registers per
thread block

32K 64K 32K 64K 32K 64K 32K

Maximum reg-
isters per thread 63 255

Maximum
amount of
shared memory
per multipro-
cessor

48K 112K 64K 96K 64K 96K 64K

Maximum
amount of
shared mem-
ory per thread
block

48K

Number of
shared memory
banks

32

Amount of lo-
cal memory per
thread

512K

Constant Mem-
ory size 64K

Cache work-
ing set per
multiprocessor
for constant
memory

8K 4K 8K



APPENDIX B. ARCHITECTURE FEATURES COMPARISON 111

Maximum
number of in-
structions per
kernel

512 million

Table B.1: NVidia GPUs Technical specifications parameters summarized from [34,
Pg. 218-220]

SM Generation Fermi Kepler Maxwell Pascal
SM Architecture 2.0 2.1 3.0 3.5 3.7 5.0 5.2 6.0 6.1,6.2
Number of ALU lanes for integer and
single-precision floating-point arith-
metic operations

32 48 192 128 64 128

Number of special function units
for single-precision floating-point tran-
scendental functions

4 8 32 16 32

Number of warp schedulers 2 4 2 4
Max number of instructions issued at
once by a single scheduler 1 2 1

Table B.2: NVidia GPUs Architecture specifications parameters summarized from [34,
Pg. 83-84]



Appendix C

Hardware Used

This Appendix contains Hardware used for tests. for the GPU all experiments used

the GTX1080TI unless written otherwise.

CPU Intel i7-4770 4 cores,8 threads
CPU Clock 3.9 GHz
Cache 8 MByte L3
RAM Size 16 GByte (DDR2)
RAM Clock 1600 MHz
HD Seagate Barracuda 7200.14 3 TB

Table C.1: Processor configuration for sequential, single-core computation.
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Card NVIDIA GeForce 1080TI NVIDIA GeForce 760
GPU Family GP102 GK104
Architecture Pascal (SM 6.1) Kepler (SM 3.0)
Streaming Multi Processors (SM) 28 6
GPU cores per SM 128 192
GPU cores Summary 3584 1152
GPU clock 1683 MHz 1150 MHz
Memory clock 5505 MHz 3004 MHz
RAM size 11 GByte 2 GByte
Frame Buffer Bandwidth 484 GB/sec 192 GB/sec

Table C.2: Hardware configuration for the parallel code.
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