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Abstract

In the Maximum Satisfiability (Max Sat) problem, we are given a sequence

of clauses over some boolean variables. Each clause is a disjunction of lit-

erals (a variable or its negation) over different variables. We seek a truth

(true/false) assignment for the variables, maximizing the number of satis-

fied (made true) clauses. In the Max r-Sat problem, each clause is restricted

to consist of at most r literals. We restrict our attention mainly to instances

for which the clauses consist of exactly r literals each. This restricted prob-

lem is also known as Max Er-Sat.

In this work we provide a probabilistic characterization of the random

Max r-Sat problem. We study the variance of the number of clauses satis-

fied by a random assignment, and the covariance of the numbers of clauses

satisfied by a random pair of assignments of an arbitrary distance. We show

that the correlation between the numbers of clauses satisfied by a random

pair of assignments of distance d = cn, 0 ≤ c ≤ 1, converges in probability

to ((1 − c)r − 1/2r)/(1 − 1/2r). We also show that the so-called normal-

ized autocorrelation length of random Max r-Sat converges in probability

to (1− 1/2r)/r.

We explore the correlation between the quality of initial assignments

provided to local search heuristics and that of the corresponding final as-

signments. We show that the correlation in question is significant and long-

lasting. Thus, under practical time constraints, the quality of the initial

assignment is crucial to the performance of local search heuristics. We use

this insight to improve a state-of-the-art local search solver.

We present and study a new algorithm for the Maximum Satisfiability

(Max Sat) problem. The algorithm is based on the Method of Conditional

Expectations (MOCE), and applies an efficient greedy variable ordering to

MOCE. We call our algorithm Efficient Exhaustive Method of Conditional
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ABSTRACT ABSTRACT

Expectations (EEMOCE) as its greediness efficiently exhausts all unassigned

variables at each step.

We conduct a comprehensive empirical evaluation of EEMOCE and show

that it performs much better than MOCE, while keeping the additional run-

time overhead relatively low. In particular, EEMOCE reduces the number of

unsatisfied clauses by tens of percents, while the time complexity increases

only by a logarithmic factor. The actual runtime is typically up to 3 times

longer even for very large instances. We also point out how to eliminate the

logarithmic factor added to the time complexity, in practical usages.

To conclude, we introduce general techniques for awarding combinatorial

dominance certificates to arbitrary solutions of various optimization prob-

lems. We demonstrate the techniques by applying them to the Maximum

Satisfiability and Traveling Salesman problems, and experiment their us-

ability.
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Chapter 1

Introduction

In the Maximum Satisfiability (Max Sat) problem, we are given a sequence

of clauses over some boolean variables. Each clause is a disjunction of lit-

erals (a variable or its negation) over different variables. We seek a truth

(true/false) assignment for the variables, maximizing the number of sat-

isfied (made true) clauses.

In the Max r-Sat problem, each clause is restricted to consist of at most r

literals. We restrict our attention mainly to instances for which the clauses

consist of exactly r literals each. This restricted problem is also known as

Max Er-Sat.

Let n be the number of variables. Denote the variables by v1, v2, . . . , vn.

The number of clauses is denoted by m, and the clauses by C1, C2, . . . , Cm.

We denote the clause-to-variable ratio by α = m/n, to which we also refer

as density. We use the terms “positive variable” and “negative variable” to

refer to a variable and to its negation, respectively. Whenever we find it

convenient, we consider the truth values true and false as binary 1 and 0,

respectively.

As Max r-Sat (for r ≥ 2) is NP-hard [11, pp. 455–456], large-sized

instances cannot be exactly solved in an efficient manner (unless P = NP ),

and one must resort to approximation algorithms and heuristics. Numerous

methods have been suggested for solving Max r-Sat, e.g. [17, 99, 97, 69, 24,

78, 8, 32, 56], and an annual competition of solvers has been held since 2006

[10].

Satisfiability related questions attracted a lot of attention from the scien-

tific community. As an example, one may consider the well-studied satisfia-
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CHAPTER 1. INTRODUCTION 1.1. PROBABILISTIC QUANTITIES

bility threshold density question [27, 37, 2, 73, 28, 34]. For a comprehensive

overview of the whole domain of satisfiability we refer to [16].

1.1 Probabilistic quantities

Using Walsh analysis [42], an efficient way of calculating moments of the

number of satisfied clauses of a given instance of Max r-Sat was suggested

in [54]. Simulation results for the variance and higher moments of the num-

ber of clauses satisfied by a random assignment over the ensemble of all

instances were provided as well.

An interesting study of Max 3-Sat was provided in [85]. The authors

claimed that many instances share similar statistical properties and pro-

vided empirical evidence for it. Simulation results on the autocorrelation of

a random walk in the assignments space were provided for several instances,

as well as extrapolation for the typical instance. Finally, a novel heuris-

tic was introduced, ALGH, which exploits long-range correlations found

in the problem’s landscape. This heuristic outperformed GSAT [99] and

WSAT [97].

A slightly better version of this novel heuristic, based on clustering in-

stead of averaging, is provided in another paper [89] of the same authors.

This version turned out to outperform all the heuristics implemented by

that time in the Sat solver framework UBCSAT [104].

In [58], the authors analyze how the way random instances are generated

affects the autocorrelation and fitness-distance correlation. These quantities

are considered fundamental to understanding the hardness of instances for

local search algorithms. They raised the question of similarity of the land-

scape of different instances. In [5], the autocorrelation coefficient of several

problems was calculated, and problem hardness was classified accordingly.

Elaboration on correlations and on the way of harnessing them to design

well-performing local search heuristics and memetic algorithms is provided

in [74]. The importance of selecting an appropriate neighborhood operator

for producing the smoothest possible landscape was emphasized.

For some landscapes, the autocorrelation length is shown to be associ-

ated with the average distance between local optima. This may be used to

facilitate the design of mutations that lead memetic algorithms out of the

basin of attraction of a local optimum they reached.

Page 10 of 136



CHAPTER 1. INTRODUCTION 1.2. LOCAL SEARCH

In [103], it is shown how to use the Walsh decomposition [42] to efficiently

calculate the exact autocorrelation function and autocorrelation length of

any given instance of Max r-Sat. Furthermore, this decomposition is used

to approximate the expectation of these quantities over the ensemble of all

instances.

The above approximation is based on mean-field approximation [106]

with some presumed assumption on the statistical fluctuation of the ap-

proximated quantity. Formulas for these expectations are provided only

in terms of Walsh coefficients, and thus give less insight as to their actual

values.

The autocorrelation length, which is closely related to the ruggedness

of landscapes, is of interest in the area of landscape analysis [72, 103, 5,

58, 36, 6, 25]. It is fundamental to the theory and design of local search

heuristics [26, 74]. According to the autocorrelation length conjecture [101],

in many landscapes, the number of local optima can be estimated using an

expression based on this quantity.

1.2 Local search

Local search heuristics [59] explore the assignment space. They usually

start from a randomly generated assignment, and traverse the search space

by flipping variables, usually one at a time. The leading solver Configuration

Checking Local Search (CCLS) [69] follows this scheme and flips variables

until some predefined number of flips is executed or the allotted time has

been used up. Of course, if a satisfying assignment has been found, the

execution is stopped as well.

CCLS performs two types of flips: random ones, with some predefined

probability p, and greedy ones, with probability 1 − p. Random flips just

flip a randomly selected variable from a randomly selected unsatisfied clause.

Greedy flips are ones that flip the seemingly best possible variable among

all the variables whose configuration has been changed and who satisfy at

least one currently unsatisfied clause. This variable is the one with the

maximum score out of those variables, i.e., the one whose flipping leads to

the maximum number of satisfied clauses. Ties are broken randomly.

Generally, the number of satisfied clauses after flipping a variable is not

necessarily larger than prior to the flip. In fact, it is even possible that,
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CHAPTER 1. INTRODUCTION 1.3. MOCE

flipping any of the candidate variables, we will arrive at a lower quality

assignment. Also, the set of candidates may be empty in some of the greedy

steps. In such a case, CCLS performs a random flip instead.

In CCLS, a variable is a configuration changed variable if at least one of

its neighboring variables has been flipped, since its most recent flip. Here,

the neighbors of a variable are those variables appearing together with it in

at least one clause.

Works related to local search, configuration checking, CCLS, and algo-

rithms of the same spirit, include [79, 22, 20, 70, 71, 1, 18, 19, 21, 98, 76,

100, 23].

1.3 The Method of Conditional Expectations

The simple randomized approximation algorithm, which assigns to each vari-

able a uniformly random truth value, independently of all other variables,

satisfies 1 − 1/2r of all clauses on the average. Furthermore, this simple

algorithm can be easily derandomized using the Method of Conditional Ex-

pectations (MOCE) [35, 107], yielding an assignment that is guaranteed to

satisfy at least this proportion of clauses.

In a sense, this method is optimal for Max 3-Sat, as no polynomial-time

algorithm for Max 3-Sat can achieve a performance ratio exceeding 7/8

unless P=NP [53]. We note that, typically, this method yields assignments

that are much better than this worst-case bound.

MOCE iteratively constructs an assignment by going over the variables

in some (arbitrary) order. At each iteration, it sets the seemingly better

truth value to the currently considered variable. This is done by comparing

the expected number of satisfied clauses under each of the two possible truth

values it may set to the current variable.

For a given truth value, the expected number of satisfied clauses is the

sum of three quantities. The first is the number of clauses already satisfied by

the values assigned to the previously considered variables. The second is the

additional number of clauses satisfied by the assignment of the given truth

value to the current variable. The third is the expected number of clauses

that will be satisfied by a random assignment to all currently unassigned

variables. The truth value, for which the sum in question is larger, is the

one selected for the current variable. Ties are broken arbitrarily or randomly.
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CHAPTER 1. INTRODUCTION 1.4. DOMINANCE ANALYSIS

The whole process is repeated until all variables are assigned.

In an efficient implementation, each step of MOCE takes a constant

time on the average. The main thing to do at each step is to find the better

truth value for the currently assigned variable and residualize the instance

accordingly. To find this truth value, one should calculate the expected gain

in case the variable is assigned true. If this gain is positive, the variable is

assigned true. Otherwise, it is assigned false, as the gain in assigning the

variable false is the additive inverse.

To find the expected gain from assigning the current variable true, it

suffices to go over the clauses the variable appears in. Each unsatisfied

clause, that is made satisfied by the assignment to the current variable, con-

tributes 2−l to the overall expected gain, where l is the number of literals

in the clause. In the residualization of the instance, these clauses are elim-

inated. On the other hand, each clause, that remains unsatisfied by the

assignment of true to the variable, contributes −2−l to the overall expected

gain. In the residualization of the instance, these clauses remain, but they

are shortened by one literal – the one associated with the current variable.

The overall expected gain is the sum of all the contributions obtained

from all the clauses the current variable appears in. As each variable ap-

pears initially in rα clauses on the average, the whole step of selecting and

assigning a variable a truth value is independent of the number of variables

or clauses in the instance. Thus, a step takes a constant time on the av-

erage. Note, though, that this requires us to continuously track all clauses

containing each variable. This is in addition to the map between clauses

and their variables.

Theoretical and empirical works related to MOCE, and algorithms of

the same spirit, include [29, 82, 84, 83, 30].

1.4 Dominance analysis

While approximation ratio analysis does give some information on heuris-

tics, it does not provide the whole picture regarding their performance in

practice. Algorithmic solutions used in practice are often some form of

local improvement heuristic, based on techniques such as Simulated Anneal-

ing [62], HC [94], GRASP [81], Tabu Search [39], or Genetic Algorithms [57,

77]. Properly implemented, these techniques may lead to short, efficient
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CHAPTER 1. INTRODUCTION 1.4. DOMINANCE ANALYSIS

programs which yield reasonable solutions. However, these heuristics often

come with no theoretical guarantee as to the quality of the provided solution.

An f(I) combinatorial dominance guarantee is a certificate that a solu-

tion is not worse than at least f(I) solutions for a particular problem in-

stance I. The intuition behind this performance measure rests on the letter

of recommendation one could write on behalf of a given person, or heuris-

tic solution. A recommendation like “She is the best of the 75 students in

my class this year” is analogous to a combinatorial dominance guarantee.

It certifies the candidate as superior to a certain number of members of a

given pool, with the implied assumption that this says something meaning-

ful about the candidate’s global ranking as well. The larger the number of

competitors dominated by the candidate, the stronger the recommendation.

The issue of measuring the quality of approximate solutions has been

addressed in [108]. A formulation of the very basic properties expected from

a function measuring the quality of approximate solutions was given, and the

notion of a proper quality measure stated accordingly. The author suggested

considering some measures, such as z-approximation [52] and location ratio,

which is more familiar recently as dominance ratio [44, 3]. Both of these

measures are proper.

The latter measure has been studied primarily within the operations

research community. The basic notion appears to have been independently

discovered several times. The primary focus has been on algorithms for TSP,

specifically designing polynomial-time algorithms which dominate exponen-

tially large neighborhoods. The first TSP heuristic with an exponential

dominance number is presented in [93] (see also [95, 96]).

The question whether there exists a polynomial-time algorithm which

yields a solution dominating (n− 1)!/p(n) tours, where p(n) is polynomial,

appears to have first been raised in [40]. Dominance bounds for TSP have

been most aggressively pursued by Gutin, Yeo, and Zverovich in a series of

papers (cf. [45, 46]), culminating in a polynomial-time algorithm which finds

a solution dominating Θ((n − 1)!) tours. These bounds follow by applying

certain Hamiltonian cycle decomposition theorems to the complete graph.

We refer to [47] for more information.

In [33], the authors survey the complexity of optimizing TSP over sev-

eral well-defined but exponentially large neighborhoods. Such optima by

definition have large dominance numbers. In [12], the authors perform an
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CHAPTER 1. INTRODUCTION 1.5. OVERVIEW

experimental study of certain linear-time dynamic programming algorithms

for TSP, which dominate exponentially many solutions.

Gutin, Vainshtein, and Yeo [44] appear to have been the first to consider

the complexity of achieving a given dominance bound. In particular, they

define complexity classes of DOM-easy and DOM-hard problems. They

prove that weighted Max k-Sat and Max Cut are DOM-easy while (unless

P=NP) Vertex Cover and Clique are DOM-hard.

Alon, Gutin, and Krivelevich [3] provide several algorithms which achieve

large dominance ratios for versions of Integer Partition, Max Cut, and Max

r-Sat. These algorithms share a common property — they provide solutions

of quality guaranteed to be not worse than the average solution value. This

property has been used also in other dominance proofs [87, 44, 45, 86, 63].

In [105], the author showed that this property by itself does not necessarily

ensure good dominance.

Other works on dominance analysis include [48, 87], where it is proved

that the nearest neighbor, minimum spanning tree, and greedy heuristics

perform extremely poorly for symmetric and asymmetric TSP. Various com-

binatorial optimization problems and classical heuristics for them have been

analyzed in [14, 13, 43]. In [80], a model for analyzing heuristic search algo-

rithms (such as simulated annealing and backtracking), based on the ideas

of combinatorial dominance, has been developed.

In [64], the authors studied a polynomial-time algorithm for ATSP, and

showed that it provides a dominance ratio of at least 1/2−o(1). In [65], they

gave a polynomial-time algorithm with dominance ratio of 1− n−1/29 for a

special case of TSP in which the edges may take only two possible weights.

In [88], the authors analyzed the BBQP problem with m + n variables.

They proved that any solution for this problem, with quality no worse than

the average, dominates at least 2m+n−2 solutions, and that this bound is

the best possible. They provided an O(mn) algorithm to identify such a

solution.

1.5 Overview

In Chapter 2, we provide a probabilistic characterization of the random

Max r-Sat problem. We study the variance of the number of clauses satis-

fied by a random assignment, and the covariance of the numbers of clauses

Page 15 of 136



CHAPTER 1. INTRODUCTION 1.5. OVERVIEW

satisfied by a random pair of assignments of an arbitrary distance. Closed-

form formulas for the expected value and the variance of these quantities

are provided. We asymptotically and probabilistically analyze these formu-

las and use them to gain insights on the similarity of instances.

Based on the above probabilistic characterization, we show that the

correlation between the numbers of clauses satisfied by a random pair of

assignments of distance d = cn, 0 ≤ c ≤ 1, converges in probability to

((1−c)r−1/2r)/(1−1/2r). Our main result is that the so-called normalized

autocorrelation length of Max r-Sat converges in probability to (1−1/2r)/r.

The latter quantity is of interest in the area of landscape analysis as a way

to better understand problems and assess their hardness for local search

heuristics. A former result regarding the same quantity only expressed it in

terms of Walsh coefficients. All the results in this chapter apply to random

r-Sat as well.

In Chapter 3, we explore the correlation between the quality of initial

assignments provided to local search heuristics and that of the corresponding

final assignments. We restrict our attention to the Max r-Sat problem and

to one of the leading local search heuristics – Configuration Checking Local

Search (CCLS). We use a tailored version of the Method of Conditional

Expectations (MOCE) to generate initial assignments of diverse quality.

We show that the correlation in question is significant and long-lasting.

Namely, even when we delve deeper into the local search, we are still in the

shadow of the initial assignment. Thus, under practical time constraints,

the quality of the initial assignment is crucial to the performance of local

search heuristics.

To demonstrate our point, we improve CCLS by combining it with

MOCE. Instead of starting CCLS from random initial assignments, we start

it from excellent initial assignments, provided by MOCE. Indeed, it turns

out that this kind of initialization provides a significant improvement of this

state-of-the-art solver. This improvement becomes more and more signifi-

cant as the instance grows.

In Chapter 4, we present and study a new algorithm for the Maximum

Satisfiability (Max Sat) problem. The algorithm is based on the Method of

Conditional Expectations (MOCE), and applies an efficient greedy variable

ordering to MOCE. We call our algorithm Efficient Exhaustive Method of

Conditional Expectations (EEMOCE) as its greediness efficiently exhausts
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all unassigned variables at each step.

We conduct a comprehensive empirical evaluation of EEMOCE and show

that it performs much better than MOCE, while keeping the additional run-

time overhead relatively low. In particular, EEMOCE reduces the number of

unsatisfied clauses by tens of percents, while the time complexity increases

only by a logarithmic factor. The actual runtime is typically up to 3 times

longer even for very large instances.

We empirically study the main quantities managed by EEMOCE during

its execution, exposing a relatively large residual randomality that may be

harnessed for further improvement of the performance. Based on this study,

we also point out how to eliminate the logarithmic factor added to the time

complexity, in practical usages.

In Chapter 5, we introduce simple but general techniques for awarding

combinatorial dominance certificates to arbitrary solutions of various opti-

mization problems. We demonstrate the techniques we introduce by apply-

ing them to the Traveling Salesman and Maximum Satisfiability problems,

and briefly experiment their usability.

A brief conclusion is provided in Chapter 6. While we find it best reading

this work chapter-by-chapter according to their order, it is not a must. In

fact, all the result chapters of this work, namely, chapters 2–5, are self-

contained. Each of them may be read on its own, without reading any of

the other results chapters.
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Chapter 2

Probabilistic

Characterization of Random

Max r-Sat

In this chapter we provide a probabilistic characterization of the random

Max r-Sat problem. We study the variance of the number of clauses satis-

fied by a random assignment, and the covariance of the numbers of clauses

satisfied by a random pair of assignments of an arbitrary distance. Closed-

form formulas for the expected value and the variance of these quantities

are provided. We asymptotically and probabilistically analyze these formu-

las and use them to gain insights on the similarity of instances.

Based on the above probabilistic characterization, we show that the

correlation between the numbers of clauses satisfied by a random pair of

assignments of distance d = cn, 0 ≤ c ≤ 1, converges in probability to

((1−c)r−1/2r)/(1−1/2r). Our main result is that the so-called normalized

autocorrelation length of Max r-Sat converges in probability to (1−1/2r)/r.

The latter quantity is of interest in the area of landscape analysis as a way

to better understand problems and assess their hardness for local search

heuristics. A former result regarding the same quantity only expressed it in

terms of Walsh coefficients. All our results apply to random r-Sat as well.
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2.1 Introduction

In the Maximum Satisfiability (Max Sat) problem, we are given a sequence

of clauses over some boolean variables. Each clause is a disjunction of lit-

erals (a variable or its negation) over different variables. We seek a truth

(true/false) assignment for the variables, maximizing the number of satis-

fied (made true) clauses. In the Max r-Sat problem, each clause is restricted

to consist of at most r literals. Here we restrict our attention to instances for

which the clauses consist of exactly r literals each. This restricted problem

is also known as Max Er-Sat.

Let n be the number of variables. Denote the variables by v1, v2, . . . , vn.

The number of clauses is denoted by m, and the clauses by C1, C2, . . . , Cm.

We use the terms “positive variable” and “negative variable” to refer to a

variable and to its negation, respectively. Whenever we find it convenient,

we consider the truth values true and false as binary 1 and 0, respectively.

As Max r-Sat (for r ≥ 2) is NP-hard [11, pp. 455–456], large-sized

instances cannot be exactly solved in an efficient manner (unless P = NP ),

and one must resort to approximation algorithms and heuristics. The simple

randomized approximation algorithm, which assigns a truth value to each

variable independently and uniformly at random, satisfies 1 − 1/2r of all

clauses on the average. Furthermore, this simple algorithm can also be

easily derandomized using the Method of Conditional Expectations [35],

yielding an assignment that is guaranteed to satisfy at least this number of

clauses. In a sense, this method is optimal for Max 3-Sat, as no polynomial-

time algorithm for Max 3-Sat can achieve a performance ratio exceeding 7/8

unless P=NP [53].

Using Walsh analysis [42], an efficient way of calculating moments of

the number of satisfied clauses of a given instance of Max r-Sat was sug-

gested in [54]. Simulation results for the variance and higher moments of

the number of clauses satisfied by a random assignment over the ensem-

ble of all instances were provided as well. We provide closed-form formula,

asymptotics, and convergence proof for the variance.

An interesting study of Max 3-Sat is provided in [85]. The authors

claimed that many instances share similar statistical properties and provided

empirical evidence for it. Simulation results on the autocorrelation of a ran-

dom walk in the assignments space were provided for several instances, as
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well as extrapolation for the typical instance. Finally, a novel heuristic was

introduced, ALGH, which exploits long-range correlations found in the prob-

lem’s landscape. This heuristic outperformed GSAT [99] and WSAT [97].

A slightly better version of this heuristic, based on clustering instead of av-

eraging, is provided in another paper [89] of the same authors. This version

turned out to outperform all the heuristics implemented at that time in the

Sat solver framework UBCSAT [104]. Our convergence in probability proofs

mathematically validate their simulative results regarding similarity for sev-

eral statistical properties, including the long-range correlation they used for

their heuristics.

In [58], the authors analyze how the way random instances are generated

affects the autocorrelation and fitness-distance correlation. These quantities

are considered fundamental to understanding the hardness of instances for

local search algorithms. They raised the question of similarity of the land-

scape of different instances. In [5], the autocorrelation coefficient of several

problems was calculated, and problem hardness was classified accordingly.

We contribute one more result for this classification.

Elaboration on correlations and on the way of harnessing them to de-

signing well-performing local search heuristics and memetic algorithms is

provided in [74]. The importance of selecting an appropriate neighborhood

operator for producing the smoothest possible landscape was emphasized.

For some landscapes, the autocorrelation length is shown to be associated

with the average distance between local optima. This may be used to facil-

itate the design of mutations that lead memetic algorithms out of the basin

of attraction of a local optimum they reached.

In [103], it is shown how to use the Walsh decomposition [42] to ef-

ficiently calculate the exact autocorrelation function and autocorrelation

length of any given instance of Max r-Sat. Furthermore, this decomposition

is used to approximate the expectation of these quantities over the ensemble

of all instances. The approximation is based on mean-field approximation

[106] with some presumed assumption on the statistical fluctuation of the

approximated quantity. Formulas for these expectations are provided only

in terms of Walsh coefficients, and thus give less insight as to their actual

values. We substantially improve the result regarding the autocorrelation

length, by showing its normalized version converges in probability to an

explicit constant.
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Numerous methods have been suggested for solving Max r-Sat, e.g. [17,

99, 97, 69, 24, 78, 8, 32, 56], and an annual competition of solvers has

been held since 2006 [10]. Satisfiability related questions attracted a lot of

attention from the scientific community. As an example, one may consider

the well-studied satisfiability threshold question [27, 37, 2, 73, 28, 34]. For a

comprehensive overview of the whole domain of satisfiability we refer to [16].

This chapter deals with the variance of the number of clauses satisfied

by a random assignment, and the covariance of the numbers of clauses sat-

isfied by a random pair of assignments at an arbitrary distance. We obtain

explicit formulas for the expected value and the variance of these quantities.

Asymptotics of these expressions are provided as well. From the asymptotics

we conclude that the variance of the number of clauses satisfied by a random

assignment is usually quite close to the expected value of this variance.

Based on the above probabilistic characterization, we show that the

correlation between the numbers of clauses satisfied by a random pair of

assignments of distance d = cn, 0 ≤ c ≤ 1, converges in probability to

((1 − c)r − 1/2r)/(1 − 1/2r). Our main result is that the so-called normal-

ized autocorrelation length [38] of Max r-Sat converges in probability to

(1− 1/2r)/r.

The latter quantity, which is closely related to the ruggedness of land-

scapes, is of interest in the area of landscape analysis [72, 103, 5, 58, 36,

6, 25]. It is fundamental to the theory and design of local search heuristics

[26, 74]. According to the autocorrelation length conjecture [101], in many

landscapes, the number of local optima can be estimated using an expression

based on this quantity. Our result reveals the normalized autocorrelation

length of Max r-Sat, improving a former result [103] expressed it only in

terms of Walsh coefficients [42].

In Section 2.2 we present our main results, and in Section 2.3 the proofs.

Some elaboration and discussion are provided in Section 2.4. All our results

immediately apply to random r-Sat, as both random Max r-Sat and random

r-Sat deal with the same collection of random instances – the collection of

random r-CNF formulas. We choose to present our results in the context of

Max r-Sat, and to omit the prefix “random”, assuming this is the default

when not mentioned otherwise.

Page 21 of 136



CHAPTER 2. PROBABILISTIC CHARACTERIZATION 2.2. MAIN RESULTS

2.2 Main results

Throughout the chapter we deal with three basic probability spaces. The

first consists of all instances with m clauses of length r over n variables. As

any r of the variables may appear in a clause, and each may be positive

of negative, the number of instances is
((
n
r

)
2r
)m

. All instances are equally

likely, namely each has a probability of 1/
((
n
r

)
2r
)m

. The second probability

space consists of all 2n equally likely truth assignments. The third consists

of all 2n
(
n
d

)
equally likely pairs of truth assignments of distance d. The

distance between two assignments is the Hamming distance, i.e., the number

of variables they assign differently.

We use the subscripts I, A, and d to specify that a certain quantity is

associated with the first, second, or third probability space, respectively. We

use I, a, and (a, b) to denote a random instance, a random assignment, and

a random pair of assignments of distance d, respectively. Let the random

variable S(I, a) (R(I, a), resp.) be the number of clauses of I satisfied

(unsatisfied, resp.) by the assignment a.

For a given instance I, let ρ(d) = Corrd(S(I, a), S(I, b)) be the correla-

tion (coefficient) between the numbers of clauses satisfied by a random pair of

assignments at distance d from each other. The autocorrelation length [38],

given by l = −1/ ln(|ρ(1)|), is a one-number summary of the ruggedness of

the landscape of the instance. The higher its value, the smoother is the

landscape. The normalized autocorrelation length is simply l/n.

A slightly different quantity for summarizing ruggedness is the autocor-

relation coefficient [4], defined by ξ = 1/(1 − ρ(1)). Similarly, the normal-

ized autocorrelation coefficient is ξ/n. These two measures, l/n and ξ/n,

are asymptotically the same. I.e., their quotient approaches 1 as n grows

larger. We arbitrarily choose to work with the latter. For convenience, these

quantities are summarized in Table 2.1.

Before stating our results, it worth mentioning the notion of convergence

in probability, which we heavily use below. A sequence (Xn)∞n=1 of random

variables converges in probability to a constant c if for all ε > 0:

P (|Xn − c| ≥ ε) −−−→
n→∞

0.
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Quantity Notation Defined by

Correlation Coefficient ρ(d) Corrd(S(I, a), S(I, b))

Autocorrelation Length ` −1/ ln(|ρ(1)|)

Autocorrelation Coefficient ξ 1/(1− ρ(1))

Table 2.1: Some quantities and notations.

Such convergence is denoted by:

Xn
P−−−→

n→∞
c.

For Max r-Sat, the normalized autocorrelation length converges in prob-

ability to a constant. This constant is independent of the clause-to-variable

ratio (a.k.a. density) α = m/n, as stated in our main theorem, which im-

proves the result of [103]. There, this quantity is provided only in terms

of Walsh coefficients [42], along with a mean-field approximation [106]. In

our results regarding convergence in probability, here and afterward, the

random variables are always defined on I. Namely, they are defined on the

probability space consisting of all (equally likely) instances with m clauses

of length r over n variables.

Theorem 1. For Max r-Sat:

ξ

n

P−−−→
n→∞

1− 1/2r

r
.

Notice that, for some instances, ξ/n is not well defined. As an example,

one may consider instances that are composed of bunches of clauses, where

each bunch consists of all 2r possible clauses over some r specific variables.

Figure 2.1 depicts the normalized autocorrelation length for common values

of r.

To prove Theorem 1, we will first prove Theorems 2 and 3. Besides

being building blocks for the proof of the main theorem, each of these is of

independent interest.
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Figure 2.1: The normalized autocorrelation length.

For Max r-Sat, the expected number of clauses satisfied by a random

assignment ism(1−1/2r), regardless of the instance. Thus, the calculation of

the expected value and the variance of this quantity, over the ensemble of all

instances, is trivial. The following theorem summarizes our results regarding

the variance of the number of clauses satisfied by a random assignment.

In the provided asymptotics, we assume that n → ∞, m = αn for some

constant α > 0, and that r is constant.

Theorem 2. For Max r-Sat, the expected value and the variance (over all

instances) of the variance of the number of clauses satisfied by a random

assignment are given by:

EI(VA(S(I, a))) =
m

2r

(
1− 1

2r

)
, (2.A)

VI(VA(S(I, a))) =
2m(m− 1)

24r

(
r∑
t=0

(
r
t

)(
n−r
r−t
)(

n
r

) · 2t − 1

)
(2.B.1)

=
α2r2

24r−1
n+O(1). (2.B.2)
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In particular,

VA(S(I, a))

n

P−−−→
n→∞

α

2r

(
1− 1

2r

)
. (2.C)

Let ε > 0, and consider the proportion of instances for which the absolute

difference between VA(S(I, a))/n and α(1 − 1/2r)/2r exceeds ε. By (2.C),

this proportion tends to 0 as n grows. Nonetheless, one can easily construct

such instances for arbitrarily large n. As an example, one may consider in-

stances for which all clauses are the same. For such instances, VA(S(I, a))/n

is asymptotically n·α2(1−1/2r)/2r, namely much larger than the limit given

in (2.C). In the other direction, instances composed of bunches (as men-

tioned right after Theorem 1) have VA(S(I, a))/n = 0.

The next theorem generalizes the results further, and summarizes our

results regarding the covariance of the numbers of clauses satisfied by a

random pair of assignments at an arbitrary distance from each other. Here,

in the asymptotics we also assume that d = cn, 0 ≤ c ≤ 1.

Theorem 3. For Max r-Sat, the expected value and the variance (over all

instances) of the covariance of the numbers of clauses satisfied by a random

pair of assignments of distance d are given by:

EI(Covd(S(I, a), S(I, b))) =
m

2r

((
n−r
d

)(
n
d

) − 1

2r

)
(3.A.1)

=
α

2r

(
(1− c)r − 1

2r

)
n+O(1), (3.A.2)

VI(Covd(S(I, a), S(I, b)))

=
2m(m− 1)

24r

(
r∑
t=0

((
r
t

)(
n−r
r−t
)(

n
r

) · 2t ·
t∑

s=0

(
t
s

)(
n−t
d−s
)(

n
d

) ·
(
n−t
d−s
)(

n
d

) )− 1

)
(3.B.1)

=
α2r2(2c− 1)2

24r−1
n+O(1). (3.B.2)

In particular,

Covd(S(I, a), S(I, b))

n

P−−−→
n→∞

α

2r

(
(1− c)r − 1

2r

)
. (3.C)

As one may see, pairs of assignments of relatively small distance, c < 1/2,
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Figure 2.2: The correlation coefficient of Max 1-Sat.

tend to be positively correlated. On the other hand, if the distance is rel-

atively large, c > 1/2, the assignments tend to be negatively correlated.

In case c = 1/2, the assignments become almost uncorrelated, as one as-

signment may be roughly viewed as obtained from the other by flipping

each variable’s truth value randomly, so that the assignments are almost

independent.

Finally, notice that (2.C) and (3.C) together lead immediately to the fol-

lowing corollary regarding the convergence in probability of the correlation

of the numbers of clauses satisfied by a random pair of assignments at an

arbitrary distance from each other.

Corollary 1. For Max r-Sat:

ρ(d)
P−−−→

n→∞

(1− c)r − 1/2r

1− 1/2r
.

Figures 2.2, 2.3, and 2.4 depict this correlation coefficient for Max 1-Sat,

Max 3-Sat, and Max 5-Sat, respectively.
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Figure 2.3: The correlation coefficient of Max 3-Sat.

Figure 2.4: The correlation coefficient of Max 5-Sat.
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2.3 Proofs

Theorem 2 follows immediately from Theorem 3, by applying the latter

with d = 0. Yet, it will be instructive to provide an independent short proof

of (2.A). Afterward, we provide the proof of Theorem 3. Theorem 1, which

relies heavily on the former theorems, is proved at the end.

Proof of (2.A). The expected number of clauses satisfied by a random

assignment is the same for all instances. Thus, in our case, the law of total

variance [92, pp. 347–349] reduces to:

V(I,A)(S(I, a)) = EI(VA(S(I, a))).

Observing that the random variable S(I, a) on the left-hand side is binomi-

ally distributed, B(m, 1− 1/2r), we obtain the theorem.

Proof of Theorem 3. As R(I, a) = m − S(I, a), we may work with

the covariance of the numbers of unsatisfied clauses, instead of that of the

numbers of satisfied clauses. Define the following random variable:

Ri(I, a) =

1, the assignment a does not satisfy the clause Ci,

0, otherwise.

We start with a single clause. For the sake of readability, we write Ri(a)

instead of Ri(I, a).

Covd(Ri(a), Ri(b))

= Ed(Ri(a) ·Ri(b))− Ed(Ri(a)) · Ed(Ri(b))

= Pd(Ri(a) = Ri(b) = 1)− Pd(Ri(a) = 1) · Pd(Ri(b) = 1)

= Pd(Ri(a) = 1) · Pd(Ri(b) = 1 |Ri(a) = 1)− 1

22r

=
1

2r

((
n−r
d

)(
n
d

) − 1

2r

)
.

Next, we calculate the covariance for any specific instance. Again, we
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use the shorthand R(a) instead of R(I, a).

Covd(R(a), R(b)) = Covd

 m∑
i=1

Ri(a),
m∑
j=1

Rj(b)


=

m∑
i=1

m∑
j=1

Covd(Ri(a), Rj(b))

=
m∑
i=1

Covd(Ri(a), Ri(b)) + 2
∑

1≤i<j≤m
Covd(Ri(a), Rj(b))

=
m

2r

((
n−r
d

)(
n
d

) − 1

2r

)
+ 2

∑
1≤i<j≤m

Covd(Ri(a), Rj(b)).

(2.1)

For 1 ≤ i < j ≤ m we have:

EI(Covd(Ri(a), Rj(b))) = EI(Ed(Ri(a) ·Rj(b)))

− EI(Ed(Ri(a)) · Ed(Rj(b)))

= Ed(EI(Ri(a) ·Rj(b)))−
1

22r

= Ed(EI(Ri(a)) · EI(Rj(b)))−
1

22r

= 0.

(2.2)

Here, the second last transition stems from the fact that, for a given pair of

assignments a, b, the variables Ri(a), Rj(b) are independent, as their associ-

ated clauses are selected uniformly at random and with repetitions from all

possible clauses. Overall, the second addend on the right-hand side of (2.1)

vanishes, which proves (3.A.1). The asymptotics provided in (3.A.2) is im-

mediate.
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Now, let us prove (3.B.1). We have:

VI(Covd(R(a), R(b)))

= VI

m
2r

((
n−r
d

)(
n
d

) − 1

2r

)
+ 2

∑
1≤i<j≤m

Covd(Ri(a), Rj(b))


= 4

∑
1≤i<j≤m

VI(Covd(Ri(a), Rj(b)))

+ 8
∑

1≤i<j≤m
1≤k<l≤m

(i<k)∨(i=k∧j<l)

CovI(Covd(Ri(a), Rj(b)),Covd(Rk(a), Rl(b)))

= 4g + 8
∑

1≤i<j≤m
1≤k<l≤m

(i<k)∨(i=k∧j<l)

hijkl

= 4g + 8h.

Next, we calculate g as follows:

g =
∑

1≤i<j≤m
VI(Covd(Ri(a), Rj(b)))

=
∑

1≤i<j≤m

(
EI
(
Cov2

d (Ri(a), Rj(b))
)
− E2

I (Covd (Ri(a), Rj(b)))
)

=
∑

1≤i<j≤m

(
EI

(
(Ed(Ri(a) ·Rj(b))− Ed(Ri(a)) · Ed(Rj(b)))2

)
− 0
)

// by (2.2)

=
∑

1≤i<j≤m
EI

((
Ed(Ri(a) ·Rj(b))−

1

22r

)2
)

=
∑

1≤i<j≤m
EI

(
E2
d(Ri(a) ·Rj(b))−

Ed(Ri(a) ·Rj(b))
22r−1

+
1

24r

)

=
∑

1≤i<j≤m

(
EI
(
E2
d(Ri(a) ·Rj(b))

)
− EI(Ed(Ri(a) ·Rj(b)))

22r−1
+

1

24r

)

=
∑

1≤i<j≤m

(
EI
(
E2
d(Ri(a) ·Rj(b))

)
− 1

22r22r−1
+

1

24r

)
// as done in (2.2)

=
∑

1≤i<j≤m

(
EI
(
P 2
d (Ri(a) = Rj(b) = 1)

)
− 1

24r

)
.

To continue the calculation, we consider the clauses Ci and Cj . We

denote by t the number of variables shared by Ci and Cj . Let s be the
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number of variables, out of the t common ones, whose sign (as literals) is

different in the two clauses. The remaining t − s shared variables have the

same sign in the two clauses.

The probability that Ci and Cj share exactly t variables, from which

exactly s are of different sign, is(
r
t

)(
n−r
r−t
)(

n
r

) ·
(
t
s

)
2t
.

Given t and s, we have

Pd(Ri(a) = Rj(b) = 1)) =
1

2r
·
(
n−t
d−s
)(

n
d

) · 1

2r−t
.

Thus,

EI
(
P 2
d (Ri(a) = Rj(b) = 1)

)
=

r∑
t=0

t∑
s=0

(
r
t

)(
n−r
r−t
)(

n
r

) ·
(
t
s

)
2t
·

(
2t

22r
·
(
n−t
d−s
)(

n
d

) )2

=
1

24r

r∑
t=0

((
r
t

)(
n−r
r−t
)(

n
r

) · 2t ·
t∑

s=0

(
t
s

)(
n−t
d−s
)(

n
d

) ·
(
n−t
d−s
)(

n
d

) ) .
Plugging the last expression into the expression for g, we arrive at the final

form of g:

g =
m(m− 1)

2
· 1

24r
·

(
r∑
t=0

((
r
t

)(
n−r
n−t
)(

n
r

) · 2t ·
t∑

s=0

(
t
s

)(
n−t
d−s
)(

n
d

) ·
(
n−t
d−s
)(

n
d

) )− 1

)
.

The expression for 4g is exactly the right-hand side of (3.B.1), so to

conclude the proof it suffices to show that h = 0. In fact, we will see that

every single term hijkl in the sum appearing in the expression for h vanishes.

Let us expand this term.

hijkl = CovI (Covd (Ri(a), Rj(b)) ,Covd (Rk(a), Rl(b)))

= CovI

(
Ed (Ri(a) ·Rj(b))−

1

22r
, Ed (Rk(a) ·Rl(b))−

1

22r

)
= CovI (Pd(Ri(a) = Rj(b) = 1), Pd(Rk(a) = Rl(b) = 1)) .
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To prove that hijkl = 0, we will show that Pd(Ri(a) = Rj(b) = 1) and

Pd(Rk(a) = Rl(b) = 1) are independent. Observe that the addends in the

sum can be classified to two categories: addends for which |{i, j, k, l}| = 4,

and those for which |{i, j, k, l}| = 3. Either way, we have

Pd(Ri(a) = Rj(b) = 1) =
2T1

22r
·
(
n−T1
d−S1

)(
n
d

) ,

Pd(Rk(a) = Rl(b) = 1) =
2T2

22r
·
(
n−T2
d−S2

)(
n
d

) ,

where T1 is the number of variables shared by Ci and Cj , S1 is the number

of common variables whose sign (as literals) is different in Ci and Cj , and

T2 and S2 are defined similarly with respect to Ck and Cl.

The variables T1 and S1 are determined solely by the way Cj is selected

in relation to Ci. Similarly, T2 and S2 are determined solely by the way Cl is

selected in relation to Ck. This holds even if, for example, i = k. Thus, the

variables (T1, S1), and the variables (T2, S2), are independent. Consequently,

Pd(Ri(a) = Rj(b) = 1) and Pd(Rk(a) = Rl(b) = 1) are independent as well.

This means that hijkl = 0, which proves (3.B.1).

Regarding (3.B.2), suppose 0 < c < 1. As
(
n−r
r−t
)
/
(
n
r

)
= Θ(1/nt) and(

n−t
d−s
)
/
(
n
d

)
= Θ(1), the addends in the sum appearing in (3.B.1) behave as

Θ(1/nt), for given values of t and s. The largest addends are obtained in

the following three settings of t and s:

t = 0, s = 0 :
(

1− r

n

)(
1− r

n− 1

)
· · ·
(

1− r

n− r + 1

)
= 1− r2

n
+O

(
1

n2

)
. (2.3)

t = 1, s = 0 :
2r2(1− c)2

n− r + 1

(
1− r

n

)(
1− r

n− 1

)
· · ·
(

1− r

n− r + 2

)
=

2r2(1− c)2

n
+O

(
1

n2

)
. (2.4)

t = 1, s = 1 :
2r2c2

n− r + 1

(
1− r

n

)(
1− r

n− 1

)
· · ·
(

1− r

n− r + 2

)
=

2r2c2

n
+O

(
1

n2

)
. (2.5)

For c = 0, the addends in the sum appearing in (3.B.1) behave as
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Θ(1/nt+2s). The largest ones are obtained in the first and second settings

above. Their values are given in (2.3) and (2.4), respectively. For c = 1, the

addends in this sum behave as Θ(1/n3t−2s), the largest ones are obtained

in the first and third settings of t and s, and their values are given in (2.3)

and (2.5), respectively.

Summing up the leading addends in each case, we see that, regardless of

the value of 0 ≤ c ≤ 1, the sum appearing in (3.B.1) is

1 +
r2(2c− 1)2

n
+O

(
1

n2

)
.

Plugging this approximation into (3.B.1), and using the fact that m = αn,

we arrive at (3.B.2).

Finally, to prove (3.C), denote:

Xn = Covd(R(a), R(b))/n.

It suffices to show that the expected value of Xn converges to the right-hand

side of (3.C), and that its variance converges to 0. These two convergences

follows from (3.A.2) and (3.B.2) directly:

EI(Xn) =
1

n
· EI(Covd(R(a), R(b)))

=
α

2r

(
(1− c)r − 1

2r

)
+O

(
1

n

)
−−−→
n→∞

α

2r

(
(1− c)r − 1

2r

)
,

VI(Xn) =
1

n2
· VI(Covd(R(a), R(b)))

=
α2r2(2c− 1)2

24r−1
· 1

n
+O

(
1

n2

)
−−−→
n→∞

0.

This proves (3.C), which means the whole theorem is proved.

Proof of Theorem 1. Denote

Yn = VA(R(a))/n,

Zn = VA(R(a))− Cov1(R(a), R(b)).
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By (2.C), the random variable Yn converges in probability to α(1−1/2r)/2r.

In the following, we will show that Zn converges in probability to αr/2r. As

ξ/n = Yn/Zn, this will imply the theorem. To this end, it suffices to show

that

EI(Zn) −−−→
n→∞

αr

2r
, (2.6)

VI(Zn) −−−→
n→∞

0. (2.7)

Using (2.A) and (3.A.1), we get:

EI(Zn) = EI(VA(R(a)))− EI(Cov1(R(a), R(b)))

=
m

2r

(
1− 1

2r

)
− m

2r

((
n−r
1

)(
n
1

) − 1

2r

)
=
αn

2r
· r
n

=
αr

2r
.

To prove (2.7), denote:

g = VA(R(a)) · Cov1(R(a), R(b)).

Then:

VI(Zn) = VI(VA(R(a))) + VI(Cov1(R(a), R(b)))

− 2CovI(VA(R(a)),Cov1(R(a), R(b)))

= VI(VA(R(a))) + VI(Cov1(R(a), R(b)))

− 2EI(g) + 2EI(VA(R(a)))EI(Cov1(R(a), R(b))).

(2.8)

Theorems 2 and 3 provide an explicit form for each of the terms on the

right-hand side, with the exception of EI(g).

By (2.1),

VA(R(a)) =
m

2r

(
1− 1

2r

)
+ 2

∑
1≤i<j≤m

Cov0(Ri(a), Rj(b)),

and

Cov1(R(a), R(b)) =
m

2r

(
1− 1

2r
− r

n

)
+ 2

∑
1≤k<l≤m

Cov1(Rk(a), Rl(b)).
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Thus,

EI(g) = EI(VA(R(a)) · Cov1(R(a), R(b)))

=
m2

22r

(
1− 1

2r

)(
1− 1

2r
− r

n

)
+
m

2r

(
1− 1

2r
− r

n

)
· 2
∑

1≤i<j≤m
EI(Cov0(Ri(a), Rj(b)))

+
m

2r

(
1− 1

2r

)
· 2
∑

1≤k<l≤m
EI(Cov1(Rk(a), Rl(b)))

+ 4
∑

1≤i<j≤m
1≤k<l≤m

EI(Cov0(Ri(a), Rj(b)) · Cov1(Rk(a), Rl(b)))

(2.9)

By (2.2), the second and third addends on the right-hand side of (2.9)

both vanish. Moreover, following an argumentation similar to that applied

to hijkl in the proof of Theorem 3, we conclude that Cov0(Ri(a), Rj(b)) and

Cov1(Rk(a), Rl(b)) are independent whenever 3 ≤ |{i, j, k, l}| ≤ 4. Thus,

the last sum on the right-hand side of (2.9) reduces to the terms for which

i = k and j = l. Applying those insights to EI(g), we arrive at:

EI(g) =
m2

22r

(
1− 1

2r

)(
1− 1

2r
− r

n

)
+ 4

∑
1≤i<j≤m

EI(Cov0(Ri(a), Rj(b)) · Cov1(Ri(a), Rj(b))).
(2.10)

Now, let us convert the expectation appearing in the last expression to

a simpler form, which will allow us to calculate it directly:

EI(Cov0(Ri(a), Rj(b)) · Cov1(Ri(a), Rj(b)))

= EI((E0(Ri(a)Rj(b))− 1/22r) · (E1(Ri(a)Rj(b))− 1/22r))

= EI(E0(Ri(a)Rj(b)) · E1(Ri(a)Rj(b)))

− EI(E0(Ri(a)Rj(b)))/2
2r − EI(E1(Ri(a)Rj(b)))/2

2r + 1/24r

= EI(E0(Ri(a)Rj(b)) · E1(Ri(a)Rj(b)))

− 1/24r − 1/24r + 1/24r // as done in (2.2)

= EI(P0(Ri(a) = Rj(b) = 1) · P1(Ri(a) = Rj(b) = 1))− 1/24r.

As in the proof of Theorem 3, we now consider the clauses Ci and Cj .
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We denote by t the number of variables shared by Ci and Cj . Let s be the

number of variables, out of the t common ones, whose sign (as literals) is

different in the two clauses. The remaining t − s shared variables have the

same sign in the two clauses. A direct calculation, as in that proof, with

d = 0 and d = 1, yields:

EI(P0(Ri(a) = Rj(b) = 1) · P1(Ri(a) = Rj(b) = 1))

=

r∑
t=0

t∑
s=0

(
r
t

)(
n−r
r−t
)(

n
r

) ·
(
t
s

)
2t
·
(
n−t
−s
)

22r−t
·
(
n−t
1−s
)

22r−tn

=
1

24r

r∑
t=0

(
r
t

)(
n−r
r−t
)(

n
r

) · 2t ·
(

1− t

n

)
.

The last equation follows by a routine simplification, after observing that

terms for which s > 0 vanish. Plugging these values into (2.10), we arrive

at the final form of EI(g):

EI(g) =
m2

22r

(
1− 1

2r

)(
1− 1

2r
− r

n

)
+

2m(m− 1)

24r

(
r∑
t=0

(
r
t

)(
n−r
r−t
)(

n
r

) · 2t ·
(

1− t

n

)
− 1

)
.

Now that we have an explicit form for all the terms on the right-hand

side of (2.8), we can obtain an explicit expression for V (Zn):

VI(Zn) =
2m(m− 1)

24r

(
r∑
t=0

(
r
t

)(
n−r
r−t
)(

n
r

) · 2t − 1

)

+
2m(m− 1)

24r

(
r∑
t=0

(
r
t

)(
n−r
r−t
)(

n
r

) · 2t ·
(

1− 2t

n
+
t(t+ 1)

n2

)
− 1

)

− 2m2

22r

(
1− 1

2r

)(
1− 1

2r
− r

n

)
− 4m(m− 1)

24r

(
r∑
t=0

(
r
t

)(
n−r
r−t
)(

n
r

) · 2t ·
(

1− t

n

)
− 1

)

+ 2 · m
2r

(
1− 1

2r

)
· m

2r

(
1− 1

2r
− r

n

)
.
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A routine simplification leads to:

VI(Zn) =
2m(m− 1)

24r
· 1

n2
·

r∑
t=0

(
r
t

)(
n−r
r−t
)(

n
r

) · 2t · t(t+ 1).

Recall that m = αn for some α > 0. Thus, the product of the two factors

outside the sum (in the last expression) is Θ(1). The leading addend in the

sum is obtained for t = 1, and it is Θ(1/n). Thus, we conclude that

VI(Zn) = Θ(1/n) −−−→
n→∞

0,

which completes the proof.

2.4 Discussion

In this chapter we have provided some results characterizing the ensemble

of all (equally likely) r-CNF formulas. These results apply to both random

Max r-Sat and random r-Sat. Along the chapter we chose to present them

in the context of random Max r-Sat instances.

In this section we discuss how our results directly apply and characterize

random Max r-Sat instances by giving some examples and interpretations of

our results. We give some general motivation and implications of our results

in the context of local search and landscape theory. Finally, we elaborate

on the results of [103], compare them with ours, and clarify our relative

contribution.

Consider, for example, the variance of the number of clauses satisfied

by a random assignment, explored in Theorem 2. Let ε > 0, and con-

sider the proportion of instances for which the absolute difference between

VA(S(I, a))/n and α(1−1/2r)/2r exceeds ε. By (2.C), this proportion tends

to 0 as n grows, which gives a very accurate understanding of this variance

over the ensemble of all (equally likely) instances. Similar statements can

be made regarding the covariance, correlation coefficient, and normalized

autocorrelation length, using the results in Theorem 3, Corollary 1, and

Theorem 1, respectively.

Formulas (2.B.1) and (2.B.2), as well as (3.B.1) and (3.B.2), give closed

expressions and clear asymptotics for useful quantities, usually simulated or

approximated (e.g., [54, 85, 89]).
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In the local search community, and especially among researchers in the

area of landscape analysis, it is a common belief that the ruggedness of

the landscape of an instance is one of the main factors for its hardness.

The commonly used measures to summarize ruggedness are the autocorre-

lation length (or alternatively the autocorrelation coefficient) and the fitness-

distance correlation. These measures are believed to assess the hardness of

combinatorial optimization problems for local search heuristics. These be-

liefs have been empirically confirmed in various studies [4, 5, 6], and work

aiming at better understanding the landscape of combinatorial optimiza-

tion problems and classifying their hardness for local search is continuously

conducted [25, 26, 58, 72, 85, 89, 101, 103].

Our results provide insights on the structure of the landscapes of in-

stances of Max r-Sat, and their similarity. They are also a step toward a

richer classification of hardness of combinatorial optimization problems, in

the context of local search. We provide a simple expression for the auto-

correlation length of Max r-Sat, and other interesting statistical measures

for this problem as well. Results in a similar vein, regarding the autocor-

relation length of problems like TSP, QAP, GC, GBP, etc, are summarized

in [5, Table 1].

In several problems, the autocorrelation length has been calculated with

respect to various neighborhood operators, and a clear suggestion for the

designers of local search heuristics came out: use the neighborhood oper-

ator with the largest autocorrelation length [74, 4, 6]. Such operators in-

duce smoother landscape, which leads to better performance of local search

heuristics. Some researchers even suggest performing amendments to the

problem in a way that leads to an equivalent problem with a larger auto-

correlation length [5]. Our result regarding the autocorrelation length may

serve as a baseline for assessing the relevance of any future neighborhood

operator or amendment for Max r-Sat.

In many heuristics, after a local optimum is reached, the whole search is

repeated from a different, randomly selected starting point. This is a simple,

clean way to restart. Yet, as the heuristic may have already yielded a quite

good assignment, one may prompt for further exploration of the landscape

in the vicinity of this assignment. In such cases, one may want to perform

a jump from the local optimum that is not too large, so as to stay in the

vicinity of the local optimum. On the other hand, a too small jump would
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fall in the basin of attraction of the current local optimum, which will lead to

the same local optimum again. To this end, the autocorrelation length may

provide assisting information, as it hints on the average distance between

local optima [74]. The specific formulation of using it to calculate the size

of the jump is a subject for further research.

Research efforts to formulate the autocorrelation length of Max r-Sat,

done in the last decades, culminated in [103]. Both here and in [103], there

is interest in the correlation between the number of clauses satisfied by a

random assignment, and an assignment obtained from it due to some random

changes.

In this chapter, we measure the change according to the Hamming dis-

tance between the two assignments. In [103], one starts from the initial

assignment, makes a number of random steps (bit flips), and then compares

the initial assignment with the final one. If the distance in the first version,

and the number of steps in the second, are the same, then we may expect

to be closer to the initial assignment in the second version, as some of the

steps may well bring us closer to it. However, as the autocorrelation length

only depends on two assignments at a distance of 1 from one another, the

two versions are equivalent in this respect.

Our result regarding the normalized autocorrelation length improves the

result of [103]. There, this quantity is provided only in terms of Walsh

coefficients [42], along with a mean-field approximation [106]. We find an

explicit expression that approximates the normalized autocorrelation length.

Furthermore, we prove rigorously that the normalized autocorrelation length

converges in probability to this explicit expression as the number of variables

grows.

Finally, we note that the nature of industrial instances, for example, is

subtly different from random ones. Their underlying probability model, if

any, is different, and they should be addressed separately. We hope our work

will encourage a concise analysis of modeled practical instances ensembles.
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Chapter 3

Effect of Initial Assignment

on Local Search Performance

for Max Sat

In this chapter, we explore the correlation between the quality of initial

assignments provided to local search heuristics and that of the corresponding

final assignments. We restrict our attention to the Max r-Sat problem and

to one of the leading local search heuristics – Configuration Checking Local

Search (CCLS). We use a tailored version of the Method of Conditional

Expectations (MOCE) to generate initial assignments of diverse quality.

We show that the correlation in question is significant and long-lasting.

Namely, even when we delve deeper into the local search, we are still in the

shadow of the initial assignment. Thus, under practical time constraints,

the quality of the initial assignment is crucial to the performance of local

search heuristics.

To demonstrate our point, we improve CCLS by combining it with

MOCE. Instead of starting CCLS from random initial assignments, we start

it from excellent initial assignments, provided by MOCE. Indeed, it turns

out that this kind of initialization provides a significant improvement of this

state-of-the-art solver. This improvement becomes more and more signifi-

cant as the instance grows.
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3.1 Introduction

In the Maximum Satisfiability (Max Sat) problem [66], we are given a se-

quence of clauses over some boolean variables. Each clause is a disjunction of

literals over different variables. A literal is either a variable or its negation.

We seek a truth (true/false) assignment for the variables, maximizing the

number of satisfied (made true) clauses.

In the Max r-Sat problem, each clause is restricted to consist of at most r

literals. Here we restrict our attention to instances with clauses consisting

of exactly r literals each (sometimes called Max Er-Sat). We denote by n

the number of variables and by m the number of clauses. The density of

the instance is α = m/n. As is customary in the literature, we focus on the

case where r and α are constant.

As Max r-Sat (for r ≥ 2) is NP-hard [11, pp. 455–456], it cannot be

exactly solved in polynomial time (unless P = NP ), and one must resort

to approximation algorithms and heuristics. Numerous methods have been

suggested for solving Max r-Sat, e.g. [17, 99, 97, 69, 24, 78, 8, 32, 56], and

an annual competition of solvers has been held since 2006 [10]. Satisfiability

related questions attracted a lot of attention from the scientific community.

As an example, one may consider the well-studied satisfiability threshold

question for random instances [27, 37, 2, 73, 28, 34]. For a comprehensive

overview of the whole domain of satisfiability we refer to [16].

3.1.1 Local search

Local search heuristics [59] explore the assignment space. They usually

start from a randomly generated assignment, and traverse the search space

by flipping variables, usually one at a time. The leading solver Configuration

Checking Local Search (CCLS) [69] follows this scheme and flips variables

until some predefined number of flips is executed or the allotted time has

been used up. Of course, if a satisfying assignment has been found, the

execution is stopped as well.

CCLS performs two types of flips: random ones, with some predefined

probability p, and greedy ones, with probability 1 − p. Random flips just

flip a randomly selected variable from a randomly selected unsatisfied clause.

Greedy flips are ones that flip the seemingly best possible variable among all

the variables whose configuration has been changed and who satisfy at least
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one currently unsatisfied clause. This variable is the one with the maximum

score out of those variables, i.e., the one whose flipping will lead to the

maximum number of satisfied clauses. Ties are broken randomly.

Generally, the number of satisfied clauses after flipping a variable is not

necessarily larger than prior to the flip. In fact, it is even possible that,

flipping any of the candidate variables, we will arrive at a lower quality

assignment. Also, the set of candidates may be empty in some of the greedy

steps. In such a case, CCLS performs a random flip instead.

In CCLS, a variable is considered as a “configuration changed” variable

if, since its most recent flip, at least one of its neighboring variables has

been flipped. Here, the neighbors of a variable are those variables appearing

together with it in at least one clause.

Recent works, related to local search, configuration checking, CCLS, and

algorithms of the same spirit, include [79, 22, 20, 70, 71, 1, 18, 19, 21, 98,

76, 100, 23].

3.1.2 The Method of Conditional Expectations

The simple randomized approximation algorithm, which assigns to each vari-

able a uniformly random truth value, independently of all other variables,

satisfies 1 − 1/2r of all clauses on the average. Furthermore, this simple

algorithm can be easily derandomized using the Method of Conditional Ex-

pectations (MOCE) [35, 107], yielding an assignment that is guaranteed to

satisfy at least this proportion of clauses.

In a sense, this method is optimal for Max 3-Sat, as no polynomial-time

algorithm for Max 3-Sat can achieve a performance ratio exceeding 7/8

unless P=NP [53]. We note that, typically, this method yields assignments

that are much better than this worst-case bound.

MOCE iteratively constructs an assignment by going over the variables

in some (arbitrary) order. At each iteration, it sets the seemingly better

truth value to the currently considered variable. This is done by comparing

the expected number of satisfied clauses under each of the two possible truth

values it may set to the current variable.

For a given truth value, the expected number of satisfied clauses is the

sum of three quantities. The first is the number of clauses already satisfied by

the values assigned to the previously considered variables. The second is the

additional number of clauses satisfied by the assignment of the given truth
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value to the current variable. The third is the expected number of clauses

that will be satisfied by a random assignment to all currently unassigned

variables. The truth value, for which the sum in question is larger, is the

one selected for the current variable. Ties are broken arbitrarily or randomly.

The whole process is repeated until all variables are assigned.

In an efficient implementation, each step of MOCE takes a constant

time on the average. The main thing to do at each step is to find the better

truth value for the currently assigned variable and residualize the instance

accordingly. To find this truth value, we calculate the expected gain in case

the variable is assigned true. If this gain is positive, the variable is assigned

true. Otherwise, it is assigned false, as the gain in assigning the variable

false is the additive inverse.

To find the expected gain from assigning the current variable true, it

suffices to go over the clauses the variable appears in. Each unsatisfied

clause, that is made satisfied by the assignment to the current variable, con-

tributes 2−l to the overall expected gain, where l is the number of literals

in the clause. In the residualization of the instance, these clauses are elim-

inated. On the other hand, each clause, that remains unsatisfied by the

assignment of true to the variable, contributes −2−l to the overall expected

gain. In the residualization of the instance, these clauses remain, but they

are shortened by one literal – the one associated with the current variable.

The overall expected gain is the sum of all the contributions obtained

from all the clauses the current variable appears in. As each variable ap-

pears initially in rα clauses on the average, the whole step of selecting and

assigning a variable a truth value is independent of the number of variables

or clauses in the instance. Thus, a step takes a constant time on the av-

erage. Note, though, that this requires us to continuously track all clauses

containing each variable. This is in addition to the map between clauses

and their variables.

Recent theoretical and empirical works related to MOCE, and algorithms

of the same spirit, include [29, 82, 84, 83, 30].

3.1.3 Overview

In Section 3.2, we explore the correlation between the quality of the initial

assignments provided to local search heuristics and the quality of the final

assignments resulting from them. We restrict our attention to CCLS, which

Page 43 of 136



CHAPTER 3. IMPROVED LOCAL SEARCH 3.2. CORRELATION

is the winner of several Max Sat competitions held in recent years [10], and

is currently one of the best practical Max Sat solvers available. We use a

tailored version of MOCE to generate initial assignments of diverse quality,

to accommodate the exploration of the correlation.

We show that there is a strong long-lasting correlation between the qual-

ity of the initial assignment, from which the local search heuristic starts, and

that of the final assignment provided by it. This implies that, even when

we delve deeper into the local search, we are still in the shadow of the ini-

tial assignment. Thus, the quality of the initial assignment is crucial under

practical time constraints. The observed correlation decays slower for denser

instances, and faster for sparser ones. We show that the correlation is sta-

tistically significant, and estimate the impact of the improvement in the

quality of the initial assignment on the quality of the final assignment.

In Section 3.3, we demonstrate our point by improving CCLS. Instead of

starting CCLS from a random initial assignment, we start it from excellent

initial assignments, provided by MOCE. This kind of initialization provides

a significant improvement of this state-of-the-art solver. Moreover, the im-

provement becomes more and more significant as the instance grows. It has

been noticed in other problems, such as TSP and QAP, that local search

heuristics yield excellent results when started from initial solutions selected

greedily with respect to expectation [50, 49]. A summary and conclusions

are presented in Section 3.4.

3.2 Correlation between the quality of initial and

final assignments

In this section, we explore the correlation between the number of clauses

unsatisfied by an initial assignment and the number of those unsatisfied

by the corresponding final assignment, where the transition is by CCLS.

We explore the ongoing correlation during the execution as well. We have

chosen CCLS for its excellent performance; a local search heuristic of lower

quality may well be expected to yield an even stronger correlation.

To generate initial assignments of diverse quality, we manipulate MOCE

by adding to it a parameter that allows us to invert its decision regarding the

truth value for the current variable. This parameter, to which we refer as

the inversion probability, is the probability to assign to a variable the truth
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value opposite to the one chosen by MOCE. Namely, for a given inversion

probability 0 ≤ p ≤ 1, at each step, we assign to the current variable the

truth value chosen by MOCE with probability 1− p, and the opposite truth

value with probability p. Thus, for p = 0 the algorithm is simply MOCE,

while for p = 1 it is “anti-MOCE”. We refer to this tailored algorithm as

PMOCE.

We emphasize that there is no reason to use this algorithm (with p 6= 0)

to solve Max Sat instances. Its sole purpose is to construct initial assign-

ments with a wide range of qualities. Indeed, our experiments showed a

strong correlation between the value of p and the quality of the assignment

provided by PMOCE.

We have generated a benchmark, consisting of 5 families of instances

of Max 3-Sat. Each of the families consists of 150 instances over 100,000

variables. The densities of the 5 families are 5, 7, 9, 12, 15. The instances in

each family were generated uniformly at random as follows. The clauses of

an instance were generated independently of each other. Each of the clauses

was generated by selecting 3 distinct variables uniformly at random, and

then negating each of them with probability 1/2, independently.

3.2.1 End-to-end correlation

In the following, we describe what we have done in the experiment for each

family. For each instance in the family, we executed PMOCE with 51 inver-

sion probabilities, ranging from 0 to 1 in steps of 0.02. Thus, we obtained 51

initial assignments with presumed diverse quality. From each of these initial

assignments, we started a local search using CCLS, and thus obtained 51

final assignments. By the end of the 51 executions, we had 51 pairs of num-

bers. Each pair consisted of the number of clauses unsatisfied by the initial

assignment generated by PMOCE, and the number of unsatisfied clauses at

the end of the search done by CCLS. The cutoff time of CCLS was set to 30

minutes, measured in CPU time.

For each instance, we calculated the correlation coefficient over the corre-

sponding 51 pairs. After going over the whole family, we had 150 correlation

coefficients – one for each instance. Then, we calculated the mean and stan-

dard deviation of these 150 values of correlation coefficients.

For each of the correlation coefficients, we also calculated the p-value.

The p-value is the probability that we would have found this correlation, or
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correlation coefficient regression slope
density mean std p-value mean std

5 0.52 0.11 1.7 · 10−3 0.5 · 10−3 0.1 · 10−3

7 0.74 0.06 3.6 · 10−7 1.5 · 10−3 0.2 · 10−3

9 0.79 0.12 2.1 · 10−3 2.2 · 10−3 0.5 · 10−3

12 0.73 0.17 1.2 · 10−3 2.4 · 10−3 1.0 · 10−3

15 0.83 0.08 1.1 · 10−5 3.4 · 10−3 0.7 · 10−3

Table 3.1: End-to-end correlation coefficients and regression slopes.

a higher one, if the correlation coefficient was in fact zero (null hypothesis).

If this probability is lower than the conventional 5% (i.e., the p-value is less

than 0.05), the correlation coefficient is considered statistically significant.

For each family, we calculated the average p-value over the 150 correlation

coefficients as a measure of the statistical significance of the results.

To measure the impact of the improvement of the quality of an initial

assignment on the quality of the corresponding final assignment, we applied

regression analysis. Specifically, we calculated the regression line of each of

the instances of a family, and took its slope as a measure of the strength of

the impact. We took the average of these 150 slopes as a measure of the

strength of this impact in a given family.

The results are provided in Table 3.1. Each line summarizes the results

of one family. For example, the first line summarizes the results of the

family with density 5. In this family, instances are of 100,000 variables

and 500,000 clauses. The mean correlation coefficient measured (over 150

random instances) was 0.52, with a standard deviation of 0.11. The mean

p-value was 1.7·10−3, and the mean and standard deviation of the regression

slope were 0.5 · 10−3 and 0.1 · 10−3, respectively.

Figure 3.1 depicts histograms of the 150 end-to-end correlation coeffi-

cients of the family of density 5 (Figure 3.1a) and for the family of density

15 (Figure 3.1b).

The results show a strong positive correlation between the quality of

the initial and final assignment for all densities. The correlation is stronger

for denser families. The p-value is lower by far than the conventional 0.05,

which indicates that the correlation coefficients obtained in the experiments

are statistically very significant.

While the correlation is strong, the regression slope suggests that a large

improvement in the initial assignment yields only a small improvement in
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(a) Family of density 5. (b) Family of density 15.

Figure 3.1: Histograms of end-to-end correlation coefficients.

the final assignment. As CCLS eventually converges to the optimal solution,

there is little room for improvement by the end of its execution, so that this

regression slope makes sense. Moreover, it is to be expected that the slope

becomes even smaller as one runs CCLS longer.

Note that, after 30 minutes of execution, CCLS is way beyond its rapid

improvement stage. In fact, it is deep in its convergence stage and shows

relatively minor improvements as time goes by. This validates the correlation

observed as meaningful.

Figure 3.2 depicts the number of unsatisfied clauses as a function of the

number of flips made, for an arbitrary (but representative) instance from the

family of density 15. The graph shows this number for inversion probability

of 0 (MOCE) and 1 (anti-MOCE). We see that CCLS enters its convergence

stage quite early in the execution.

We also emphasize the two phases seen in the graphs. The first phase

is the rapid improvements phase. In this phase, the number of unsatisfied

clauses is decreasing rapidly. This phase ends after about 100,000 flips. The

second phase, which we call the convergence phase, continues from there

onward. In this phase, the improvements are rarer and smaller.

3.2.2 Ongoing correlation

Besides the end-to-end correlation, we explored the ongoing correlation dur-

ing the experiment. To this end, for each initial assignment, we recorded the

minimum number of unsatisfied clauses found so far, not only at the end of
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Figure 3.2: Number of unsatisfied clauses as function of the number of flips.

the execution, but also after every 1000 flips made by CCLS. Then we cal-

culated the correlation coefficient between the number of clauses unsatisfied

by the initial assignment and the number of unsatisfied clauses recorded at

each 1000 flips snapshot.

The number of flips made during the execution is very different for dif-

ferent families. In a denser instance, a flip takes longer, so that less flips

are made. Even for instances of the same family, the number of flips varies.

We provide statistics only up to the minimal number of flips made, over all

instances in the family.

Figure 3.3 depicts the decay in the correlation as a function of time,

where time is measured in number of flips made from the beginning of the

local search. It seems that the number of flips is the natural time scale to

measure the correlation decay. While the graphs are noisy, the trend is clear

– the correlation gradually decays as a function of the number of flips made,

and it does so slower for denser families. Moreover, as the density grows

larger, the differences in the decay seem to be smaller and the graphs are

almost overlapping.

Figure 3.3a shows the full results. It provides the graphs of correlation
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(b) Up to 1,500,000 flips.
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(c) First 150,000 flips.

Figure 3.3: Ongoing correlation decay as a function of the number of flips.
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decay of all the families. In the figure, one may observe that the number of

flips made in denser families is much smaller than the number of flips made

in sparser ones. For example, the minimal number of flips over all instances

and inversion probabilities for the family of density 5 was about 20,600,000,

while for the family of density 15 it was about 1,500,000. The reason is that,

in denser families, each variable appears in a larger number of clauses, and a

flip makes a larger number of variables available for selection subsequently.

Thus, at each step, CCLS has to deal with a larger pool of candidates for

flipping, which consumes more time per flip.

Figure 3.3b depicts the same graphs, but only up to about 1,500,000 flips,

which is the place where the graph of the family of density 15 ends. In this

figure, we see clearly the faster decay of the correlation in sparser families,

as well as the smaller differences between the decay in denser families.

Figure 3.3c zooms in on the first 150,000 flips. During this stage, we

observe a phenomenon of phase transition in the decay of the correlation.

The empirical results suggest two phases of decay. The first phase starts

at the beginning and ends after about 60,000-80,000 flips. In this phase,

the correlation decays very slowly. This phase is characterized by a rapid

decrease in the number of unsatisfied clauses, and is aligned with the rapid

decrease shown in Figure 3.2.

The second phase is from about 60,000-80,000 flips onward. This phase

is characterized by a faster decay in the correlation. It is aligned with the

convergence stage of CCLS, shown in Figure 3.2, in which the number of

unsatisfied clauses is decreasing slowly over time.

The position of the phase transition around 60,000-80,000 flips may be

explained by the fact that the initial assignment provided by MOCE is

expected to be at a distance of about 50,000 flips from an optimal solution.

So the first 50,000 flips are significant. But, as about 30% of the flips of

CCLS are random, and not all the flips are useful in general, this area

stretches further to about 60,000-80,000 flips.

During the first phase, the initial assignment is very important in deter-

mining the correlation. In all the executions, the decrease in the number of

satisfied clauses is rapid and considerable at this phase. Thus, the differ-

ent executions maintain their relative positions, which leads to a very slow

decrease in the correlation. Afterward, the correlation decays at about the

same speed, as can be seen in Figure 3.3c.
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Note that Figure 3.3c demonstrates an initially quite strange-looking

phenomenon. Namely, between about 50,000 flips and 80,000 flips, depend-

ing on the family, the correlation increases. The reason is the large vari-

ability in the quality of the initial assignments. Recall that we managed to

get initial assignments in a very wide range, starting at very inferior “anti-

MOCE” assignments and ending at superior MOCE assignments. When

starting from a high-quality assignment, the rapid improvement phase is

shorter, and when starting from a low-quality assignment, it is longer. In

the time interval, where for good initial assignments the rapid improvement

phase has ended already, while for other assignments it has not, the corre-

lation is understandably smaller. After we have finished the rapid increase

phase for all initial assignments, the correlation returns to a higher level.

3.2.3 Experimentation information

The experiments described in this section were executed on a Sun Grid

Engine (SGE) [102] managed cluster of 31 identical IBM m4 servers with

Intel Xeon E5-2620@2.0GHz processors. Each of the servers consists of

24 computation cores and 64GB of working memory. Thus, we had 744

computation cores and 1984GB of working memory at hand.

We limited each of the jobs submitted to the cluster to use up to 3GB of

working memory. Provided the load on the cluster, we managed to achieve

a parallelization of about 300 times, thus reducing the experiments overall

sequential time of approximately 2.18 years to around 2.66 days of parallel

execution.

3.3 Improving CCLS

The high correlation between the quality of the initial assignment and that

of the final one makes it clear that we are searching in the shadow of the

initial assignment for a long period of time. Thus, starting the local search

from an excellent initial assignment, we may improve its performance. This

holds as long as the selection of such an initial assignment does not consume

too much time.

In this section, we study the improvement obtained by letting CCLS

start its execution from good initial assignments, versus starting it from a

random assignment (as done originally). Specifically, the good initial assign-

Page 51 of 136



CHAPTER 3. IMPROVED LOCAL SEARCH 3.3. IMPROVING CCLS

ments we use are assignments provided by MOCE. We refer to the algorithm

that starts from the assignment provided by MOCE as MOCE-CCLS. To

emphasize the fact that the original CCLS algorithm starts from a random

assignment, we will call it RAND-CCLS.

We first conducted experiments on several families of random instances.

The families have been selected in a systematic way, so as to reveal trends

in the performance, and connect it to the parameters of the family. Af-

terward, we conducted experiments on some public benchmarks. We show

that MOCE-CCLS scales much better than RAND-CCLS. In particular, as

the instance size grows, so does the performance improvement provided by

MOCE-CCLS over RAND-CCLS.

MOCE-CCLS

RAND-CCLS

MOCE

RAND

In the diagram on the right, we summarize

qualitatively what we have observed in the ex-

periments. The higher the algorithm appears in

the diagram, the better it is. Inspecting the di-

agram, one can see that MOCE-CCLS performs

much better than MOCE, which in turn shows

performance very far away from the baseline

reference RAND. MOCE-CCLS performs bet-

ter than RAND-CCLS as well. The last statement holds significantly for

large instances, while for small and medium instances MOCE-CCLS main-

tains or slightly improves the performance of RAND-CCLS.

3.3.1 Comparative performance on structured benchmarks

In this section we focus on random instances, for which the clauses are

of length 3, the number of variables ranges from 10,000 to 1,000,000, and

the density from 3 to 9. Such ranges allow us to systematically study the

performance of the algorithms at hand on diverse families. For each family,

we selected 100 instances uniformly at random, in the same way elaborated

in Section 3.2.

For Max r-Sat, the reference baseline RAND unsatisfies m/2r clauses

on average, with an approximate standard deviation of
√
m(1− 1/2r)/2r

clauses [15]. For convenience, the (theoretical) average number of clauses

unsatisfied by RAND for the families we studied (namely, m/8), is provided

in Table 3.2. The rows correspond to the various numbers of variables, n,

and the columns to the various densities, α.
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HHH
HHHn
α 3 5 7 9

RAND MOCE RAND MOCE RAND MOCE RAND MOCE

10000 3750 412 6250 1500 8750 2889 11250 4442

50000 18750 2078 31250 7459 43750 14409 56250 22209

100000 37500 4149 62500 14944 87500 28861 112500 44436

500000 187500 20790 312500 74702 437500 144296 562500 222074

1000000 375000 41559 625000 149383 875000 288572 1125000 444174

% unsat 12.5% 1.4% 12.5% 3% 12.5% 4.1% 12.5% 4.9%

Table 3.2: The number of clauses unsatisfied by RAND and MOCE.

Table 3.2 also presents the average number of clauses unsatisfied by

MOCE. It turns out that this number scales linearly with the number of

clauses, and thus can be described as a proportion of the number of clauses,

for any fixed density. The proportion of clauses unsatisfied by MOCE, out

of all clauses, was 1.4%, 3%, 4.1%, and 4.9% for the densities 3, 5, 7, and 9,

respectively. For each family, the percentage of clauses unsatisfied by each

of the algorithms is provided in the last line of the table.

At each of the n steps of MOCE, it selects the seemingly best truth

value to an arbitrary unassigned variable. This is done by inspecting all the

clauses it appears on, once. Thus, during the overall execution of MOCE,

each of the m = nα clauses in the instance is inspected at most r times –

once for each of its literals. As the inspection time is constant, the overall

time complexity of MOCE is proportional to rm. Thus, MOCE is a linear

time algorithm.

MOCE is extremely fast in practice. In fact, its execution time is but

a few seconds for the larger instances we studied, and less than a second

for the small and medium size instances. This time includes loading the

instance, building it in the memory, and constructing the solution.

Although MOCE returns excellent solutions, it benefits a lot from sup-

plementing it with a highly performing local search. In fact, executing the

local search part of CCLS (which we simply call CCLS), starting from the so-

lution returned by MOCE, we obtained a significant improvement. Namely,

the number of unsatisfied clauses is significantly reduced at the local search

stage.

This improvement is summarized in Table 3.3. In this table, the columns

named “(M−MC)/M” present the relative improvement of MOCE-CCLS

over MOCE. This relative improvement is the difference between the number

of clauses unsatisfied by MOCE and the number of those unsatisfied by
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HH
HHHHn

α 3 5 7 9
(R−RC)/R (M−MC)/M (R−RC)/R (M−MC)/M (R−RC)/R (M−MC)/M (R−RC)/R (M−MC)/M

10000 100.0% 100.0% 96.0% 83.6% 85.5% 56.2% 77.4% 42.9%

50000 100.0% 100.0% 95.5% 81.2% 84.8% 54.1% 76.7% 41.2%

100000 100.0% 100.0% 95.1% 79.9% 84.3% 52.9% 76.2% 40.2%

500000 100.0% 100.0% 90.4% 69.4% 77.1% 42.4% 68.3% 31.3%

1000000 80.6% 100.0% 48.7% 49.6% 37.4% 27.1% 31.6% 18.3%

Table 3.3: The improvement by executing CCLS after RAND and MOCE.

MOCE-CCLS, divided by the number of clauses unsatisfied by MOCE. In

the table, we also present the improvement of supplementing RAND with

CCLS (which is simply the standard version of CCLS), under the columns

named “(R−RC)/R”.

It is worth mentioning that this significant improvement comes with a

caveat – a significant increase in the execution time. In fact, the results

shown in Table 3.3 are based on 30 minutes executions of CCLS, after the

initial solution (by either RAND or MOCE) has been obtained in just a few

seconds.

This prolongation may, sometimes, be too much. This is the case espe-

cially when a large number of instances should be solved. Note that some

real-world problems may be reduced to the solution of a large number of

Max Sat instances. Such a situation arises, for example, in the recovery of

encryption keys [67, 68, 60, 61, 55, 51].

One more caveat is due to the fact that, as the instances grow larger, this

improvement decreases. As the instance grows larger, the number of flips

CCLS can perform during the allotted time decreases, and with it decreases

the obtained improvement as well.

In this context, we comment that, theoretically, if the execution time

is unlimited, no algorithm can beat CCLS, or even the baseline RAND.

This is due to their incorporated randomness, which eventually will lead to

an optimal solution if time is unrestricted. Clearly, this has no practical

implications, as the amount of time required is way out of reach.

We conclude this section by comparing MOCE-CCLS and RAND-CCLS

head to head. The comparison is provided in Table 3.4 (which is wrapped

for readability). For each density, we provide the number of clauses unsat-

isfied by RAND-CCLS, the number of clauses unsatisfied by MOCE-CCLS,

and the relative improvement of MOCE-CCLS over RAND-CCLS. The lat-

ter number is the difference between the number of clauses unsatisfied by
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HHH
HHHn
α 3 5

RC MC % improve RC MC % improve

10000 0 0 NaN 248 246 0.81%

50000 0 0 NaN 1417 1403 0.99%

100000 0 0 NaN 3038 3002 1.18%

500000 0 0 NaN 29976 22894 23.63%

1000000 72642 0 100.00% 320674 75260 76.53%
HH

HHHHn
α 7 9

RC MC % improve RC MC % improve

10000 1265 1264 0.08% 2546 2537 0.35%

50000 6647 6617 0.45% 13122 13052 0.53%

100000 13717 13588 0.94% 26770 26554 0.81%

500000 99976 83163 16.82% 178234 152512 14.43%

1000000 548044 210440 61.60% 769640 363037 52.83%

Table 3.4: MOCE-CCLS vs. RAND-CCLS.

RAND-CCLS and the number of those unsatisfied by MOCE-CCLS, divided

by the number of clauses unsatisfied by RAND-CCLS.

The results demonstrate our point regarding the importance of the initial

solution. Even after 30 minutes of local search, and using the excellent local

search heuristics CCLS, the initialization with MOCE instead of RAND

yields better solutions.

Moreover, MOCE-CCLS proved to be much more scalable than RAND-

CCLS. As the instance grows larger, the improvement of MOCE-CCLS

over RAND-CCLS becomes more significant. Whereas, for small instances,

MOCE-CCLS improves RAND-CCLS by less than 1%, for large instances

the improvement exceeds 50%.

In view of the above, we conclude that, when using a local search al-

gorithm for Max Sat, one should strive to start the search from very good

assignments. This holds as long as it is not too much time consuming to

attain such assignments.

Experimentation information

The experiments described in this section were carried out on the same

infrastructure as in Section 3.2.3. Here as well, we limited each of the jobs

submitted to the cluster to use up to 3GB of working memory. Provided the

load on the cluster, we managed to achieve a parallelization of about 100
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times, thus reducing the experiment overall sequential time of approximately

4.11 months to around 1.25 days of parallel execution.

3.3.2 Comparative performance on public benchmarks

An international evaluation of solvers for the Maximum Satisfiability prob-

lem has been held annually since 2006 [10]. The random instances of the

evaluation of 2016 were tailored mainly for complete solvers. Thus, they

are very small and less adequate for evaluation of local search heuristics.

Indeed, most of the solvers participating in that evaluation found solutions

with the same number of unsatisfied clauses most of the time; the ranking

was only according to the time they consumed to reach their best solutions.

In our comparison of RAND-CCLS and MOCE-CCLS, the situation was

no different. Both found solutions with the same number of unsatisfied

clauses as the leading solvers in the evaluation, and the winner was decided

by the time it required. On those instances, RAND-CCLS found the best

solution faster, and thus won.

In the following, we consider three additional benchmarks in the same

spirit as the 2016 Evaluation – but larger ones. As we wanted to keep the

exact same blend of instances, we created the new benchmarks by blowing

up the original ones. We enlarged the number of variables and that of clauses

in each instance, while keeping the density the same as in the evaluation.

We created three expanded benchmarks by enlarging the original one by

factors of 10, 100, and 1000. For example, for the new benchmark obtained

after blowing up by a factor of 10, we went over the original instances one by

one, and for each instance created a new random instance whose numbers of

variables and clauses are 10 times the corresponding numbers in the original

instance. Thus, instances with 70 variables and 700 clauses gave rise in

the tenfold blown up benchmark to instances with 700 variables and 7000

clauses.

We compared MOCE-CCLS and RAND-CCLS on the enlarged instances

using the Instance Won measure. This measure is the one used in the

Max Sat Evaluation [10] held in 2016, from which we took the original

instances. We ran each of the two competitors on each of the instances for

a few minutes (CPU time). For each instance, the winner is the competitor

that provides the smaller number of unsatisfied clauses. Ties are broken by

the time it took each competitor to arrive at its best solution. The overall
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XXXXXXXXXXXblow
measure By number of unsatisfied clauses Tie breaking by time-to-best

RC MC Draw Winner RC MC Winner

x10 (1 min) 112 115 145 MC 187 185 RC

x100 (2 min) 137 223 12 MC 143 229 MC

x1000 (5 min) 4 368 0 MC 4 368 MC

Table 3.5: MOCE-CCLS vs. RAND-CCLS, Instance Won measure, on ran-
dom instances blown up from those of Max Sat Evaluation 2016.

winner is the heuristic that wins more instances.

The results, according to the Instance Won measure, are presented in

Table 3.5. The first line in the table relates to the benchmark with instances

blown up by a factor of 10. The time limit for this benchmark is 1 minute.

The first four entries on the first line show the results according to the

Instance Won measure, with ties considered as draw. Namely, if the com-

petitors obtain the same number of unsatisfied clauses in some instance,

both within the given time limit, we consider the result as a draw. The first

four entries show the number of instances won by RAND-CCLS, the number

of instances won by MOCE-CCLS, the number of instances for which we got

a draw, and the winner according to the above measure.

The entries afterward provide the results when ties are broken by time-to-

best. Namely, if the number of unsatisfied clauses is the same, the winner is

the competitor who reached this value faster. The last three entries provide

the number of instances won by RAND-CCLS, the number of those won by

MOCE-CCLS, and the identity of the winner according to this variant of

the measure.

While RAND-CCLS wins on the competition instances, it is enough

to blow up the instances tenfold to have MOCE-CCLS achieve an overall

draw. When scaling the instances by a factor of 100, MOCE-CCLS wins

decisively, and when scaling by a factor of 1000, it beats RAND-CCLS by

a knockout. Note that MOCE-CCLS wins on the expanded benchmarks in

terms of the number of unsatisfied clauses, and not merely by time. Namely,

MOCE-CCLS provides solutions with a strictly smaller number of unsatis-

fied clauses.

We also calculated the average relative improvement of MOCE-CCLS

over RAND-CCLS. Overall, this average for the benchmark expanded by a

factor of 10 was 0.04%. For the benchmark expanded by a factor of 100,

it was 0.16%, and for the benchmark expanded by a factor of 1000 it was
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0.64%.

Note that the number of variables in instances of the original Max Sat

Evaluation 2016 benchmark is between 70 and 200. Thus, even after blowing

up by a factor of 1000, we obtain instances of medium size only.

In the one thousand-fold expanded benchmark, the improvement was

manifested in an average of extra 423 clauses satisfied by MOCE-CCLS. As

RAND-CCLS is a state-of-the-art solver, with excellent performance, this

number of extra clauses satisfied by MOCE-CCLS provides a significant

improvement.

Finally, we note that MOCE alone is not enough. It is the value from

the combined solver MOCE-CCLS that leads to the extra satisfied clauses.

Moreover, CCLS provides a significant improvement to the excellent initial

solutions of MOCE. Thus, the state-of-the-art performance of MOCE-CCLS

is attributed to both its ingredients: MOCE and CCLS.

3.4 Summary and conclusions

In this chapter, we have explored the correlation between the quality of

initial assignments provided to local search heuristics and that of the corre-

sponding final assignments. We have shown that this correlation is signifi-

cant and long-lasting. Thus, under practical time constraints, the quality of

the initial assignment is crucial to the performance of local search heuristics.

We demonstrated our point by improving the state-of-the-art solver

CCLS, by combining it with MOCE. Instead of starting CCLS from ran-

dom initial assignments, we started it from excellent initial assignments,

provided by MOCE. The combined MOCE-CCLS solver provided a signifi-

cant improvement over CCLS. Moreover, MOCE-CCLS proved to be much

more scalable. Namely, it handles larger instances better, and shows supe-

rior performance on them.

Given the above, we recommend MOCE-CCLS over RAND-CCLS. Fur-

thermore, we recommend starting CCLS from solutions even better than

those provided by MOCE, as long as such may be obtained in linear time

or slightly longer (say, by a logarithmic factor).
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Chapter 4

Efficient Exhaustive Method

of Conditional Expectations

for Max Sat

In this chapter we present and study a new algorithm for the Maximum

Satisfiability (Max Sat) problem. The algorithm is based on the Method of

Conditional Expectations (MOCE), and applies an efficient greedy variable

ordering to MOCE. We call our algorithm Efficient Exhaustive Method of

Conditional Expectations (EEMOCE) as its greediness efficiently exhausts

all unassigned variables at each step.

We conduct a comprehensive empirical evaluation of EEMOCE and show

that it performs much better than MOCE, while keeping the additional

runtime overhead very low. In particular, EEMOCE reduces the number of

unsatisfied clauses by tens of percents, while the time complexity increases

only by a logarithmic factor. The actual runtime is typically up to 3 times

longer even for very large instances.

We empirically study the main quantities managed by EEMOCE during

its execution, exposing a relatively large residual randomality that may be

harnessed for further improvement of the performance. Based on this study,

we also point out how to eliminate the logarithmic factor added to the time

complexity, in practical usages.
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4.1 Introduction

In the Maximum Satisfiability (Max Sat) problem [66], we are given a se-

quence of clauses over some boolean variables. Each clause is a disjunction of

literals over different variables. A literal is either a variable or its negation.

We seek a truth (true/false) assignment for the variables, maximizing the

number of satisfied (made true) clauses, or equivalently, minimizing the

number of unsatisfied (made false) clauses.

In the Max r-Sat problem, each clause is restricted to consist of at most r

literals. Here we restrict our attention to instances with clauses consisting of

exactly r literals each. This restricted problem is also known as Max Er-Sat.

Let n be the number of variables. Denote the variables by x1, x2, . . . , xn.

The number of clauses is denoted by m, and the clauses by C1, C2, . . . , Cm.

We denote the clause-to-variable ratio by α = m/n, to which we also refer

as density.

We use the terms “positive variable” and “negative variable” to refer to

a variable and to its negation, respectively. Whenever we find it convenient,

we consider the truth values true and false as binary 1 and 0, respectively.

As Max r-Sat (for r ≥ 2) is NP-hard [11, pp. 455–456], large-sized

instances cannot be exactly solved in an efficient manner (unless P = NP ),

and one must resort to approximation algorithms and heuristics. Numerous

methods have been suggested for solving Max r-Sat, e.g. [17, 99, 97, 69, 24,

78, 8, 32, 56], and an annual competition of solvers has been held since 2006

[10].

Using Walsh analysis [42], an efficient way of calculating moments of

the number of satisfied clauses of a given instance of Max r-Sat was sug-

gested in [54]. Simulation results for the variance and higher moments of

the number of clauses satisfied by a random assignment over the ensemble

of all instances were provided as well. A closed-form formula, asymptotics,

and convergence proof for the variance is provided in [15].

An interesting study of Max 3-Sat is provided in [85]. The authors

claim that many instances share similar statistical properties and provide

empirical evidence for it. Simulation results on the autocorrelation of a

random walk in the assignments space are provided for several instances, as

well as predictions for typical instances. In [58], the authors analyze how the

way random instances are generated affects the autocorrelation and fitness-
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distance correlation. They raised the question of similarity of the landscape

of different instances.

Overall, satisfiability related questions attracted a lot of attention from

the scientific community. Some of them were thoroughly studied, especially

the satisfiability threshold density question [27, 37, 2, 73, 28, 34]. For a

comprehensive overview of the whole domain of satisfiability we refer to

[16].

This chapter is arranged as follows. In Section 4.2 we present MOCE,

a classical algorithm for Max r-Sat, and discuss some related algorithmic

aspects and implementation details. In Section 4.3 we introduce our algo-

rithm EEMOCE for Max r-Sat. We provide an elaborated description of

the algorithm, along with a fully fledged pseudocode. We introduce several

notions related to its algorithmics, and get into details regarding various

quantities it manages and how they are managed efficiently.

Sections 4.4 and 4.5 are dedicated to presenting the results of a compre-

hensive empirical study designed to evaluate the performance of EEMOCE.

Section 4.4 is focused on practical performance analysis – the analysis of reg-

ular density instances, commonly used in practice. On those instances, we

summarize the performance of EEMOCE both in general and as compared

to MOCE.

Section 4.5 is focused on asymptotics performance analysis – the analysis

of high density instances. In this section we summarize the performance of

EEMOCE in general and as compared to MOCE and to theoretical bounds

regarding the optimum. We also pinpoint a caveat regarding the analysis of

performance in those cases and suggest performance measures to overcome

it.

In Section 4.6 we study the main quantities managed by EEMOCE dur-

ing its execution. We expose a relatively large residual randomality that

may be harnessed for further improvement of the performance. A summary

and conclusion are provided in Section 4.7.

4.2 The Method of Conditional Expectations

Consider the naive randomized approximation algorithm which assigns to

each variable a truth value uniformly at random, independently of all other

variables. It satisfies 1− 1/2r of all clauses on the average. Furthermore, it
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can also be easily derandomized using the Method of Conditional Expecta-

tions (MOCE) [35, 107], yielding an assignment that is guaranteed to satisfy

at least this number of clauses.

In a sense, this method is optimal for Max 3-Sat, as no polynomial-time

algorithm for Max 3-Sat can achieve a performance ratio exceeding 7/8

unless P=NP [53]. We note that, typically, this method yields assignments

that are much better than this worst-case bound. Theoretical and empirical

works related to MOCE, and algorithms of the same spirit, include [29, 82,

84, 83, 30].

In the next section we provide a detailed explanation of the MOCE. The

two following sections delve into mathematical and algorithmical issues that

will help us understand our EEMOCE algorithm in Section 4.3.

4.2.1 Description of the algorithm

MOCE iteratively constructs an assignment by going over the variables in an

arbitrary, usually random, order. At each step, it sets the seemingly better

truth value to the currently considered variable. This is done by comparing

the expected number of satisfied clauses under each of the two possible truth

values it may set to the current variable.

For a given truth value, the expected number of satisfied clauses is the

sum of three quantities. The first is the number of clauses already satisfied

by the assignment to the previously assigned variables. The second is the

additional number of clauses satisfied by the assignment of the given truth

value to the current variable. The third is the expected number of clauses

that will be satisfied by a uniformly random assignment to all the currently

unassigned variables. The truth value, for which this sum is the larger of the

two, is the one selected for the current variable. Ties are broken randomly.

The process is repeated until all variables are assigned.

In an efficient implementation, each step of MOCE typically takes a

constant time, as each variable appears in rα clauses on the average. The

main thing to do in each step is to find the best truth value for the currently

assigned variable and residualize the instance accordingly.

To find the best truth value, we calculate the expected gain in case the

variable is assigned true. If this gain is positive, the variable is assigned

true. Otherwise, it is assigned false, as the gain in assigning the variable

false is the additive inverse.
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The expected gain of assigning the current variable true, is calculated

by going over the clauses the variable appears in. Each as yet unsatisfied

clause, satisfied by the assignment to the current variable, contributes 2−l

to the overall expected gain, where l is the number of literals in the clause.

Indeed, let C be a clause of length |C| = l. The probability of C to

be eventually satisfied, when all variables in it are assigned, is 1 − 2−l. By

giving a variable in the clause the value satisfying the clause, we increase

this 1 − 2−l to 1. The clauses satisfied by the assignment of the current

variable are eliminated from the instance.

On the other hand, each unsatisfied clause that remains unsatisfied by

the assignment of true to the variable contributes −2−l to the overall ex-

pected gain. Indeed, the probability it will eventually satisfied descends

from 1− 2−l to 1− 2−(l−1). These clauses remain in the instance, but they

are shortened by one literal – the literal associated with the current variable.

The overall expected gain is the sum of all the contributions obtained

from all the clauses the current variable appears in. As each variable ap-

pears initially in rα clauses on the average, the whole step of selecting and

assigning a variable a truth value is independent of the number of variables

or clauses in the instance. Thus, a step takes a constant time on the aver-

age, as both r and α are assumed to be constant. Note that, for each of the

variables, this requires us to keep track at all times of all clauses containing

it (either positively or negatively). This is in addition to the usual map

between clauses and their variables.

During the overall execution of MOCE, each of the m = αn clauses in

the instance is inspected at most r times – once for each of its literals. As

the inspection time is constant, the overall time complexity of MOCE is

proportional to rm. Thus, MOCE is a linear-time algorithm.

MOCE is extremely fast in practice. Its runtime is no longer than a few

seconds for instances with hundreds of thousands of variables and clauses.

For smaller instances, its execution time is typically less than a second.

This time includes loading the instance, building it in the memory, and

constructing the assignment.

4.2.2 Mathematical pseudocode

In this section we provide a mathematical pseudocode for MOCE – see

Algorithm 1. This pseudocode is simplified, and puts emphasis merely on

Page 63 of 136



CHAPTER 4. EEMOCE 4.2. MOCE

Algorithm 1 The Method of Conditional Expectations

Input: An instance I over n variables x1, x2, . . . , xn.
Output: An assignment of truth value for each of the variables.
1: procedure MOCE(I)
2: for i← 1, 2, . . . , n do
3: µT ← EXi+1,Xi+2,...,Xn [SI(b1, b2, . . . , bi−1, T,Xi+1, Xi+2, . . . , Xn)]
4: µF ← EXi+1,Xi+2,...,Xn [SI(b1, b2, . . . , bi−1, F,Xi+1, Xi+2, . . . , Xn)]
5: if µT > µF then
6: xi ← T
7: else if µT < µF then
8: xi ← F
9: else

10: set xi to T or F , uniformly at random
11: end if
12: end for
13: end procedure

the probabilistic idea underlying the algorithm.

For a given instance I and a given assignment a, let SI(a) be the number

of clauses of I satisfied by the assignment a. Let X1, X2, . . . , Xn be the

boolean-valued uniformly random variables, corresponding to the variables

x1, x2, . . . , xn, respectively. We denote by

EXi+1,Xi+2,...,Xn [SI(b1, b2, . . . , bi, Xi+1, Xi+2, . . . , Xn)]

the expected number of clauses of I satisfied by a random assignment, con-

ditioned on the first i variables x1, x2, . . . , xn being set to the truth values

b1, b2, . . . , bi, respectively.

As is typically done, and for simplicity, in the pseudocode MOCE iterates

over the variables according to their index order. Of course, one may take

any arbitrary order. In principle, we view the order as uniformly random.

In the i-th step, MOCE calculates two conditional expectations. The

first, in line 3, is the expected number of clauses of I satisfied by a random

assignment conditioned on the first i − 1 variables being set to the truth

values b1, b2, . . . , bi−1 (selected in previous iterations), and the i-th variable

is set to true. The second, in line 4, is the same quantity, but assuming the

i-th variable is set to false.

In lines 5–10, it sets the i-th variables to the truth value providing the

larger quantity of the above two. In case of equality, it sets the i-th variables
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to either true or false, uniformly at random.

4.2.3 Algorithmic pseudocode

In this section we provide an algorithmic pseudocode for MOCE – see Al-

gorithm 2. This pseudocode is detailed and puts emphasis on the algorith-

mics underlying the algorithm. As before, for simplicity, in the pseudocode

MOCE iterates over the variables according to their index.

At each iteration, in lines 3–6, MOCE first checks if the instance I is

empty, namely, if no clauses remained in the instance. In this case, it sets

all the unassigned variables to either true or false, uniformly at random,

and terminates.

If the instance is non-empty, MOCE focuses on the sub-instance consist-

ing of all clauses of I in which xi appears, either positively or negatively.

This instance is denoted by J in line 7. In lines 8–11, MOCE checks if J

is empty – a situation that occurs if all the clauses in which xi appeared

in the original instance have already been satisfied by previously assigned

variables. In this case, MOCE sets xi to either true or false, uniformly at

random. Then, it continues directly to consider the next variable.

Lines 12–19 deal with the case in which the variable xi still appears

in some clauses when it is considered. In this case, MOCE calculates the

expected gain associated with setting it to true. This expected gain gT is

nullified in line 12. Then, in line 14, MOCE iterates over all the clauses C

of J and adds (subtracts, respectively) 2−|C| to (from, respectively) gT if xi

appears positively (negatively, respectively) in C, where |C| is the number

of literals in C. Thus, by the end of these lines, gT is the expected gain

associated with setting xi to true, taken over all the clauses. MOCE does

not explicitly calculate the expected gain associated with setting xi to false,

as it is the additive inverse of gT .

In lines 20–26, MOCE sets xi to the truth value providing the larger

expected gain. In case of equality, MOCE sets it to either true or false,

uniformly at random.

Finally, in line 27, the instance I is residualized. The instance I � xi is

obtained from I by:

1. removing all the clauses satisfied by the selected assignment to xi,
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Algorithm 2 The Method of Conditional Expectations

Input: An instance I over n variables x1, x2, . . . , xn, with m clauses
C1, C2, . . . , Cm.

Output: An assignment of truth value for each of the variables.
1: procedure MOCE(I)
2: for i← 1, 2, . . . , n do
3: if |I| = 0 then . instance is empty
4: set each of the variables of I independently to either T or F ,

uniformly at random
5: return . terminate algorithm
6: end if
7: J ← the sub-instance of I, consisting of all the clauses in which

the variables xi appears, either positively or negatively
8: if |J | = 0 then . xi is a ghost variable
9: set xi to either T or F , uniformly at random

10: continue . jump to line 2, and to the next value of i
11: end if
12: gT ← 0 . expected gain of xi = T
13: for each clause C in J do
14: if xi appears positively in C then
15: gT ← gT + 2−|C|

16: else
17: gT ← gT − 2−|C|

18: end if
19: end for
20: if gT > 0 then
21: xi ← T
22: else if gT < 0 then
23: xi ← F
24: else
25: set xi to either T or F , uniformly at random
26: end if
27: I ← I � xi
28: end for
29: end procedure

2. removing the literal associated with xi from all clauses unsatisfied by

it.

Thus, in the next iteration, MOCE operates typically on a smaller instance.
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4.3 The Efficient Exhaustive Method of Condi-

tional Expectations

In this section we present a new algorithm for the Maximum Satisfiability

(Max Sat) problem. The algorithm is based on the Method of Conditional

Expectations (MOCE), and applies an efficient greedy variable ordering to

MOCE. We call our algorithm Efficient Exhaustive Method of Conditional

Expectations (EEMOCE) as its greediness efficiently exhausts all unassigned

variables at each step.

In Section 4.3.1, we briefly explain the basic idea underlying EEMOCE

and present a mathematical pseudocode for it. This pseudocode, if imple-

mented simple-mindedly, leads to quadratic time complexity. Thus, it should

be regarded merely as a conceptual presentation of EEMOCE. Afterward we

dive into the algorithmics of EEMOCE in several sections, altogether leading

to our linearithmic time complexity algorithm EEMOCE, whose pseudocode

is presented in Section 4.3.8.

In Section 4.3.2, we describe how we efficiently represent instances. Then,

in Section 4.3.3, we present the residualization operation and explain how

it is done efficiently. Section 4.3.4 is dedicated to the concept of gain – the

way EEMOCE conveys information regarding the profitability of assigning

a given variable to a given truth value.

Section 4.3.5 is focused on efficient maintenance of gains. In Section

4.3.6, we briefly describe how the gains are calculated initially. Section 4.3.7

is dedicated to the way gains are updated during the execution of EEMOCE

by the so-called marginalization operation. This operation is a delicate and

important part of EEMOCE.

An algorithmic pseudocode of EEMOCE is presented in Section 4.3.8.

We finish the whole section by analyzing the time complexity of EEMOCE

in Section 4.3.9.

4.3.1 Mathematical pseudocode

In this section we provide a mathematical pseudocode for EEMOCE – see

Algorithm 3. This pseudocode is provided mainly to obtain a high level view

of EEMOCE, and to point out the basic difference between EEMOCE and

MOCE. This difference is in the order they consider the variables. Namely,

while MOCE goes over the variables in a random order, EEMOCE goes over
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Algorithm 3 The Efficient Exhaustive Method of Conditional Expectations

Input: An instance I over n variables x1, x2, . . . , xn.
Output: An assignment of truth value for each of the variables.
1: procedure EEMOCE(I)
2: for j ← 1, 2, . . . , n do
3: without loss of generality, assume the as yet unassigned variables

are xj , xj+1, . . . , xn
4: for i← j, j + 1, . . . , n do
5: µT,i ← EXj ,...,Xi−1,Xi+1,...,Xn [SI(b1, . . . , bj−1, Xj , . . . , Xi−1, T,

Xi+1, . . . , Xn)]

6: µF,i ← EXj ,...,Xi−1,Xi+1,...,Xn [SI(b1, . . . , bj−1, Xj , . . . , Xi−1, F,
Xi+1, . . . , Xn)]

7: end for
8: i← argmaxj≤i≤n max(µT,i, µF,i), break ties uniformly at random
9: if µT,i > µF,i then

10: xi ← T
11: else if µT,i < µF,i then
12: xi ← F
13: else
14: set xi to T or F , uniformly at random
15: end if
16: end for
17: end procedure

them in a greedy order.

For a given instance I and a given assignment a, denote by SI(a) the

number of clauses of I satisfied by a. We denote by

EXj ,...,Xi−1,Xi+1,...,Xn [SI(b1, . . . , bj−1, Xj , . . . , Xi−1, b,Xi+1, . . . , Xn)]

the expected number of clauses of I satisfied by a random assignment, condi-

tioned on the first j−1 variables being set to the truth values b1, b2, . . . , bj−1,

and the i-th variable set to the truth value b.

In this pseudocode, the loop in line 2 iterates n times as EEMOCE needs

to make n steps to assign all n variables. At the beginning of each iteration,

in line 3, we rename the variables in such a way that all the variables up

to xj−1 are assigned, and the variables from xj on are unassigned. This is

done merely for simplicity of presentation.

In lines 4–7, EEMOCE iterates over all the unassigned variables xi,

j ≤ i ≤ n. For each such variable, it calculates two conditional expectations.
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The first, in line 5, is the expected number of clauses of I satisfied by a

random assignment, conditioned on the first j − 1 variables being set to the

truth values b1, b2, . . . , bj−1 (set to them in previous iterations), and xi is

set to true. The second, in line 6, is the same quantity, but assuming xi is

set to false.

In line 8, EEMOCE finds the variable whose gain is maximal. Note that

there may be more than one such variable. Ties are broken by selecting one

of these variables uniformly at random. In lines 9–15, EEMOCE set xi to

the truth value providing the larger of µT,i and µF,i. In case of equality, it

sets xi to either true or false, uniformly at random.

4.3.2 Efficient instance representation

In our algorithm, an instance is represented by two core data structures:

clauses – a mapping of clause index to a clause. A clause is a mapping

of variable index to boolean value, where true means the variable

appears as is in the clause and false means the variable appears

negated in the clause.

variables – a mapping of variable index to a variable. A variable is a map-

ping of clause index to boolean value, where true means the variable

appears as is in the clause and false means the variable appears there

negated.

Figure 4.1 demonstrates how an instance is represented using clauses

and variables. The sample instance has 2 clauses and 3 variables. In

the figure, one can see the mapping clauses. It maps the index 1 to a

representation of clause C1. The clause C1 itself is a mapping as well. It

maps 10 to true as the variables x10 appear positively in C1. It maps 20

to false as the variables x20 appear negatively in C1. The mapping of the

index 2 to the representation of the clause C2 should be interpreted similarly.

Figure 4.1 shows variables too. The data structure variables maps

the index 10 to a representation of variable x10. The variable x10 itself is a

mapping as well. It maps 1 to true as the variable x10 appears positively

in C1. On the other hand, it maps 2 to false as the variable x10 appears

negatively in C2. The mapping of the indices 20 and 30 is interpreted simi-

larly.
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𝐶1: 𝑥10 ∨ ҧ𝑥20

𝐶2: ( ҧ𝑥10 ∨ 𝑥20 ∨ ҧ𝑥30)

1
10 → 𝑇
20 → 𝐹

2
10 → 𝐹
20 → 𝑇
30 → 𝐹

10
1 → 𝑇
2 → 𝐹

20
1 → 𝐹
2 → 𝑇

30 2 → 𝐹

Sample instance clauses variables

Figure 4.1: A sample instance and its representation using the data struc-
tures clauses and variables.

The variables data structure is crucial for efficient access to all the

clauses in which a variable appears, which is an operation heavily used by

the algorithm. As a variable appears in rα clauses on the average, this

allows a constant average time traversal on the clauses in which a variable

appears.

A hash table based mapping for the above structures is a natural way

to allow non-consecutive indices for the variables and clauses. It provides

general flexibility for future optimizations as well.

4.3.3 Residualization of an instance

Residualization is the operation in which information, regarding the as-

signment of a given variable to a given truth value, is used to simplify an

instance. The simplification is done by:

1. Removing (from the instance) all the clauses satisfied by the variable

assignment. These clauses are listed as satisfied.

2. Removing (from the instance) all the literals of this variable that are

unsatisfied by its assignment. Each literal is removed from its clause.

Each clause that remained without literals at all is removed from the

instance – and it is listed as unsatisfied.

The input to the residualization operation is a variable and its assigned

truth value. The result of the operation is a simplified instance. The latter

instance is the residual instance with respect to the original instance, the

assigned variable, and its assigned truth value. Usually, we will refer to it

simply as the residual instance. It is worth noting that, besides a possible
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decrease in the number of clauses, typically some of the clauses shortened

during the residualization.

To perform the residualization efficiently, we iterate only over the clauses

in which the variable appears. These clauses are efficiently available via

variables, and their number is bounded on the average. The currently

assigned variable itself is removed from the variables data structure.

If a clause is satisfied by the variable assignment, we remove it from

clauses. To keep the instance representation consistent, we then go over

all the variables appearing in the removed clause at the removal time, except

for the currently assigned variable. For each of these variables, we remove

the currently removed clause from its associated clauses in variables. If

no clauses are associated with a variable, it is removed from variables.

If a clause, in which the currently assigned variable appears, is not sat-

isfied by the assignment, we remove the literal associated with the assigned

variable from the clause. In case no more literals appear in the clause, we

remove the clause from clauses. In the latter case, as no literal remained

in the clause, it is unsatisfied under the current assignment.

4.3.4 The concept of a gain

A gain conveys information regarding the profitability of assigning a given

truth value to a given variable, namely the expected increase in the number

of satisfied clauses, or alternatively the expected decrease in the number of

unsatisfied clauses.

Consider a variable x and a clause C of length l in which x appears.

Recall that the length of a clause is the number of literals appearing in it.

The probability that C will be satisfied by a random assignment of the l

variables appearing in it is a Bernoulli distributed random variable with

parameter p = 1−1/2l, and expected value µ = p = 1−1/2l. This expected

value is the expected number of satisfied clauses by a random assignment,

applied degenerately to the single clause C.

If we assign the variable x a truth value, for which C is satisfied, the

increase in the expected number of satisfied clauses, with respect to this

clause only, is 1/2l. It is increases from 1− 1/2l to 1.

On the other hand, if we assign the variable x a truth value, for which

the clause is not satisfied by the literal associated with the variable x in the

clause, this literal is no longer relevant in this clause and can be removed

Page 71 of 136



CHAPTER 4. EEMOCE 4.3. EEMOCE

from it, leaving the clause with l − 1 literals. In this case, the expected

number of satisfied clauses, for this single clause, decrease from 1− 1/2l to

1 − 1/2l−1. This amounts to a change of 1/2l in the expected number of

satisfied clauses, but this time it is a decrease instead of an increase.

As the overall gain is the expected increase in the number of satisfied

clauses in the whole instance, it is the sum of the gains of all clauses. Thus,

the overall gain of assigning a variable a given truth value is the opposite of

the overall gain of assigning it the other truth value.

This allows us to maintain only the gain of one truth value for each

variable, say the gain of true. If this gain is positive, we prefer to set the

variable to true. If it is negative, we prefer to set the variable to false. In

case it is zero, we have no preference regarding the best truth value for the

variable, and thus assign it uniformly at random to either true or false.

The gain of a variable is defined as the larger between the gain of assigning

it true and assigning it false.

4.3.5 Efficient maintenance of gains

Each variable has its own gain, and as the number of variables is large, we

should maintain the gains of all the variables in an efficient manner. We

need to accommodate the following operations:

1. Find the gain of a given variable.

2. Update the gain of a given variable.

3. Find the largest gain over all variables.

4. Remove the largest gain from the collection of gains.

To allow performing these operations efficiently, our algorithm maintains a

compound data structure which we call gains, consisting of two elementary

data structures.

The first elementary data structure, which we call gbv (for “gains by

variables”), indexes the gains by variables, and allows a constant time access

to the the gain of any specific variable. In case the variable indices are

not necessarily consecutive, we recommend a hash table based mapping of

variables to gains, for the above indexing.

The second elementary data structure, which we call gbm (for “gains by

magnitudes”), indexes the gains by their magnitude, and allows logarithmic
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time access to the largest gain at any given moment. To this end, one may

utilize a balanced binary search tree or a binary heap. As the sorting key is

the gain magnitude, this data structure should allow duplicate keys.

An alternative to allowing duplicate keys is to add some tiny noise to

each gain. This can be done one time at the beginning, independent for

distinct variables. This noise is a useful random tie breaker as well; it al-

lows obtaining different assignments in different executions of the algorithm.

Out of multiple executions, one can select the best assignment of all those

obtained in them as the solution for the instance.

When operating on gains, these two data structures, gbv and gbm, are

used to find, update, and remove gains efficiently. The operations on gains

are done in such a way that gbv and gbm are kept synchronized and consistent

(partially sorted) all the time. For example, if some gain is found and

updated using gbv, then its position in gbm (say a balanced binary search

tree) is updated too to keep gbm consistent and synchronized with gbv.

4.3.6 Initial gains calculation

The initial gains calculation is the operation of calculating the gain of each

of the variables from scratch, and storing them in the gains data structure.

To this end, we loop over all the variables, one at a time. For each variable,

we perform a full direct calculation of the gains as described in Section 4.3.4.

To each of the calculated gains, we possibly add a tiny positive noise. As

the gains are multiples of 1/2r, this noise should be strictly less than 1/2r.

Finally, we insert the gain in the gains data structure. After inserting all

the variables’ gains, we can start calculating the solution (truth assignment)

for the instance.

4.3.7 Marginalization of gains

At each step of the algorithm, once we have selected an assignment of truth

value to the current variable, and before we residualize the instance, we

should update the gains of all affected variables. These are all neighbors of

the currently assigned variable, namely all variables appearing with it in at

least one clause.

This updating process is called marginalization. It is done by iterating

over all the clauses in which the currently assigned variable appears. For
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each such clause, we iterate over all its literals, except for the one associated

with the currently assigned variable. For each such literal, we consider the

variable associated with it.

This variable is a neighbor of the currently assigned variable, and its

gain should be marginalized. Note that this may occur several times for a

given neighbor, as a variable may be a neighbor of the currently assigned

variable in multiple clauses.

As we explicitly keep track only of the gain of true of a variable (the gain

of false is just the opposite value), we only marginalize the gain of assigning

the neighboring variable a true value. The magnitude of the marginal value

is always 1/2l, where l is the size of the clause we consider currently. This

marginal value should be either added to or subtracted from the gain of the

neighboring variables appearing in this clause, as will now be described.

If the currently assigned variable satisfies the currently considered clause,

and the neighboring variable appears positively in the clause, the marginal

is negative (i.e., subtracted). As the clause is about to be satisfied by the

currently assigned variable, we should detract the gain of the neighboring

variable, which includes a contribution of 1/2l that is not relevant anymore.

If the neighboring variable appears negatively in the clause, the marginal

is positive (i.e., should be added). The clause is about to be satisfied by

the currently assigned variable, and the gain of the neighboring variable

contains a negative contribution of 1/2l (because it appears negatively in

the clause). We should eliminate this negative contribution from the gain

of the neighboring variable, as it is not relevant anymore. Thus, we should

add to it 1/2l.

The other case is where the currently assigned variable does not satisfy

the currently considered clause. In this case, we should add 1/2l to the

gain of the neighboring variable if it appears positively in the clause, as its

importance now is enlarged by this magnitude. If the neighboring variable

appears negatively, we should reduce its gain by 1/2l, as assigning it a true

is more harmful now that the clause is going to be shorten by a literal.

Table 4.1 summarizes the (possibly negative) marginal values that should

be added to the gain of true of a variable neighboring the currently assigned

variable. This values should be added to the neighboring variable per clause

it appears with the assigned variables, and according the clause length before

the assignment and residualization. The gain of false of the neighboring
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XXXXXXXXXXXassigned
neighbor

appears positively in clause appears negatively in clause

satisfies clause −1/2l 1/2l

unsatisfies clause 1/2l −1/2l

Table 4.1: The marginal value to be added to the gain of true of a neighbor-
ing variable, for each clause that neighbor shares with the currently assigned
variable.

variables is updated with the opposite value.

4.3.8 Algorithmic pseudocode

In this section we provide an algorithmic pseudocode for EEMOCE – see

Algorithm 4. This pseudocode is detailed and puts emphasis on the algo-

rithmics underlying the algorithm.

In the pseudocode, for a clause C, a variable x appearing in C, and a

truth value b,

sign(C, x) =

1, x appears positively in C,

−1, x appears negatively in C,

and

sat(C, x, b) =

1, when assigning x to b, the clause C is satisfied,

−1, when assigning x to b, the clause C is unsatisfied.

The pseudocode is composed of several procedures. The main procedure

is the first one, starting in line 1, and named EEMOCE. It details the main

flow of our EEMOCE algorithm.

EEMOCE starts by calculating the initial gains of all the variables in

line 2. This is done by applying the procedure Calculate Gains, starting

in line 10. For more information on this procedure, see Section 4.3.6.

Then, while the instance has clauses (line 3) EEMOCE performs the

following operations. It finds the best assignment given the gains, namely

the variable and truth value that produce the maximal gain among all unas-

signed variables. This is done by applying the procedure Find Best As-

signment starting in line 19. See Section 4.3.4 and Section 4.3.5 for more

information on it. If there are several variables providing a maximal gain,
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Algorithm 4 The Efficient Exhaustive Method of Conditional Expectations

Input: An instance I over n variables x1, x2, . . . , xn, with m clauses
C1, C2, . . . , Cm.

Output: An assignment of truth value for each of the variables.
1: procedure EEMOCE(I)
2: gains← Calculate Gains(I)
3: while I has clauses do . instance is not empty
4: variable, value← Find Best Assignment(gains)
5: variable← value . assign variable
6: gains←Marginalize Gains(gains, I, variable, value)
7: I ← Residualize Instance(I, variable, value, gains)
8: end while
9: end procedure

10: procedure Calculate Gains(I)
11: for each variable x in I do
12: gTx = 0 . expected gain of x = T
13: for each clause C in I in which x appears do
14: gTx = gTx + sign(C, x) · 2−|C|
15: end for
16: update gains (i.e., gbv and gbm) with gTx
17: end for . gbm is partially sorted according to |gTx |
18: end procedure

19: procedure Find Best Assignment(gains)
20: variable ← a maximum gain variable extracted from gbm, selected

uniformly at random

21: if gbv.gTvariable > 0 then
22: value← T
23: else if gbv.gTvariable < 0 then
24: value← F
25: else
26: value← either T or F , selected uniformly at random
27: end if
28: end procedure
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29: procedure Marginalize Gains(gains, I, variable, value)
30: for each clause C in I, in which variable appears do
31: for each variable neighbor in C, except for variable do
32: gbv.gTneighbor = gbv.gTneighbor − sat(C, variable, value) ∗

sign(C, neighbor)/2|C|

33: gbm.gTneighbor = gbv.gTneighbor
34: end for
35: end for
36: end procedure

37: procedure Residualize Instance(I, variable, value, gains)
38: for each clause C in I, in which variable appears do
39: if sat(C, variable, value) then
40: remove C from clauses

41: for each variable neighbor in C, except for variable do
42: remove C from neighbor in variables

43: if neighbor has no clauses then
44: remove neighbor from variables and gains

45: assign neighbor to either T or F , uniformly at random
46: end if
47: end for
48: else
49: remove variable from C in clauses

50: if C has no variables then
51: remove C from clauses

52: end if
53: end if
54: end for
55: remove variable from variables

56: end procedure
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EEMOCE selects one of them uniformly at random. In line 5, EEMOCE

assigns this best variable to its best truth value.

After that, some updates to the gains and to the instance are done.

In line 6, the gains are marginalized with respect to the instance, the as-

signed variable and its truth value. This is done by applying the procedure

Marginalize Gains starting in line 29. An elaborated description of the

calculation done by this procedure can be found in Section 4.3.7, and specif-

ically in Table 4.1.

In the last statement of the while loop, in line 7, the instance is residu-

alized, with respect to the assigned variable and its truth value, by applying

the procedure Residualize Instance starting in line 37. For more infor-

mation on this procedure, see Section 4.3.3 and Section 4.3.2.

4.3.9 Time complexity

In this section we provide a time complexity analysis for EEMOCE assuming

the commonly used setting for which the clause length r and the density α

are constant, while the number of variables, n, grows larger. Given this

setting, the size of an instance is mr = αnr = Θ(n).

Note first that the way we represent an instance allows constant time ac-

cess to the variables appearing in a given clause, and to the clauses in which

a given variable appears. Also, note that the data structure for maintaining

the gains allows constant time access to the gain of a given variable. In this

context, access is also for updating (insertion and removal).

The key data structure for an efficient implementation of EEMOCE

is gbm. This data structure allows accessing the largest gain at any given

moment. To this end, one may utilize a balanced binary search tree. This

allows logarithmic time access to the largest gain at any given moment, as

well as logarithmic time updating of any of the gains.

As the sorting key is the gain magnitude, this data structure should

allow duplicate keys. An alternative option is to add some tiny noise to

each gain (one time at the beginning) to eliminate duplication. This noise is

useful for tie breaking as well. It allows us performing random tie breaking

in constant time throughout the algorithm. The noise can be added during

the initialization of gains without increasing the time complexity.

EEMOCE starts by calculating the initial gain of each of the n variables

in the instance, in line 2, by executing the procedure Calculate Gains.
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In this procedure, the statement in line 14 is performed exactly mr times,

once for each literal in each clause. Thus, this line contributes O(n) to the

time complexity of the procedure.

Another line we should consider is line 16. This line is performed exactly

n times. Each time it is performed contributes O(log n), and overall this

line contributes O(n log n) to the time. Thus, the overall time complexity

of Calculate Gains is O(n log n).

The main loop of EEMOCE is executed at most n times, as each execu-

tion concludes in an assigned variable. Once a variable is assigned, it never

changes its value again, and its consideration is finished. We note that, in

some of the procedures, we find it more effective for the analysis to consider

the number of times each literal or clause is inspected.

The procedure Find Best Assignment is executed at most n times. Its

extraction operation in line 20 is performed in O(log n). Thus, the overall

time complexity of Find Best Assignment is O(n log n).

Next, consider the procedure Marginalize Gains. Lines 33 takes

O(log n). It is performed at most mr(r − 1) = O(n) times, as it is per-

formed at most r− 1 times for each literal. Thus, throughout the whole ex-

ecution of EEMOCE, the overall time complexity of Marginalize Gains

is O(n log n).

Finally, consider the procedure Residualize Instance. Line 42 is per-

formed at most mr times throughout the whole execution of EEMOCE,

as a clause can be removed one time from each component of variables

it appears in. Thus, this line contributes O(n) to the time complexity of

EEMOCE.

Line 44 is performed at most n times. The removal of the neighbor from

gains, and specifically from gbm, may take O(log n). But, performing the

removal lazily, by only indicating it using gbv, the time can be reduced to

O(1). In this case, in line 20, each of the extracted variables should be

verified as unremoved using gbv. A variable indicated as removed should be

skipped, and the next maximal gain variable should be extracted instead of

it, until an unremoved variable is encountered. Thus, this line contributes

O(n) to the time complexity of EEMOCE as well.

Line 51 can be performed at most m times. Altogether, throughout the

whole execution of EEMOCE, the overall time complexity of Residualize

Instance is O(n).
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Altogether, the worst-case time complexity of EEMOCE is O(n log n).

In our implementation, we have used a balanced binary search tree for gbm,

as it is commonly used and available. Thus, we get the above time complex-

ity. Yet, it should be noted that the time complexity of EEMOCE may be

reduced to linear time in the typical/common case.

There are two observations making this improvement possible. The first

is that the logarithmic factor in the time complexity of EEMOCE is due to

gbm. The second is that the number of possible gains at each given moment

is typically very limited. Our experiments show that, even for n = 1000000,

r = 10 and d = 10, there are approximately 50 distinct gain magnitudes at

any given moment. For more information regarding the latter observation,

see Section 4.6.2.

Thus, for each of the distinct gain magnitudes, introduce a bucket that

holds all the variables with this gain. Then, use the logarithmic data struc-

ture gbm to maintain the buckets instead of each of the gains directly. As

the number of buckets at any given moment is very small, this eliminates

the logarithmic factor related to the usage of gbm.

4.4 Practical performance analysis

In this section, we perform a comparative evaluation of EEMOCE versus its

baseline algorithm MOCE. We focus on densities commonly used in practice.

We compare the performance of the algorithms by comparing the number

of unsatisfied clauses provided by each of them. This comparison is comple-

mented by comparing their runtimes.

We conducted experiments on several families of random instances. A

family is defined by three parameters: r, α, and n. The families have been

selected in a systematic way, so as to reveal trends in the performance, and

connect it to the parameters of the family.

Instances are constructed as follows. The clauses are selected indepen-

dent of each other. Each clause is generated by selecting r distinct variables

uniformly at random, then negating each of them independently with prob-

ability 1/2.

First, we focus on random Max 3-Sat, with the number of variables rang-

ing from 1000 to 1000000, and the density from 3 to 10. Such ranges allow

us to study the performance of the algorithms at hand both below and above
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HH
HHHHn

α 4 5 7 10
MOCE EEMOCE MOCE EEMOCE MOCE EEMOCE MOCE EEMOCE

1000 90 25 149 63 288 172 526 377

10000 899 250 1492 633 2886 1719 5262 3765

100000 8995 2508 14943 6331 28856 17199 52629 37646

1000000 89915 25056 149438 63316 288588 171955 526267 376454

% Unsat 2.25% 0.63% 2.99% 1.27% 4.12% 2.46% 5.26% 3.76%

Table 4.2: The average number of clauses unsatisfied by MOCE and
EEMOCE, for random Max 3-Sat instances.

the satisfiability threshold density (which is approximately 4.27 for Max 3-

Sat [73, 31]). We executed both MOCE and EEMOCE on 1000 instances

of each of the families, and recorded the number of clauses unsatisfied by

them.

Table 4.2 presents the average number of clauses unsatisfied by MOCE

and EEMOCE. The rows of the table (but the last) record the number of

variables, while the columns record the densities. For the sake of readability,

all the numbers in those rows are rounded to the nearest integer.

It turns out that the average number of clauses unsatisfied by each of

the algorithms scales linearly with the number of clauses, and thus can be

described as a proportion of the number of all clauses, for any fixed density.

This proportion is provided in the last row of the table. In fact, in the case

of MOCE, the empirical results align with [29, Theorem 5]. The data in the

table indicates that the same holds for EEMOCE.

Given this property of the performance of both MOCE and EEMOCE,

we empirically explored it further. Figure 4.2 provides graphs of the average

proportion of clauses unsatisfied by each of the two algorithms for r = 3 and

α ranging from 3 to 10 in steps of 0.25. For each density, we provide the

average proportion of unsatisfied clauses over 1000 instances.

Next, in Table 4.3, we provide the standard deviation of the number

of clauses unsatisfied by the two algorithms, for each of the families. As

one can see, each standard deviation is much smaller than the respective

average. The ratio between each standard deviation and the corresponding

average decreases as 1/
√
n. Thus, the averages provided in Table 4.2 are

representative. Unsurprisingly, the standard deviation in the number of

clauses unsatisfied by EEMOCE is smaller than for MOCE.

Considered as function of n, the standard deviation is proportional to
√
n

(up to noise). Thus, in the last row of the table we provide the ratio between
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Figure 4.2: The average proportion of clauses unsatisfied by MOCE and
EEMOCE, for random Max 3-Sat instances.

HHH
HHHn
α 4 5 7 10

MOCE EEMOCE MOCE EEMOCE MOCE EEMOCE MOCE EEMOCE

1000 7.47 4.14 9.33 5.46 11.82 7.98 15.70 10.91

10000 23.86 12.40 29.27 17.85 37.09 24.64 48.79 33.48

100000 70.99 39.85 93.21 54.91 118.97 83.84 149.80 103.53

1000000 231.12 124.60 284.84 176.04 372.75 248.94 494.16 346.09

σ/
√
n 0.2386 0.1240 0.2927 0.1785 0.3709 0.2464 0.4879 0.3348

Table 4.3: The standard deviation of the number of clauses unsatisfied by
MOCE and EEMOCE, for random Max 3-Sat instances.

the standard deviation and
√
n. We refer to this ratio as the normalized

standard deviation. For given values of r and α, it turns to be basically

fixed (up to noise).

As in the case of the mean, we see that the standard deviation follows a

well-defined pattern. Thus, we are able to provide an approximation to the

standard deviation. Figure 4.3 provides graphs of the normalized standard

deviation of the number of clauses unsatisfied by each of the algorithms, for

r = 3 and α ranging from 3 to 10 in steps of 0.25. For each of the densities,
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Figure 4.3: The normalized standard deviation of the number of clauses
unsatisfied by MOCE and EEMOCE, for random Max 3-Sat instances.

we provide the normalized standard deviation of the number of unsatisfied

clauses, based on 1000 random instances.

Given the advantage of EEMOCE over MOCE, one may want to consider

the runtime overhead EEMOCE introduces. Besides the analysis of the

time complexity analysis provided in Section 4.3.9, we measured the actual

runtimes of both algorithms on the families we studied. Table 4.4 lists these

runtimes. We provide the mean runtime over the 1000 instances as well as

the standard deviation (in parenthesis). The table is wrapped for readability.

Examining the runtimes, one can see the EEMOCE does introduce an

overhead over MOCE. Yet, overall, the prolonged runtimes seem to be rea-

sonable, given the significant reduction in the number of unsatisfied clauses.

We have also examined instances of Max 2-Sat. The pattern of per-

formance, whereby the proportion of unsatisfied clauses is independent of

n, holds here as well, meaning this is a general property of MOCE and

EEMOCE. As the satisfiability threshold density is 1 for Max 2-Sat [41],
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HHHH
HHn
α 4 5

MOCE EEMOCE MOCE EEMOCE

1000 0.096 (0.011) 0.118 (0.016) 0.102 (0.010) 0.130 (0.012)

10000 0.381 (0.031) 0.590 (0.043) 0.443 (0.035) 0.704 (0.055)

100000 3.183 (0.217) 6.142 (0.386) 3.674 (0.231) 7.416 (0.523)

1000000 27.485 (3.571) 78.228 (10.115) 33.877 (5.134) 98.595 (14.029)
HH

HHHHn
α 7 10

MOCE EEMOCE MOCE EEMOCE

1000 0.118 (0.012) 0.157 (0.011) 0.138 (0.0128) 0.186 (0.017)

10000 0.559 (0.044) 0.901 (0.056) 0.721 (0.052) 1.199 (0.078)

100000 4.815 (0.346) 10.130 (0.824) 6.198 (0.459) 13.378 (0.994)

1000000 47.945 (8.144) 134.558 (21.945) 99.723 (11.939) 230.167 (31.715)

Table 4.4: The average and standard deviation of the runtime (CPU seconds)
of MOCE and EEMOCE, for random Max 3-Sat instances.
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Figure 4.4: Clauses unsatisfied by MOCE and EEMOCE, for random Max 2-
Sat instances.

the range of densities here was taken to start at α = 1/2.

Figure 4.4 depicts the average proportion of clauses unsatisfied by each

of the algorithms, as well as the normalized standard deviation of the num-

ber of clauses unsatisfied by each of the algorithms. These quantities are

provided for α ranging from 0.5 to 10 in steps of 0.25. For each density,

these quantities are based on 1000 random instances. Our observations in

the case of r = 3 are true here as well.

Finally, Table 4.5 lists the runtimes of the two algorithms on several

families. We provide the mean runtime over 1000 random instances, for

each density and algorithm.

The experiments described in this section, and the following ones, were
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HHH
HHHn
α 4 5 7 10

MOCE EEMOCE MOCE EEMOCE MOCE EEMOCE MOCE EEMOCE

1000 0.088 0.105 0.095 0.113 0.103 0.130 0.118 0.153

10000 0.327 0.456 0.373 0.522 0.458 0.660 0.578 0.852

100000 2.745 4.215 3.203 4.882 3.873 6.433 4.750 8.225

1000000 20.603 44.818 25.029 55.982 36.624 78.228 53.743 115.674

Table 4.5: The average runtime (CPU seconds) of MOCE and EEMOCE,
for random Max 2-Sat instances.

executed on a Sun Grid Engine (SGE) [102] managed cluster of 31 identical

IBM m4 servers with Intel Xeon E5-2620@2.0GHz processors. Each of the

servers consists of 24 computation cores and 64GB of working memory.

Thus, we had 744 computation cores and 1984GB of working memory at

hand.

Each of the executions was limited to use up to 8GB of working memory.

We used Java to implement the algorithms, both MOCE and EEMOCE,

and other elements related to the solving process, like instance loading, etc.

The experiments were conducted using Python scripts, and the results were

analyzed and visualized using Matlab.

It is worth emphasizing that the infrastructure we used, the limit on

the working memory, and the implementation language, affect the running

times of the algorithms (provided in Table 4.4 and Table 4.5), but not their

performance (the number of unsatisfied clauses).

4.5 Asymptotic performance analysis

In this section we analyze the asymptotic performance of EEMOCE. Namely,

we consider the mean proportion of clauses unsatisfied by assignments re-

turned by EEMOCE as the density grows larger.

As seen in the previous section, the number of variables, n, does not af-

fect the mean proportion of clauses unsatisfied by assignments provided by

EEMOCE. Thus, we omit this parameter from the analysis, as it is mean-

ingless in this respect. Clearly, this simplifies the analysis, as the behaviour

depends only on two parameters: the clause length r, and the density α.

To consider the performance of EEMOCE, we utilize two extreme ref-

erence points. The first is the mean proportion 1/2r of clauses unsatisfied

by a random assignment. This reference point gives an inferior performance

relative to the other algorithms presented here. The second reference point
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is a theoretical lower bound on the mean proportion of clauses unsatisfied

by an optimal assignment [29]. It yields a (perhaps unachievable) superior

performance. We will also add information on a theoretical upper bound on

this mean proportion [29], when we find it relevant.

We first explicitly state the result regarding the theoretical bounds.

In the following theorem, fr(n, αn) denotes the mean number of satisfied

clauses by an optimal assignment, taken over all instances for which the

clause length is r, the density is α, and the number of variables is n. We

write f(n) . g(n) if lim supn→∞ f(n)/g(n) ≤ 1. Note that, if this asymp-

totic inequality holds, it is still possible even that f(n) > g(n) for all n. The

notation f(n) & g(n) is defined similarly. Finally, oα(1) denotes a quantity

which is arbitrarily close to 0 for all α sufficiently large.

Theorem 4 (Coppersmith et al., Theorem 15 in [29]). For all clause length r,

for density α large,

fr(n, αn) &

(
2r − 1

2r
α+

1

r + 1

√
αr

π2r
(1− oα(1))

)
n (4.1)

fr(n, αn) .

(
2r − 1

2r
α+
√
α

√
(2r − 1) ln 2

22r−1

)
n (4.2)

We note that, for the specific case of r = 2, a better version of (4.1) is

stated in [29, Theorem 5]. Yet, we have chosen to use the above generalized

theorem, as we use it for various values of r along this section, and as for

the reference points we use (4.2).

As we are interested in the mean proportion of clauses unsatisfied by an

optimal assignment, our lower bound is taken as the number of all clauses

minus the upper bound on fr(n, αn) stated in (4.2), divided by the number

of all clauses. The upper bound on our quantity of interest is calculated in

a similar manner.

As in the previous section, we first focus on Max 3-Sat. We fixed the

number of variables to be n = 1000. We let the density α vary from 20 to

1000, first in steps of 10, and after reaching 100 in steps of 100. For each

density, we selected 1000 instances uniformly at random. We executed both

MOCE and EEMOCE on each of these 1000 instances, and recorded the

proportion of clauses unsatisfied by them for each of the instances.

Table 4.6 presents the mean proportion of clauses unsatisfied by MOCE
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α
mean

OPTIMUM
lower bound

mean
EEMOCE

mean
MOCE

mean
OPTIMUM
upper bound

20 3.79% 6.03% 7.16% 8.64%

30 5.39% 7.13% 8.07% 9.35%

40 6.34% 7.80% 8.62% 9.77%

50 6.99% 8.27% 9.01% 10.06%

60 7.47% 8.62% 9.30% 10.27%

70 7.85% 8.89% 9.53% 10.44%

80 8.15% 9.12% 9.71% 10.57%

90 8.40% 9.30% 9.87% 10.68%

100 8.61% 9.46% 10.00% 10.77%

200 9.75% 10.33% 10.71% 11.28%

300 10.25% 10.72% 11.03% 11.50%

400 10.55% 10.95% 11.22% 11.64%

500 10.76% 11.12% 11.36% 11.73%

600 10.91% 11.23% 11.46% 11.79%

700 11.03% 11.33% 11.53% 11.85%

800 11.12% 11.40% 11.59% 11.89%

900 11.20% 11.47% 11.65% 11.92%

1000 11.27% 11.52% 11.69% 11.95%

Table 4.6: The asymptotics of the average proportion (percent) of clauses
unsatisfied by MOCE, EEMOCE, and OPTIMUM, for random Max 3-Sat
instances.
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Figure 4.5: The asymptotics of the average proportion of clauses unsatisfied
by MOCE, EEMOCE, and OPTIMUM, for random Max 3-Sat instances.
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and EEMOCE. We also add to the table the lower and upper bound on the

proportion of clauses unsatisfied by an optimal assignment. These bounds

are calculated as described above, based on Theorem 4.

For the sake of readability, in the table, we provide the proportions as

percentages. Also, the table may be thought of as containing an additional

ghost column on the right, with the mean number of clauses unsatisfied by

a random assignment. We have omitted this column, as all its entries would

be 12.5%.

Figure 4.5 depicts the same quantities for densities from 100 to 1000.

As one may see, all the proportions converge gradually as the density grows

larger. This convergence aligns with Theorem 4.

How should one measure the asymptotic performance of an algorithm

for Max r-Sat? A seemingly reasonable way to do this is by considering the

mean proportion of clauses unsatisfied by the assignment returned by this

algorithm, and comparing it to the mean proportion of clauses unsatisfied

by a random assignment, 1/2r . For example, if some algorithm unsatisfies

on the average a proportion of 0.8 · 1/2r of all clauses, we could say that it

yields an improvement of 0.2 · 1/2r.
Unfortunately, this way of measuring the improvement is not suitable for

our case. In fact, from (4.2) it follows that, given any ε > 0, if the density is

sufficiently large, even the optimal assignment leaves at least a proportion

of 1/2r − ε of the clauses unsatisfied on the average.

We note in passing that the situation is similar on the other side. Namely,

even the pessimal assignment will have, on the average, a proportion of less

than 1/2r + ε of the clauses unsatisfied. In other words, for sufficiently

large densities, the mean proportion of unsatisfied clauses will be almost the

same for all algorithms. As the density grows larger, the improvement with

respect to the mean drops to zero, for all algorithms – making this measure

useless for asymptotic analysis.

Due to this diminishing improvement phenomenon, we introduce two

measures for comparing the asymptotic performance of algorithms for this

problem. The first measure is the ratio between the distances of the numbers

of clauses unsatisfied by the algorithms from the mean, minus 1. More

formally, suppose we have two algorithms A1 and A2. Denote by a1 the

mean number of clauses unsatisfied by A1, by a2 the mean number of clauses

unsatisfied by A2, and by µ the mean number of clauses unsatisfied by a
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random assignment. Then, the measure we suggest is (µ− a1)/(µ− a2)− 1.

We recommend taking the seemingly better algorithm as A1.

This measure neutralizes the vanishing of the improvement, and focuses

on the relative distances from the mean of the two competing algorithms.

Note that the measure may well be close to 0, which means that A1 and A2

are of very similar performances.

The second measure we suggest is similar to the first. However, instead

of taking µ as a reference point for measuring distances, we take the lower

bound on the number of clauses unsatisfied by an optimal assignment as

our reference point. Denoting this lower bound by l, the second measure we

suggest is 1−(a1−l)/(a2−l). Here too, we recommend taking the seemingly

better algorithm as A1. In both measures, we take the differences so as to

make the measures positive.

Both measures gives us numbers that quantify by how much algorithm

A1 improves the distance of algorithm A2 from the underlying reference

point. The larger the number, the larger is the improvement. In the first

measure, this number may be larger than 1, while in the second measure

it is bounded by 1. Both measures give a value of 0, when an algorithm is

compared to itself.

We name the first measure “Improvement of the Gap from the Mean”,

or in short “IGM”. We name the second measure “Improvement of the Gap

to the Optimum”, or in short “IGO”. Figure 4.6 depicts the asymptotic

improvement of EEMOCE over MOCE, measured by IGM and IGO.

The graphs reveal a remarkable phenomenon. As the density grows

larger, the improvement of EEMOCE over MOCE does not diminish. More-

over, according to the graphs, it converges to a constant. The IGM of

EEMOCE over MOCE converges to approximately 21%, while the IGO

of EEMOCE over MOCE converges to approximately 41%. Thus, asymp-

totically, EEMOCE improves MOCE by 21% or 41%, depending on one’s

viewpoint.

It is worth mentioning that, although the IGO measure seems to be more

important than the IGM measure, it has its own drawbacks. While IGM

is based on a stable exact reference point, IGO is based on an approximate

lower bound of the number of clauses unsatisfied by an optimal assignment.

Thus, IGO is sensitive to the inaccuracy of its reference point.

The phenomenon of convergence to a constant of the IGM and IGO
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Figure 4.6: The asymptotic improvement of EEMOCE over MOCE, mea-
sured by IGM and IGO, for random Max 3-Sat instances.

measures was observed in general, not only for clause length 3. Figure

4.7 provides the IGM and IGO values for commonly used values of r. For

each clause length, these measures were calculated based on 1000 random

instances, each over 1000 variables and with density 1000. At this high

density, the measures are fairly close to the limit. As the proportion of

clauses unsatisfied by MOCE and EEMOCE is indifferent to the number of

variables – those measures are indifferent to it as well.

We observed a similar convergence pattern for larger clause lengths too.

In fact we experimented with clause lengths as large as 10. The convergence

is observed clearly in these cases too. Yet, for higher clause lengths, a much

larger density is needed to estimate the limiting constant.

We attribute the slower convergence to the fact that, as the clause length

gets larger, the satisfiability threshold density grows exponentially. In fact,

the threshold is approximately 2r ln 2− (1 + ln 2)/2 [28, 73, 75]. While this

threshold is 1 for Max 2-Sat [41], and approximately 4.27 for Max 3-Sat
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Figure 4.7: The asymptotic improvement of EEMOCE over MOCE, mea-
sured by IGM and IGO, for random Max r-Sat instances.

[73, 31], for Max 7-Sat it is already about 88, and it reaches about 709 for

Max 10-Sat. Thus, the density we used is not large enough to estimate the

limiting constant of the convergence.

We conclude this section by introducing yet another measure for asymp-

totic performance analysis for Max r-Sat. We name this measure “Intra

Gap Location”, or in short “IGL”. In this measure we use both reference

points µ and l. We consider the gap µ − l, and measure the percentage

of this gap that is closed by the analyzed algorithm. Namely, denoting by

a the mean number of clauses unsatisfied by the analyzed algorithm, our

suggested measure is (µ− a)/(µ− l).
Assuming the algorithm provides a performance at least as good as the

mean µ, IGL yields a number between 0 to 1. The larger this number, the

better is the algorithm. Note that, as l is only an approximate lower bound

on the optimum, it is not necessarily possible to reach 1, and that one may
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Asymptotic performance of EEMOCE and MOCE, Max r-Sat
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Figure 4.8: The asymptotic performance of EEMOCE and MOCE, measured
by IGL, for random Max r-Sat instances.

get a number larger than 1 as well. Also, in the untypical case where the

algorithm’s performance is worse than the mean µ, this measure yields a

negative value.

For each clause length, we calculated this measure based on the same

1000 random instances used before (each over 1000 variables and with den-

sity 1000). At this high density, this measure is fairly close to the conver-

gence limit, and is indifferent to the number of variables due to the indiffer-

ence of MOCE and EEMOCE to it.

Figure 4.8 depicts the IGL of MOCE and EEMOCE for commonly used

values of r. As one can see, MOCE closes about 65% of the gap to the

optimum, while EEMOCE closes about 80% of it. As we use a lower bound

on the optimum, the percentage of the gap that has been closed may be

even higher.
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4.6 Execution analysis

In this section, we empirically analyze the execution of EEMOCE. We pro-

vide details and insights on its main algorithmic aspects and illustrate them.

In Section 4.6.1, we compare the expected proportion of unsatisfied clauses

during the assignment process, for MOCE and EEMOCE.

In Section 4.6.2, we analyze the number of variables that are candidates

for being assigned at each step, namely the number of variables having the

same maximal gain at each step during an EEMOCE execution. Based on

this, we point out further possible improvements of EEMOCE. Section 4.6.3

illustrates the execution of EEMOCE on many instances and analyzes the

distribution of clause lengths during the assignment process.

4.6.1 Expected assignment quality during the execution

In order to illustrate the difference between EEMOCE and MOCE, we track

the expected gain and expected proportion of unsatisfied clauses as the pro-

cess of assigning truth values to the variables proceeds. Recall that the gain

is the expected decrease in the number of unsatisfied clauses, as a result of a

variable assignment (see Section 4.3.4). This expectation is based on the as-

sumption that each variable has a probability of 1/2 of being assigned each

truth value. We executed MOCE and EEMOCE on the same Max 3-Sat

instance over 1000000 variables, with density 4.

Figure 4.9 shows the gain of the variables as a function of the step

at which they are assigned (each variable assignment is considered as a

step). Every 1000 steps are averaged in order to get a reasonably smooth

function. Since EEMOCE prioritizes the high-gain variables, the gains at

the beginning of the run are much higher. The noticeable gain drops are

also of interest, and we refer to them in the next section. For MOCE there is

a gradual increase in the average gain, caused by the shortening of clauses,

which doubles the contribution to the gain of each variable in each shortened

clause.

Figure 4.10 depicts the expected number of unsatisfied clauses through-

out the execution. Since both MOCE and EEMOCE guarantee a non-

negative gain assignment for each variable, both graphs are non-increasing.

Initially, both algorithms have the same expectation, since each clause (is

considered as if it) has a probability 1/8 for being unsatisfied. However,
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Figure 4.9: The expected variable gain upon its assignment, for MOCE and
EEMOCE execution on a typical Max 3-Sat instance over 1000000 variables
and with density 4.

since EEMOCE chooses in each step a variable with highest gain, the corre-

sponding absolute slope during most of the execution is higher than that of

MOCE. Moreover, choosing the variables in a greedy order also improves the

average gain for other variables. In particular, the gain of a balanced vari-

able becomes non-zero after one of its neighbors has been assigned. Thus,

the final assignment of EEMOCE is better than that of MOCE.

It is interesting to note that EEMOCE ends after about 900000 steps,

which is significantly less than the number of steps MOCE makes. This is

due to variables having all of their clauses satisfied by other variables. These

variables typically appear in less clauses, and hence have low gain, which

means that EEMOCE tends to delay their assignment.
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Figure 4.10: The expected proportion of clauses unsatisfied by MOCE
and EEMOCE during their execution on a typical Max 3-Sat instance
over 1000000 variables and with density 4.

4.6.2 Number of maximal gain variables during the execu-

tion

MOCE is considered as a derandomization of the algorithm selecting a

random assignment, choosing the assignment value by the estimated gain.

EEMOCE may be viewed as a further derandomization of MOCE, fixing the

variable assignment order according to a greedy criterion. However, even af-

ter taking into account the expected gain, there is some level of randomality,

as there are typically several variables having the same maximal gain, and

tie breaks are done randomly in EEMOCE.

In this section, we examine the number of variables of maximal gain

throughout the execution of the algorithm. The solid blue graph in Fig-

ure 4.11 depicts this number for a typical execution of EEMOCE on a

Max 3-Sat instance over 1000000 variables, with density 4. Note that this

clause length dictates all gains to be multiples of 1/8.
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Figure 4.11: The number of variables of maximal gain and their gain
throughout an EEMOCE execution on a typical Max 3-Sat instance
over 1000000 variables and with density 4.

The dashed red graph shows the gain value, and thus explains how the

graph from Figure 4.9 interacts with the graph showing the number of vari-

ables at the top level. Each gain level can be identified by a jump in the

top gain layer size, followed by a gradual descent. The figure shows that the

algorithm depletes one gain level after another. During the process, there

are up to 40000 variables the algorithm arbitrarily chooses from.

This insight may be a key for improving EEMOCE even more. First,

we can further derandomize the assignment order by adding a tie break-

ing criterion. Second, it is possible to run EEMOCE several times, thus

getting different random orders, and choose the execution with the best

performance.

It is interesting to examine the relationship between the size of the maxi-

mal gain and the number of variables having this gain. In particular, Figure

4.11 shows that, every time a gain level is depleted, there is a noticeable

drop in the gain.
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Figure 4.12: Distribution of the top gain and its change over time through-
out an EEMOCE execution on a typical Max 3-Sat instance over 1000000
variables and with density 4.

Figure 4.12a shows the distribution of the maximal gain, which is the

actual decrease of the expected number of unsatisfied clauses, over the steps.

The gains reflect the imbalance between positive and negative literals of a

variable (weighted as a function of the clause lengths).

Since the instances have been generated uniformly at random, high gains

are rare. Another important factor is that EEMOCE prioritizes variables by

gain. Assignments of variables of low gain are postponed, and their gain may

increase by the assignment of other variables. Hence, only a small minority

of variables are assigned with zero gain.

In fact, assigning a variable with zero gain happens only when all re-

maining variables have zero gain. Such variables typically remain in two

clauses of length 1, as a literal and its negation (or some other equal num-

ber of appearances in each of the two forms). Other variables of gain 0 will

be very seldom assigned a value, as there will be a neighbor, or another

variable, with a positive gain to be assigned first.

Figure 4.12b shows the distribution of gain changes between consecutive

steps. A gain change is the difference between the gain at a given step and

the gain at the preceding step.

In more than half of the steps there is no change, indicating that the

corresponding variables belonged to the same gain level. Since a variable

assignment changes the gain of neighboring variables, some of these variables

may rise to have a higher gain than the variable just assigned. This causes
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an increase, usually followed by an immediate decrease, of the maximal gain,

as the algorithm returns to its former gain level. This explains the rough

symmetry between positive and negative maximal gain changes.

Typically, the changes in the maximal gain tend to occur after we descend

from some level to the next lower level. Since now there are many variables

at the top level, it happens often that, assigning a value to some variable,

one of the affected neighbors is also a top level variable, which may now

rise to a higher level. This corresponds neatly to the fact that the graph in

Figure 4.11 is noisy at the beginning of each “hill” and becomes smoother

towards the next descent.

Note that a gain change of 2/8 is rare. It usually occurs when we assign

some variable, having a neighbor of top level, sharing with it a clause of

length 2. The change of the neighbor’s gain is 2/8, and if it happens to be

an upward change, the top level gain will increase by 2/8 in a single step.

This happened in fact 21821 times during the run, and explains most of the

26308 double decreases in Figure 4.12b.

4.6.3 Clause length distribution during the execution

In this section we consider another aspect of the execution of EEMOCE.

When executing EEMOCE with any clause length r, the number of clauses

of length r decreases throughout the run. Clauses of shorter lengths are more

interesting to observe. We start with no clauses of length 1, 2, . . . , r − 1. In

the initial stages, some of the length r clauses will be satisfied and removed

from the instance, while those yet unsatisfied by the partial assignment will

shorten to length r − 1. After a while, when we will give values to some of

the variables in these (r − 1)-length clauses, we will start seeing clauses of

length r − 2, and so on.

An analysis of the expected number of clauses of each length at each stage

would be trivial if our algorithm assigned values to all the variables uniformly

at random. However, MOCE, and more so EEMOCE, strive to assign values

that satisfy more clauses than they leave unsatisfied. Hence, the changes

in the distribution of the number of clauses of each length throughout the

execution are not easy to analyze (see, for example, the proof of [29, Theorem

5]).

We consider this behavior for instances of Max 2-Sat over 1000 variables

with density 5. We have selected 10000 random instances from this family
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Figure 4.13: The mean proportion of clauses unsatisfied by EEMOCE, as
a function of the composition of the residual instance. An aggregation of
10000 Max 2-Sat instances over 1000 variables and with density 5.

and executed EEMOCE on each of them. In principle, when executing

EEMOCE on such an instance, we have 1001 stages, starting at the initial

instance with no variables assigned, and ending with the final assignment, in

which all the variables are assigned. In fact, as some variables do not appear

in the instance, or are eliminated before being assigned a value, the number

of stages is somewhat smaller. For each of these stages, we recorded the

number of remaining clauses of length 1, the number of remaining clauses

of length 2, and the proportion of clauses, out of all remaining clauses, that

were eventually unsatisfied by the final assignment.

In Figure 4.13 we depict the results. The shaded region indicates com-

binations of numbers of length-1 and of length-2 clauses encountered during

the various executions of the algorithm. The coloring indicates the propor-

tion of clauses eventually unsatisfied (averaged over all instances). As most

of the clauses in the initial instance get to be satisfied, the region near the

point (0, 5000) is colored dark blue. Towards the end, gains are small, and
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little over a half of the remaining clauses are to be satisfied. This region is

colored yellow.

Another interesting trend is the residual instance hardness. At the begin-

ning of the execution, the instance contains mostly clauses that eventually

satisfied. As we progress, the residual instance contains more and more

balanced variables that satisfy half of their clauses and unsatisfy the other

half.

4.7 Conclusion

In this chapter we have presented and studied a new algorithm for the

Maximum Satisfiability (Max Sat) problem. The algorithm is based on

the Method of Conditional Expectations (MOCE), and applies an efficient

greedy variable ordering to it. We call our algorithm Efficient Exhaustive

Method of Conditional Expectations (EEMOCE) as its greediness efficiently

exhausts all unassigned variables at each step.

MOCE may be seen as a derandomization of RAND, the naive algorithm

that sets the variables uniformly at random to either true or false. While

MOCE still considers the variables in a random order, at each step it sets

the seemingly better truth value to the currently considered variable. This

is done by comparing the expected number of satisfied clauses under each

of the two possible truth values it may assign to the current variable. Then,

it sets the variable to the truth value with the larger expectation.

EEMOCE may be seen as a derandomization of MOCE. It derandomizes

the order in which the variables are assigned. While this order is random in

MOCE, in EEMOCE we set the seemingly better variable at each step. This

is done by comparing the expected number of satisfied clauses under each

of the remaining variables, when each is assumed to be set to its seemingly

better truth value (as done by MOCE). Finally, we set the variable for which

this expected number is larger.

4.7.1 Algorithmics and implementation

A naive design of EEMOCE results in quadratic-time complexity, as in each

step the algorithm has to examine all remaining variables, and recalculate

their expected number of satisfied clause.
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To avoid a quadratic-time complexity, we represented Max r-Sat in-

stances using two data structures. The first allows constant-time access to

all variables of a given clause, and the second allows amortized constant-time

access to all the clauses in which a given variable appears.

We complemented the efficient instance representation by an efficient

maintenance of gains – the quantities that guide EEMOCE regarding the

ordering of the variables. To this end, we use two additional data structures.

The first allows constant-time access to the gain of a given variable, and the

second allows logarithmic-time access to a variable with a maximal gain.

The efficient maintenance of gains is also required for avoiding quadratic-

time complexity. The second structure we used is a balanced binary search

tree. The time complexity of EEMOCE is quasilinear. In fact, it is lin-

earithmic – it adds only a logarithmic factor to the linear time complexity

of MOCE. By replacing the balanced binary search tree with a tailored data

structure, one may reduce the time complexity even further. In fact, we

have pointed out how to linearize the algorithm.

We provided a detailed description and pseudocode for EEMOCE. The

description includes various notions and aspects related to its design and

execution. Among these are efficient instance representation, residualization

of an instance, the concept of gain, efficient maintenance of gains, initial gain

calculation, the notion of marginalization of gains and how it is done, and

more.

4.7.2 Performance and measures

We conducted a comprehensive study of EEMOCE. We studied its perfor-

mance in practical low densities instances of Max r-Sat. We showed that the

average number of clauses unsatisfied by EEMOCE scales linearly with the

number of clauses, and thus can be described as a proportion of the number

of all clauses, for any fixed density. We also showed that, considered as

a function of the number of variables n, the standard deviation is roughly

proportional to
√
n.

Examining the runtimes, we showed that EEMOCE does introduce an

overhead over MOCE. Yet, overall, the prolonged runtimes seem to be rea-

sonable, given the significant reduction in the number of unsatisfied clauses.

As MOCE, EEMOCE is also a very fast algorithm.

We also studied the asymptotic performance of EEMOCE as the density
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grows larger. We pointed out the phenomenon of diminishing relative im-

provement in the asymptotic case. As the density grows larger, the possible

improvement drops to zero with respect to the mean proportion of clauses

unsatisfied by a random assignment.

To overcome the above problem, we have introduced three measures for

comparison of the asymptotic performance of algorithms for this problem:

IGM, IGO, and IGL. These measures neutralize the decrease of the possi-

ble relative improvement by using reference points. They may possibly be

relevant for other combinatorial optimization problems as well.

We reveal a remarkable phenomenon. As the density grows larger, the

improvement of EEMOCE over MOCE does not diminish – it converges to

a constant. For Max 3-Sat, according to the suggested measures, EEMOCE

has an advantage of 21%-41% over MOCE. The phenomenon of convergence

to a constant of the IGM and IGO measures was observed in general, not

only for clause length r = 3. We provide the values of these measures for

other values of r as well.

We also measured the IGL of MOCE and EEMOCE for commonly used

values of r. Using this measure, we showed that MOCE closes about 65% of

the gap from the mean to the optimum, while EEMOCE closes about 80%.

4.7.3 Execution and internals

We analyzed the execution of EEMOCE and compared it to MOCE. The

analysis shows that EEMOCE expected solution is consistently better than

that of MOCE throughout its execution. The number of steps EEMOCE

requires for reaching a solution is also lower.

We showed that EEMOCE divides the variables into levels, and assigns

them level after level. Our experiments show that the top level may contain

many variables, which may open a door to additional improvements. We

also discussed the distribution of the clause length throughout the execution.

4.7.4 Further research leads

While EEMOCE removes a lot of randomality from MOCE, it does not

remove it all. EEMOCE still includes two types of randomality. The first

type occurs when assigning a given variable, for whom both truth values

give the same expected number of satisfied clauses. This tie breaking is
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done randomly by EEMOCE, same as by MOCE.

The second, and more important, type of randomality occurs when se-

lecting the variable to be assigned, out of all the remaining unassigned vari-

ables, in a given step. Usually, there are numerous variables that give the

same maximal expected number of satisfied clauses.

The remaining randomality in EEMOCE opens possibilities for further

research focusing on the derandomization of EEMOCE. This derandomiza-

tion may be expected to provide an even better algorithm.
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Chapter 5

Dominance Certificates for

Combinatorial Optimization

Problems

Heuristic algorithms, such as simulated annealing, are widely used in prac-

tice to solve combinatorial optimization problems. However, they offer no

guarantees regarding the quality of the provided solution. An f(I) combina-

torial dominance guarantee is a certificate that a solution is not worse than

at least f(I) solutions for a particular problem instance I.

In this chapter, we introduce simple but general techniques for awarding

combinatorial dominance certificates to arbitrary solutions of various opti-

mization problems. We demonstrate these techniques by applying them to

the Traveling Salesman and Maximum Satisfiability problems, and briefly

experiment their usability.

5.1 Introduction

One of the most active research areas in the theory of combinatorial algo-

rithms is the design of approximation algorithms for NP -hard problems.

However, while approximation ratio analysis does give some information on

heuristics, it does not provide the whole picture regarding their performance

in practice.

Algorithmic solutions used in practice are often some form of local im-

provement heuristic, based on techniques such as Simulated Annealing [62],
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HC [94], GRASP [81], Tabu Search [39], or Genetic Algorithms [57, 77].

Properly implemented, these techniques may lead to short, efficient pro-

grams which yield reasonable solutions. However, these heuristics often

come with no theoretical guarantee as to the quality of the provided solu-

tion.

An f(I) combinatorial dominance guarantee is a certificate that a solu-

tion is not worse than at least f(I) solutions for a particular problem in-

stance I. The intuition behind this performance measure rests on the letter

of recommendation one could write on behalf of a given person, or heuris-

tic solution. A recommendation like “She is the best of the 75 students in

my class this year” is analogous to a combinatorial dominance guarantee.

It certifies the candidate as superior to a certain number of members of a

given pool, with the implied assumption that this says something meaning-

ful about the candidate’s global ranking as well. The larger the number of

competitors dominated by the candidate, the stronger the recommendation.

The previous body of work concerns proving existential bounds for par-

ticular problems over the space of all problem instances. In this chapter,

we demonstrate a general technique for awarding combinatorial dominance

“certificates” to arbitrary solutions of various optimization problems. We

demonstrate this technique on the Traveling Salesman and Maximum Satis-

fiability problems, and briefly experiment its usability. Observe that similar

approximation ratio certificates are not forthcoming for ad-hoc solutions.

Namely, given a particular solution of a problem, it is not at all clear how

we can compare its quality with that of the (unknown) optimal solution.

Additionally, we describe how to simulatively estimate the number of so-

lutions better than a given solution up to a given error with high probability.

We experiment the usability of the simulative estimation for differentiating

between heuristics for Maximum Satisfiability in terms of dominance, and

compare the estimate derived from Chebyshev’s inequality to simulation

results.

In Section 5.1.1 we briefly survey previous work. The notions of combi-

natorial dominance guarantees are formalized in Section 5.1.2. In Section 5.2

we show how an arbitrary (and, in particular, a randomly selected) solution

may be proved to have some combinatorial dominance guarantee. Brief ex-

perimental examinations are summarized in Section 5.3. Finally, we discuss

directions for future research in Section 5.4.
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5.1.1 Previous work

The issue of measuring the quality of approximate solutions has been ad-

dressed by Zemel [108]. A formulation of the very basic properties expected

from a function measuring the quality of approximate solutions was given,

and the notion of a proper quality measure stated accordingly. Zemel sug-

gested considering some measures, such as z-approximation [52] and location

ratio, which is more familiar recently as dominance ratio [44, 3]. Both of

these measures are proper.

The latter measure has been studied primarily within the operations re-

search community. The basic notion appears to have been independently

discovered several times. The primary focus has been on algorithms for

TSP, specifically designing polynomial-time algorithms which dominate ex-

ponentially large neighborhoods. The first TSP heuristics with an exponen-

tial dominance number are due to Rublineckii [93] (see also Sarvanov and

Doroshko [95, 96]).

The question whether there exists a polynomial-time algorithm which

yields a solution dominating (n− 1)!/p(n) tours, where p(n) is polynomial,

appears to have first been raised by Glover and Punnen [40]. Dominance

bounds for TSP have been most aggressively pursued by Gutin, Yeo, and

Zverovich in a series of papers (cf. [45, 46]), culminating in a polynomial-

time algorithm which finds a solution dominating Θ((n− 1)!) tours. These

bounds follow by applying certain Hamiltonian cycle decomposition theo-

rems to the complete graph. We refer to [47] for more information.

In [33], the authors survey the complexity of optimizing TSP over sev-

eral well-defined but exponentially large neighborhoods. Such optima by

definition have large dominance numbers. In [12], the authors perform an

experimental study of certain linear-time dynamic programming algorithms

for TSP, which dominate exponentially many solutions.

Gutin, Vainshtein, and Yeo [44] appear to have been the first to consider

the complexity of achieving a given dominance bound. In particular, they

define complexity classes of DOM-easy and DOM-hard problems. They

prove that weighted Max k-Sat and Max Cut are DOM-easy while (unless

P = NP ) Vertex Cover and Clique are DOM-hard.

Alon, Gutin, and Krivelevich [3] provide several algorithms which achieve

large dominance ratios for versions of Integer Partition, Max Cut, and Max

r-Sat. These algorithms share a common property — they provide solutions
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of quality guaranteed to be not worse than the average solution value. This

property has been used also in other dominance proofs [87, 44, 45, 86, 63].

Twitto [105] showed that this property by itself does not necessarily ensure

good dominance.

Other works on dominance analysis include [48, 87], where it is proved

that the nearest neighbor, minimum spanning tree, and greedy heuristics

perform extremely poorly for symmetric and asymmetric TSP. Various com-

binatorial optimization problems and classical heuristics for them have been

analyzed in [14, 13, 43]. In [80], a model for analyzing heuristic search algo-

rithms (such as simulated annealing and backtracking), based on the ideas

of combinatorial dominance, has been developed.

In [64], the authors studied a polynomial-time algorithm for ATSP, and

showed that it provides a dominance ratio of at least 1/2−o(1). In [65], they

gave a polynomial-time algorithm with dominance ratio of 1− n−1/29 for a

special case of TSP in which the edges may take only two possible weights.

In [88], the authors analyzed the BBQP problem with m + n variables.

They proved that any solution for this problem, with quality no worse than

the average, dominates at least 2m+n−2 solutions, and that this bound is

the best possible. They provided an O(mn) algorithm to identify such a

solution.

5.1.2 Definitions

Consider a given instance I of some combinatorial optimization problem P .

The instance is represented by a solution space SP (I) and objective function

CP (I, x). The solution space SP (I) is the set of all combinatorial objects

representing possible solutions x to I. The objective function CP (I, x) is

defined for all solutions x ∈ SP (I). If P is a maximization (minimization,

resp.) problem, we seek an x0 ∈ SP (I) such that CP (I, x0) ≥ CP (I, x)

(CP (I, x0) ≤ CP (I, x), resp.) for all x ∈ SP (I).

A heuristic HP for P is a procedure which, for any instance I, selects

a solution x ∈ SP (I). For a given instance I of P , denote by F (I) the

number of solutions that are not better than the heuristic solution HP (I).

The number of all other solutions in SP (I) (which are better than HP (I))

is denoted by B(I).
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Definition 1. A heuristic HP offers an F (n) combinatorial dominance guar-

antee (dominance bound/number) for problem P if for each n:

1. For all instances I of size n of P , the solution HP (I) dominates at

least F (n) elements of SP (I).

2. There exists an instance I ′ of size n for which HP (I ′) dominates ex-

actly F (n) elements of SP (I ′).

The heuristic blackball bound/number of HP is B(n) = |SP (n)| − F (n).

The heuristic dominance (blackball, resp.) ratio is defined to be its dom-

inance (blackball, resp.) number divided by the size of the solution space.

5.2 Certified dominance bounds for arbitrary so-

lutions

In this section we demonstrate a general technique for awarding combina-

torial dominance certificates to arbitrary solutions of various optimization

problems. Such a certificate is a proof that a given solution of some instance

(of some optimization problem) is not worse than at least some prescribed

number of solutions of that instance. Additionally, we describe how to sim-

ulatively estimate the number of solutions better than a given solution up

to a given error with high probability.

Assume we have any instance of some optimization problem, and let X

be its objective function. Suppose we can calculate the expected value µ =

E(X) and the variance σ2 = V (X) of the value of the objective function at

a random solution. (Note that these quantities can be calculated for many

problems; see Sections 5.2.1 and 5.2.2 below for two important examples.)

Now, suppose we have any solution with an objective value x0 which happens

to be better than µ, i.e., x0 > µ (x0 < µ, resp.) for maximization (minimiza-

tion, resp.) problems. We may then assert that there is some percentage of

the solutions which are not better than this solution. Indeed, denote by x

the objective value of a random solution, and assume, say, that we deal with

a maximization problem. By the one-sided Chebyshev’s inequality [91], we

have

P (X > x0) ≤
σ2

σ2 + (x0 − µ)2
< 1. (5.1)
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One way to obtain (with probability arbitrarily close to 1) a solution

significantly above the mean is to take the best of a large number of randomly

selected solutions. For example, suppose the values of the objective function

are approximately normally distributed, which is true in many situations.

The best solution out of approximately 40 sampled solutions is expected

to be about two standard deviations above the mean, as approximately

2.5% of the solutions have this property. By Chebyshev’s inequality, such a

solution is in any case guaranteed to be not worse than at least four fifths of

the solutions. Note that this bound holds whether the values are normally

distributed or not, given the distance from the mean is verified somehow.

It is the value from Chebyshev’s inequality that provides the dominance

certificate.

5.2.1 TSP certification

In the Symmetric Traveling Salesman problem (STSP), we are given an

edge-weighted complete undirected graph KV . We seek an ordering p of

the n = |V | vertices, minimizing the sum of weights of the edges along the

tour induced by p on KV . The size of the solution space is (n− 1)!/2, and

the size of the problem is taken as n = |V |. We apply the above technique

to STSP.

Denote by wij the weight of edge (i, j), and let X be the weight of a

random tour. We have to find E(X) and V (X). For 1 ≤ i < j ≤ n, put:

Xij =

{
1, the tour contains the edge (i, j),

0, otherwise.

Then:

X =
∑

1≤i<j≤n
wijXij .

For Xij , we have

E (Xij) = P (Xij = 1) =
n(
n
2

) =
2

n− 1
,

V (Xij) = E
(
X2
ij

)
− E2 (Xij) =

2(n− 3)

(n− 1)2
.
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The covariance Cov (Xij , Xkl) is given by

Cov (Xij , Xkl) = E (XijXkl)− E (Xij)E (Xkl)

= P (Xij = Xkl = 1)−
(

2

n− 1

)2

,

where

P (Xij = Xkl = 1) =



4
(n−1)(n−2) , {i, j} ∩ {k, l} = ∅,

2
(n−1)(n−2) , |{i, j} ∩ {k, l}| = 1,

2
n−1 , {i, j} = {k, l}.

Therefore

E(X) =
∑

1≤i<j≤n
wijE (Xij) =

2

n− 1

∑
1≤i<j≤n

wij ,

and

V (X) = V

 ∑
1≤i<j≤n

wijXij


=

∑
1≤i<j≤n

w2
ijV (Xij) +

∑
(i,j)6=(k,l)

wijwklCov (Xij , Xkl)

=
2(n− 3)

(n− 1)2

∑
1≤i<j≤n

w2
ij +

4

(n− 1)2(n− 2)

∑
{i,j}∩{k,l}=∅

wijwkl

− 2(n− 3)

(n− 1)2(n− 2)

∑
|{i,j}∩{k,l}|=1

wijwkl.

Having these explicit formulas for E(X) and V (X), we may easily, and

automatically, bound the quality of any given solution for any given instance

of STSP. The automation may be obtained by a program that first computes

the expectation and variance by the above formulas for the given instance.

Then, for any solution thereof, it computes and returns the probability given

in (5.1) as the certified dominance bound for the solution.
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5.2.2 Max Sat certification

In the Maximum Satisfiability problem (Max Sat), we are given a multiset of

clauses over some Boolean variables. Each clause is a disjunction of literals

(a variable xi or its negation xi). We seek a true-false assignment for the

variables, maximizing the number of satisfied clauses.

For disjoint sets A,B ⊆ {1, 2, . . . , n}, denote:

TAB =
∨
i∈A

xi ∨
∨
j∈B

xj .

For example, T{1,4}{2} = x1∨x4∨x2. Suppose the multiset, which we denote

by T , consists of cAB occurrences of each TAB. For a random assignment of

values, consider the random variable Y — the number of satisfied clauses in

T . We have

E(Y ) =
∑
A,B

cAB

(
1− 2−|A|−|B|

)
,

and

V (Y ) =
∑
A,B

c2AB2−|A|−|B|
(

1− 2−|A|−|B|
)

+
∑

(A,B)6=(A′,B′)

cABcA′B′
(
P (TAB = TA′B′ = false)− 2−|A|−|B|−|A

′|−|B′|
)
,

where

P (TAB = TA′B′ = false) =

{
2−|A∪A

′|−|B∪B′|, A ∩B′ = A′ ∩B = ∅,
0, otherwise.

Again, automating the computation of the quantities above to bound the

quality of any given solution for any given instance of Max Sat is immediate.

5.2.3 A confidence interval for the blackball ratio

Given an instance I of an optimization problem P , and a solution s0 of I,

let:

g(s) =

1, s is better than s0,

0, otherwise.
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Denote by Ps0(s) the probability that a random solution s of I is better

than s0.

Lemma 1. Let ε, δ ∈ (0, 1). Suppose s1, s2, . . . , st are t ≥
⌈
(2+ε) ln 2

δ
ε2

⌉
uni-

formly and independently sampled solutions of I, and let

µ̃ =
1

t
|{1 ≤ i ≤ t : g(si) = 1}| .

Then, for a uniformly sampled solution s of I, we have

µ̃ ∈ [Ps0(s)− ε, Ps0(s) + ε]

with probability at least 1− δ.

Proof. Consider the random variables Yi = g(si), 1 ≤ i ≤ t. Note that

E(Yi) = P (Yi = 1) = Ps0(s). Let Y =
∑t

i=1 Yi. By Chernoff’s inequality [7]

we have

P (|µ̃− Ps0(s)| > ε) = P (|Y/t− Ps0(s)| > ε)

= P (|Y − tPs0(s)| > εtPs0(s)/Ps0(s))

≤ 2e−ε
2t/(2Ps0 (s)+ε)

≤ 2e−ε
2t/(2+ε)

≤ 2e
−
ε2(2+ε) ln 2

δ
(2+ε)ε2 = δ.

The selection between several heuristics for a problem is often made by

comparing their performance experimentally. The experiments may include

applying the heuristics to random instances of the problem, or a predefined

set of representative instances. Note that the above simple method might

be used to obtain a single number representing the performance (in the

experiments) of each of the heuristics. Namely, the method may yield an

estimate of the blackball ratio of each of the heuristics in the experiments.

Automation of this method is immediate. Observe that similar estimations

of the approximation ratio of heuristics are not forthcoming, as the optimal

objective value is usually unknown.
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Figure 5.1: Comparing Chebyshev’s lower bound to simulation results.

5.3 Experimental results

In this section we present results of experiments we performed in order to

examine the techniques presented in Section 5.2.

5.3.1 Results on the Chebyshev’s bound based technique

In these experiments, our aim is to check to what extent Chebyshev’s bound

gives meaningful results. To this end, we took 1000 random instances of

STSP, on 20 vertices each, with edge weights selected uniformly and in-

dependently in [0, 1]. For each of the instances, we randomly selected a

solution that is better than the average solution of that instance (by ran-

domly generating solutions until obtaining a solution with this property).

We compared Chebyshev’s bound on the dominance ratio of the selected

solution with an estimate of this ratio, given by simulation. The latter es-

timate was calculated as the percentage of solutions which outperformed

our initial randomly selected solution, taken over a large number of random

solutions.

Figure 5.1 shows the results. The instances (horizontal axis) are sorted

according to their simulative estimation. The decreasing graph provides the

relative error of Chebyshev’s bound with respect to the (probably very ac-
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Figure 5.2: Scatterplot of Chebyshev’s lower bound and simulation results.

curate) estimate given by the simulation. It shows that Chebyshev’s bound

gets better and more meaningful as the solutions get better. For solutions

close to the average solution value, Chebyshev’s bound yields meaningless

estimates, whereas for very good solutions it yields good estimates. A scat-

terplot of Chebyshev’s bound (vertical axis) and the estimation provided by

simulation (horizontal axis) is provided in Figure 5.2.

Likewise, we considered all the Euclidean instances of size of up to 1000

vertices from TSPLIB [90]. We used the following six heuristics available in

the Concorde TSP Solver [9]: Greedy (GR), Boruvka (BV), Quick Boruvka

(QBV), Nearest Neighbor (NN), LinKernighan (LK), and Optimal (OPT).

(For more information on these heuristics consult the solver’s [9] documen-

tation.) We applied each of the heuristics on each of the instances, obtained

solutions, and calculated Chebyshev’s lower bounds on the dominance ratio

of each of the solutions.

The graphs of the dominance of the heuristics are given in Figure 5.3,

in which a representative part has been zoomed in. In this figure (as well

as in Figure 5.4), the instances are arranged by their size on the horizontal

axis. The vertical axis provides the dominance ratio. The location of the

two coinciding graphs corresponding to the OPT and LK heuristics, above
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Figure 5.3: Comparison by dominance. Instances from TSPLIB.
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Figure 5.5: Comparison by approximation ratio. Instances from TSPLIB.

all the other graphs, shows that the dominance ratio is able to point to

the better methods, and that the LK heuristic usually provides very good

solutions. The NN heuristic seems to be the worst all the way long. The

other three heuristics (GR, BV, and QBV) are in the middle.

Similar phenomena were observed when we used Chebyshev’s lower bound

to compare GR and NN on randomly generated instances (Figure 5.4). A

comparison using approximation ratio yielded similar results, as can be seen

in Figure 5.5. To make it clearer, the instances in this figure are sorted

according to the approximation ratio of the NN heuristic on them.

5.3.2 Results on the confidence interval based technique

In the following, our main aim is to examine and demonstrate the usability

of the technique presented in Section 5.2.3 as a way to compare and dif-

ferentiate heuristics according to their estimated domination ratio. To this

end, we compared the following heuristics for Max Sat:

Majority Vote (MV). This heuristic assigns the value true to a variable

if its number of positive occurrences is at least as large as its number
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Figure 5.6: Estimated domination ratio of Majority Vote heuristics on ran-
dom Max Sat instances.

of negative occurrences. Otherwise, it assigns it the value false.

Step-by-step Majority Vote (SMV). This heuristic goes over the vari-

ables one-by-one according to some random order. It assigns a truth

value to the current variable according to the majority vote as before.

However, after each assignment it discards all the clauses satisfied so

far. The resulting instance is passed for the next step.

Greedy Occurrence SMV (GOSMV). Same as SMV, but at each step

assigns a truth value to the currently most frequent variable. Ties are

broken arbitrarily.

Greedy Unbalanced SMV (GUBSMV). Same as SMV, but at each

step assigns a truth value to the variable for which the absolute value

of the difference between its number of positive occurrences and num-

ber of negative occurrences is maximal at this point. Ties are broken

arbitrarily.

The comparisons were done on 1000 randomly generated Max Sat in-

stances, on n = 50 variables x1, x2, ..., xn and m = 300 clauses. We select
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Figure 5.7: Estimated domination ratio of Majority Vote heuristics on ran-
dom Max Sat instances. A vertical zoom on the top echelon.

the number of variables to appear in each clause uniformly from the interval

[1, n]. Then, for each variable xi we draw a random number from the inter-

val [0, 1/i], and select the ones with the largest random numbers to appear

in the clause. Each of these variables appears in the clause positively or

negatively with probability 1/2.

For each such randomly generated instance we applied each of the heuris-

tics, and obtained their solutions. The quality of a solution was assessed by

Lemma 1. We have chosen ε = 0.03 and δ = 0.001. Each variable of the

random solutions generated for the assessment was set to true or false

with probability 1/2.

The estimated domination ratio of each of the heuristics on the randomly

generated instances are depicted in Figure 5.6. On the horizontal axis, the

instances are sorted in ascending order of performance of the heuristics on

them. The sorting is done for each of the heuristics independently, so that

a specific point on the horizontal axis is likely to correspond to distinct

instances for the various heuristics. The vertical axis is the estimated dom-

ination ratio at this point. For example, the point (147, 0.3) marked on the

graph of the MV heuristic indicates that the domination ratio of the instance
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MV SMV GOSMV GUBSMV

min 0.0037 0.3463 0.1716 0.8341

max 1 1 1 1

mean 0.6611 0.9603 0.8991 0.9908

median 0.7263 0.9901 0.9599 1

std 0.2811 0.0735 0.1394 0.0206

Table 5.1: Performance statistics of Majority Vote heuristics on random
Max Sat instances.

ranked as the 147-th out of 1000 (from the bottom) for this heuristic is 0.3.

A vertical zoom on the top echelon of the domination ratio (above 0.9) is

provided in Figure 5.7.

A performance statistics is provided in Table 5.1. For each of the heuris-

tics we give the minimum, maximum, mean, and median, estimated domina-

tion ratio measured over the 1000 instances. The standard deviation around

the mean estimated domination ratio is also provided. For example, one may

learn from the performance statistics that the mean estimated domination

ratio of the SMV heuristic was 0.9603, whereas its worst case domination

ratio was 0.3463.

Inspecting the results, one can clearly see that the MV heuristic is the

worst, as expected. Better performance was shown by the GOSMV heuris-

tics which performs relatively well on average but failed to provide good per-

formance in the worst case. Both were inferior to the SMV heuristic. The

best performance was shown by the GUBSMV heuristic, which performed

well not only on average but also in the worst case; see the minimum per-

formance in the table. The median of 1 for this heuristic indicates that it

provided a solution better than all randomly selected solutions for at least

half of the instances.

It is worthwhile mentioning that, by applying the technique demon-

strated in this section, we not only obtained a clear differentiation between

the explored heuristics, but also gained quantitative insights regarding the

performance gap between them in terms of domination ratio.

Page 119 of 136



CHAPTER 5. DOMINANCE CERTIFICATES 5.4. DISCUSSION

5.4 Discussion

We have demonstrated analytic and probabilistic methods to obtain a non-

trivial combinatorial dominance certificate on the quality of any ad-hoc

solution to a given combinatorial optimization problem on any particular

instance. We have shown that these methods are easily applied to TSP

and Max Sat. We note that similar approximation ratio certificates are not

forthcoming for ad-hoc solutions.

This opens up two interesting lines for investigation. The first is to apply

these methods to experimentally compare heuristics for other optimization

problems. These methods provide ways of identifying relatively hard in-

stances of particular problems and certifying the quality of heuristics even in

the absence of known optimal solutions. The second direction concerns the-

oretical investigations of the power of the Chebyshev-based method. Does

the method provably yield more meaningful bounds on some problems than

others? To what extent does this method apply to problems with infeasible

solutions?
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Conclusion

In Chapter 2 we have provided some results characterizing the ensemble of

all (equally likely) r-CNF formulas. These results apply to both random

Max r-Sat and random r-Sat. Throughout this chapter we have chosen to

present them in the context of random Max r-Sat instances.

In many heuristics, after a local optimum has been reached, the whole

search is repeated from a different, randomly selected starting point. This

is a simple, clean way to restart. Yet, as the heuristic may have already

yielded a quite good assignment, one may prompt for further exploration

of the landscape in the vicinity of this assignment. In such cases, one may

want to perform a jump from the local optimum that is not too large, so as

to stay in the vicinity of the local optimum. On the other hand, a too small

jump will leave us in the basin of attraction of the current local optimum,

which will lead to the same local optimum again.

To this end, the autocorrelation length may provide assisting informa-

tion, as it hints on the average distance between local optima [74]. The

specific way of using it to calculate the size of the jump is a subject for

further research.

We also note that the nature of industrial instances, for example, is

subtly different from that of random ones. Their underlying probability

model, if any, is different, and they should be addressed separately. We

hope our work will encourage a concise analysis of modeled ensembles of

practical instances.

In Chapter 3, we have explored the correlation between the quality of

initial assignments provided to local search heuristics and that of the corre-
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sponding final assignments. We have shown that this correlation is signifi-

cant and long-lasting. Thus, under practical time constraints, the quality of

the initial assignment is crucial to the performance of local search heuristics.

We demonstrated our point by improving the state-of-the-art solver

CCLS, by combining it with MOCE. Instead of starting CCLS from ran-

dom initial assignments, we started it from excellent initial assignments,

provided by MOCE. The combined MOCE-CCLS solver provided a signifi-

cant improvement over CCLS. Moreover, MOCE-CCLS proved to be much

more scalable. Namely, it handles larger instances better, and shows supe-

rior performance on them.

Given the above, we recommend MOCE-CCLS over RAND-CCLS. Fur-

thermore, we recommend starting CCLS from solutions even better than

those provided by MOCE, as long as such may be obtained in linear time

or slightly longer (say, by a logarithmic factor).

In Chapter 4 we present and study a new algorithm for the Maximum

Satisfiability (Max Sat) problem. The algorithm is based on the Method of

Conditional Expectations (MOCE), and applies an efficient greedy variable

ordering to it. We call our algorithm Efficient Exhaustive Method of Con-

ditional Expectations (EEMOCE) as its greediness efficiently exhausts all

unassigned variables at each step.

MOCE may be seen as a derandomization of RAND, the naive algorithm

that sets the variables uniformly at random to either true or false. While

MOCE still considers the variables in a random order, at each step it sets

the seemingly better truth value to the currently considered variable. This

is done by comparing the expected number of satisfied clauses under each

of the two possible truth values it may set to the current variable. Then,

setting the variable to the truth value for which this expected number is

larger.

EEMOCE may be seen as a derandomization of MOCE. It derandomizes

the order in which the variables are assigned. While this order is random in

MOCE, in EEMOCE we set the seemingly best variable at each step. This

is done by comparing the expected number of satisfied clauses under each

of the remaining variables, when each is assumed to be set to its seemingly

better truth value (as done by MOCE). Then, we set the variable for which

this expected number is the largest.

While EEMOCE removes a lot of randomality from MOCE, it does not
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remove it all. EEMOCE still includes two types of randomality. The first

type occurs when assigning a given variable, for whom both truth values

give the same expected number of satisfied clauses. This tie breaking is

done randomly by EEMOCE, same as by MOCE.

The second, and more important, type of randomality occurs when se-

lecting the variable to be assigned, out of all the remaining unassigned vari-

ables, in a given step. Usually, there are numerous variables that give the

same maximal expected number of satisfied clauses.

The remaining randomality in EEMOCE opens a space for further re-

search focusing on the derandomization of EEMOCE. This kind of deran-

domization is expected to provide an even better algorithm. Specifically, it

seems that the second type of randomality is a prominent derandomization

candidate.

Except for a further derandomization of EEMOCE, in the following, we

list some other algorithmic ideas worth exploring as possible improvements

to EEMOCE. All these ideas are novel and unexplored at the time being,

as far as we know.

1. CEEMOCE: Consensus-based Efficient Exhaustive Method of Condi-

tional Expectations.

2. REEMOCE: Reality-based Efficient Exhaustive Method of Conditional

Expectations.

3. EEMOCEV: Efficient Exhaustive Method of Conditional Expectations

and Variances.

In CEEMOCE we apply EEMOCE several times on an instance, say a

hundred times, in each cycle. In each application, we do (the second type)

tie breaking randomly. Thus, we obtain many solutions. We collect all these

solutions and try to deduce a backbone for the next cycle. The backbone

consists of variables on which the vast majority of the solutions consent (give

same truth value). This backbone is then locked as a partial assignment

which is fed back to the next cycle. A cycle, in which no consensus is

obtained, marks the end of the core of the algorithm, and one last application

of EEMOCE is done to assign truth values to the variables not included in

the last backbone.

One challenge here is to define what we consider as consensus. Setting

the threshold optimally to fit various instances is not trivial. Another issue
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is to properly deal with variables that are passively assigned during the

execution of EEMOCE.

REEMOCE is a complicated, yet a clear improvement of EEMOCE.

As EEMOCE gives the current variable a truth value based on conditional

expectation, assuming the other variables are to be assigned randomly, it

clearly misses information. A better way to consider the revenue of each

truth value for a given variable is by assuming the tail will be assigned using

EEMOCE itself (and not randomly). This way, REEMOCE makes a better

and more informative decision for each variable.

The main problem in REEMOCE is to collect data to assist each possible

decision, and to do it accurately enough in a reasonable time. This data is

collected one time as a preprocessing operation, and may be used afterwards

many times for the given instance. A caveat of REEMOCE is that this

preprocessing should be done for each family one may want to solve.

The EEMOCEV algorithm is an extension of EEMOCE, which takes

variance considerations into account. In particular, it may possibly select

an assignment different from the one selected by EEMOCE if the opposite

assignment provides larger variance. The motto here is that we are willing

to trade expectation with variance, and to select a assignment that is worse

in expectation if we know its variance is larger. As we devise EEMOCE

to reach solutions far above the expected solution value, it will be best to

consider the disparity of qualities together with the expectation.

The weight of the variance with respect to the expectation should be

decided dynamically during the algorithm. This might be done using an

approximation for the optimal number of satisfied clauses, and specifically

its location above the current mean in terms of the number of standard

deviations.

Besides the above, another possible future point for research is devising

and incorporating various simplification and improvement rules specifically

for Max Sat. Such rules allow us to reduce the size of the instances we

solve. Moreover, the improvements also allow us to improve the quality of

the solution. Finally, we find it useful incorporating local improvements to

final solutions, to enhance their quality even further.

In Chapter 5 we have demonstrated analytic and probabilistic methods

to obtain a non-trivial combinatorial dominance certificate on the quality of

any ad-hoc solution to various combinatorial optimization problems on any
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particular instance. We have shown that these methods are easily applied

to TSP and Max Sat. We note that similar approximation ratio certificates

are not forthcoming for ad-hoc solutions.

This opens up two interesting lines for investigation. The first is to apply

these methods to experimentally compare heuristics for other optimization

problems. These methods provide ways of identifying relatively hard in-

stances of particular problems and certifying the quality of heuristics even in

the absence of known optimal solutions. The second direction concerns the-

oretical investigations of the power of the Chebyshev-based method. Does

the method provably yield more meaningful bounds on some problems than

others? To what extent does this method apply to problems with infeasible

solutions?
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[35] P. Erdős and J. L. Selfridge. “On a combinatorial game”. Journal of

Combinatorial Theory, Series A 14.3 (1973), pp. 298–301.

[36] W. Fontana, P. F. Stadler, E. G. Bornberg-Bauer, T. Griesmacher,

I. L. Hofacker, M. Tacker, P. Tarazona, E. D. Weinberger, and P.

Schuster. “RNA folding and combinatory landscapes”. Physical Re-

view E 47.3 (1993), pp. 2083–2099.

[37] E. Friedgut and J. Bourgain. “Sharp thresholds of graph properties,

and the k-sat problem”. Journal of the American Mathematical So-

ciety 12.4 (1999), pp. 1017–1054.
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