
,

AWS Kinesis vs Kafka comparison:
Which is right for you?

Throughout the ages, there have always been clashes between great titans, this is also the
case in the software industry. We see fierce competition for supremacy by various vendors,
each vying for the attention of the consumer space. Two such titans can be found in the field
of Message Brokers. They are Apache Kafka and Amazon Kinesis. Recently I was tasked
with a project that brought this battle up close and personal. Just when I thought one had a
clear advantage and was a shoo-in, the other would come out with unexpected maneuvers
that threw the match up in the air. The choice, as I found out, was not an easy one and had a
lot of factors to be taken into consideration. So in the battle between Kinesis vs Kafka, the
winner could surprise you.

But to understand these titans, we must first dive into the world of Message Brokers, we
also need to talk about what they are and why they are so important. Message brokers are
architectural designs for validating, transforming, and routing messages between
applications. It is the middleman between a data streaming source and its intended
consumers.

According to Wikipedia - “The main function of a broker is to take incoming messages from
apps and perform some operations on them. Message brokers can decouple end-points,
meet specific non-functional requirements, and aid reuse of intermediary functions. For
example, a message broker may be used to manage a workload queue or message queue
for many receivers. This provides reliable storage, guaranteed message delivery, and
transaction management”

Now you might be wondering why this is so important. Well, a Message Broker is really good
at one thing which is processing messages. This means that when you have a lot of
messages (thousands, millions, billions of messages) then it could be worth looking into a

1

https://www.lucidchart.com/documents/edit/83830480-ad13-48d2-af04-e64173001142/0?callback=close&name=docs&callback_type=back&v=5199&s=592


Message Broker. It can create a centralized store/processor for these messages so that
other applications or users can work with these messages.

The best use case would be when you have large data streams between applications. You
need a middle man to process and direct the data to its intended target. It is also a great
solution for integration, especially in Microservices Architecture systems which makes
common and standardized data/message bus for all types of apps and services.

As message brokers, Kafka and Kinesis were built as distributed logs. Both do not grant the
ability to be modified or changed once an entry has been recorded, while new entries are
made only at the end of the log and read sequentially. This gives developers the ability to
trace events in the log when there is an issue. Plus the inability to perform modifications
increases consistency and security.

Apache Kafka and Amazon Kinesis
To better understand Kafka vs Kinesis, we would next need to introduce Streaming Data.
This is data that is generated continuously by thousands of data sources. They are sent in
the data records simultaneously, and in small sizes (order of Kilobytes). When we refer to
streaming data, we are talking about the large collection of generated content. These are
gotten from sources such as the web or mobile applications but also e-commerce
purchases, in-game activities or the never-ending information generated on social media.
Let’s not forget that IoT devices are also a source for such large data streams.

2

https://www.lucidchart.com/documents/edit/83830480-ad13-48d2-af04-e64173001142/1?callback=close&name=docs&callback_type=back&v=5199&s=365
https://www.lucidchart.com/documents/edit/83830480-ad13-48d2-af04-e64173001142/2?callback=close&name=docs&callback_type=back&v=5199&s=596


What is Apache Kafka?
It is an open-source, high-performance, fault-tolerant, and scalable platform for building
real-time streaming data pipelines and applications. Apache Kafka is a streaming data store.
It decouples applications producing streaming data (producers), into its data store from
applications consuming streaming data (consumers) from its data store. The distributed
nature of Apache Kafka allows it to scale out and provides high availability in case of node
failure. Organizations use Apache Kafka as a data source for applications that analyze and
react to streaming data.

What is Amazon Kinesis?
It is an Amazon Web Service (AWS) for processing big data in real-time. The key feature
inherent in Kinesis is its ability to process hundreds of terabytes of high-volume data streams
per hour. These could be continuously captured from sources such as operational logs,
social media feeds, in-game microtransactions or player activities, or even financial
transactions. Its advantage over previous technology is its ability to simplify the development
process of certain apps. This is done with Kinesis’ real-time operational decision-making with
streaming data.

AWS MSK solution
But there is, however, a third contender. While it is not a standalone platform like Kafka and
Kinesis, it is a streaming data service that manages Apache Kafka’s infrastructure and
operations. This makes it easy for developers and DevOps managers to run Apache Kafka
applications on AWS. All without the need to become experts in operating Apache Kafka
clusters or having a dedicated team to manage them. While Kafka is highly customizable, it
does take a massive amount of effort to maintain and run. Plus it’s not something to invest in
without proper infrastructure. But Amazon MSK takes care of this loophole. It does this by
operating and maintaining Apache Kafka clusters. Plus provides enterprise-grade security
features from the start. It has built-in AWS integrations that accelerate the development of
streaming data applications. So in the battle of Kinesis vs Kafka, MSK might be the hidden
underdog.

Talking Architecture
When it comes to core architecture for either Kafka or Kinesis, you will find that although the
outcome is similar, they operate very differently.

Apache Kafka is comprised of various components such as Records, Topics, Consumers,
Producers, Brokers, Logs, Partitions, and Clusters. Records can have key (optional), value
and timestamp. Kafka Records are changeless meaning once written they can not be
modified. A Kafka Topic is a stream of records, you can think of a Topic as a feed name.
Each topic has a Log which is the topic’s storage on disk. Each Topic Log is further broken
up into what are called partitions and segments.

3



There are four major APIs in Kafka, namely:
● The Producer API: sends streams of data to topics in the Kafka cluster
● The Consumer API: reads streams of data from topics in the Kafka cluster
● The Streams API: transforms streams of data from input topics to output topics
● The Connect API: implements connectors that consistently pulls from some source

system or app into Kafka or push from Kafka into others

Next is the Broker which is a Kafka server that runs in a Kafka Cluster. Multiple Kafka
Brokers are needed to form a cluster. The Kafka Cluster consists of many Kafka Brokers on
many servers. Broker sometimes refers to more of a logical system or as Kafka as a whole.

Kinesis comprises key concepts such as Data Producer, Data Consumer, Data Stream,
Shard, Data Record, Partition Key, and a Sequence Number. A shard is the base throughput
unit of an Amazon Kinesis data stream. The data producer emits the data records as they
are generated and the data consumer retrieving data from all shards in a stream as it is
generated. A stream is a logical grouping of shards, while the record is the unit of data
stored in an Amazon Kinesis stream. Finally, the partition key is typically a meaningful
identifier, such as a user ID or timestamp and the sequence number is a unique identifier for
each data record.

4

https://www.lucidchart.com/documents/edit/83830480-ad13-48d2-af04-e64173001142/3?callback=close&name=docs&callback_type=back&v=5199&s=430


Below is a breakdown comparison between Kafka and Kinesis:

Apache Kafka Amazon Kinesis

Concepts Kafka Streams Kinesis Analytics

Stream of records
container Topic Stream

Data Stored in... Kafka Partition Kinesis Shard

Unique ID of a
record Offset number Sequence number

Ordering under... Partition level Shard level

Features
SDK Support Kafka SDK supports Java AWS SDK supports Android, Java, Go, .NET

Configuration &
Features

More control on configuration and better
performance Number of days/shards can only be configured

Reliability The replication factor can be configured Kinesis writes synchronously to 3 different
machines/data-centers

Performance Kafka wins Kinesis writes each message synchronously to
3 different machines

5

https://www.lucidchart.com/documents/edit/83830480-ad13-48d2-af04-e64173001142/4?callback=close&name=docs&callback_type=back&v=5199&s=594


Data Retention Configurable 7 days at max

Log Compaction Supported Not supported

Processing Events More than 1000s of events/sec Almost 1000s of events/sec

Producer
Throughput Kafka Wins Kinesis is a bit slower than Kafka

Ops
Setup Weeks A couple of hours

Configuration Store Apache Zookeeper Amazon DynamoDB

Checkpointing Offsets stored in a special topic DynamoDB

Incident
Risk/Maintenance More In Kafka Amazon takes care

Human Costs

Require human support for installing and
managing their clusters, and also
accounting for requirements such as high
availability, durability, and recovery

Kinesis is just about paying and use

Courtesy http://www.itcheerup.net/2019/01/kafka-vs-kinesis/

Brief Features comparison
When it comes to features, Kafka and Kinesis offer varying implementations and functions.
For example, while Apache Kafka has SDK support for Java, Amazon Kinesis supports
Android, Java, Go, and .NET. So users of .NET would be more inclined towards tilt towards
Kinesis than they would Kafka. But the feature comparison doesn't just end there. While
dealing with Kinesis, you would start to notice a bit of limitation on some of its features.
When it comes to configurations, Kinesis only allows for the number of days/shards to be
configured. Plus you can only write synchronously to 3 different machines/data centers.
In terms of performance, Kinesis writes each message synchronously to 3 different
machines. This, however, slows down the write operation that in turn affects general
performance. Kafka, on the other hand, is more flexible in its configurations. It allows you
more control over configuration and better performance while letting you set the complexity
of replications. Performance-wise, Kafka has a clear advantage over Kinesis.
Let’s not forget that Kafka consistently gets better throughput than Kinesis. Kafka can reach
a throughput of 30k messages per second, whereas the throughput of Kinesis is much lower,
but still solidly in the thousands. While Kinesis throughput improved when parallelizing the
producers, in the sense that multiple producers scripts were running in parallel on one
machine, it will max out at about 20k msg/sec.
One that can attribute Kafa's supremacy here is its very strong community that has been
dedicated to its improvement over the years. But we are already seeing improvements in
Kinesis as time passes. So we can expect the throughput to increase down the line.

Costs analysis
Here is where things get a little more complicated, assuming you are going to run an
in-house Kafka server. You would think that since Kafka is open source and considered
free software, it should not cost anything to implement. This is not the case. What you would
be comparing here is the implementation cost of setting up, running, and maintaining a

6

http://www.itcheerup.net/2019/01/kafka-vs-kinesis/


Kafka installation along with the human resources needed, against the hosted nature of
Amazon Kinesis.
To give a clearer picture of what setting up Kafka would entail beyond the downloading of the
software, you would need to remember that it is highly customizable. This also means that
it’s not ready to go right out of the box. A lot of time and effort will be needed to get your
installation running. Then there is the added expense of managing and maintaining the
installation. If you already have a dedicated team on staff that can handle this, then you can
assign the task to them. But for a non-existing team scenario, you would be looking at hiring
skilled staff or outsourcing the installation and management. This is both time-consuming
and can be expensive. Let’s not forget the device cost of what you will be running Kafka on.
Amazon Kinesis, on the other hand, is a simple stress-free process to set up and start
using. Once you have paid for the quantity you need, then you are good to go. No hassle or
complicated setup. While the Amazon Kinesis is a simple straightforward installation, you will
require human resources for its setup In some cases, you can be up and running in a few
minutes. It should also be noted that AWS has provisioned-based pricing, meaning you will
be charged even if the cluster isn’t in use.

Who is using what
According to enlyft.com, there are about 12,792 companies that use Apache Kafka. It also
has a market share of about 15.16% which is 10x more than Amazon Kinesis. They stated
that: “Looking at Apache Kafka customers by industry, we find that Computer Software
(30%), Information Technology and Services (11%) and Staffing and Recruiting (7%) are the
largest segments.”
Amazon Kinesis has just 1% Market share with 478 know sites using it as stated by
datanyze.com

Which is right for you
Before running off to pick either of these two solutions, it would be best to note that both are
excellent and are very good at what they do. The question though is which is right for you,
Kinesis vs Kafka. To answer this you must first take a look at your use case and available
resources.
So here is what we can conclude:

● Apache Kafka - gives full flexibility and all advantages of the latest Kafka versions,
but requires more effort in its management

● Amazon Kinesis - simplifies the process of introducing streaming technology for
those who don’t have the the resources to manage Kafka, however, Kinesis has
much more limitations than Apache Kafka

● Amazon MSK - an intermediate solution that allows using Kafka as AWS service
hence simplifies the setup process and offloads DevOps management, but still
doesn’t have full compatibility with the latest Apache Kafka versions

7

https://enlyft.com/tech/products/apache-kafka
https://www.datanyze.com/market-share/big-data-processing/amazon-kinesis-market-share


If you have the in-house knowledge to maintain Kafka and Zookeeper, don’t need to
integrate with AWS Services and you need to process more than 1000s of events/second
then Apache Kafka is just right for you. You get the flexibility and scalability inherent in the
system plus the ability to customize it to your needs.

On the other hand, if you don’t have the in-house knowledge to maintain Kafka (a Dev team)
or have to integrate with other AWS services such as Redshift, DynamoDB, Lambda, etc
plus process 1000s of events/second at most, then getting Amazon Kinesis would be a
better choice.

However, not everyone falls squarely into one of these two categories. So a good middle
ground using Amazon MSK might be just right for you. You get the flexibility that Kafka gives
while also being able to integrate with AWS services. So it may end in a triple duel - Kinesis
vs Kafka vs MSK.

8

https://www.lucidchart.com/documents/edit/83830480-ad13-48d2-af04-e64173001142/5?callback=close&name=docs&callback_type=back&v=5199&s=595.4399999999999

