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Chapter 9
Necessary and Sufficient Conditions
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9.1 Worksheet 9A: Lead-in to Necessary and Sufficient Conditions
You may begin instruction of this chapter with Worksheet 9a, to be performed as individual practice by each student. Notify the students upon completion of the task that they will be returning to this worksheet at the end of the chapter (Worksheet 9e); at that time they will be able to compare their initial understanding with that which they acquired during the course of the chapter. This will allow them to reflect upon the changes in their understanding along with the points where further clarification is still required (Worksheet 9f). For this reason it is recommended that you proceed with the remainder of the chapter upon completion of the worksheet, holding off discussion of this worksheet until the end of the chapter. 
Because the lead-in worksheet is repeated again as a summary exercise, the sheet (together with proposed solutions) appears only once -- at the end of this chapter.
9.2 A Look Inside the Text
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Read the paragraphs highlighted below from pages 9 and 10 of Alice's Adventures in Wonderland. This excerpt will serve as the basis for discussion for the topic 'Necessary and Sufficient Conditions.'
It was all very well to say "Drink me," but the wise little Alice was not going to do that in a hurry. "No, I'll look first," she said, "and see whether it's marked 'poison' or not;" for she had read several nice little stories about children who had got burnt, and eaten up by wild beasts, and other unpleasant things, all because they would not remember the simple rules their friends had taught them: such as, that a red-hot poker will burn you if you hold it too long; and that, if you cut your finger very deeply with a knife, it usually bleeds; and she had never forgotten that, if you drink much from a bottle marked "poison," it is almost certain to disagree with you, sooner or later.

However, this bottle was not marked "poison," so Alice ventured to taste it, and finding it very nice (it had, in fact, a sort of mixed flavour of cherry-tart, custard, pineapple, roast turkey, coffee, and hot buttered toast,) she very soon finished it off.



"What a curious feeling!" said Alice. "I must be shutting up like a telescope."

And so it was indeed: she was now only ten inches high, and her face brightened up at the thought that she was now the right size for going through that little door into that lovely garden. First, however, she waited for a few minutes to see if she was going to shrink any further: she felt a little nervous about this: "for it might end, you know," said Alice to herself, "in my going out altogether, like a candle. I wonder what I should be like then?" And she tried to fancy what the flame of a candle looks like after the candle is blown out, for she could not remember ever having seen such a thing.

After a while, finding that nothing more happened, she decided on going into the garden at once; but, alas for poor Alice! when she got to the door, she found she had forgotten the little golden key, and when she went back to the table for it, she found she could not possibly reach it: she could see it quite plainly through the glass, and she tried her best to climb up one of the legs of the table, but it was too slippery; and when she had tired herself out with trying, the poor little thing sat down and cried.

9.3 Worksheet 9b: Necessary and Sufficient Conditions
The central topic of this chapter – necessary and sufficient conditions – kicks off with Worksheet 9b, which begins with the excerpt shown above (Section 9.2). 
Remarks:
· Worksheet 9b is to be performed in pairs or in small groups to allow for consultation.
· Upon completion of the worksheet, the students may present their answers to the class; a classroom discussion of these solutions is recommended. At this point it is advised that judgment of the answers be avoided; points of disagreement and misperceptions, however, should be noted.  
· After presentation of the logical and mathematical foundations (Section 9.4 below), these answers should be revisited and discussed once again.
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Worksheet 9b and Proposed Solutions
1. According to the excerpt above, does it suffice for Alice's size to match that of the door in order for her to be able to enter the garden? 
No. It does not suffice for Alice's size to match that of the door in order for her to be able to enter the garden. As Alice discovered, she also needs the key in order to enter the garden. Being the appropriate size is necessary in order for Alice to pass through the door. But it is not sufficient.
2. According to the excerpt above, does it suffice for Alice to have the key to the little door in order for her to enter the garden?
No. It does not suffice for Alice to have the key to the little door in order for her to be able to enter the garden. Although she needs the key in order to be able to enter the garden, if her size does not change to match that of the door, she will not be able to pass through it even if the key is in her hand. The key is necessary in order for Alice to pass through the door, but it is not sufficient.
3. What suffices in order for Alice to be able to enter the garden through the little door?
In order for Alice to be able to enter the garden through the little door, it suffices for both conditions to exist simultaneously: her size must match that of the little door, and she must have the key for unlocking the little door. Existence of both of these suffices to guarantee that Alice could enter the garden through the little door.
4. Does there exist a situation in mathematics similar to that which Alice encountered with respect to the two conditions for entering the garden through the little door?
Divisibility by 2 is necessary for a number to be divisible by 6. But it is not sufficient (there are other numbers such as 10, for example, that are divisible by 2 but are not divisible by 6). Divisibility by 3 is also necessary for a number to be divisible by 6, but it is not sufficient. (Why?) On the other hand, divisibility by 2 and by 3 are sufficient for a number to be divisible by 6. 
9.4 Logical and Mathematical Foundations
Upon completion of Worksheet 9b, and after discussion of the students' answers, the following concepts and topics are to be presented:
A. Necessary conditions
B. Sufficient conditions
C. Necessary conditions that are not sufficient, sufficient conditions that are not necessary, and necessary and sufficient conditions
D. The relationship between necessary conditions and sufficient conditions
E. The relationship between necessary conditions and sufficient conditions, and conditional statements
F. The relationship between necessary conditions and sufficient conditions, and the quantifiers ALL and ONLY
G. The meaning of a definition and its relation to the necessary condition, the sufficient condition and the necessary and sufficient condition
A. Necessary Conditions
p and q are statements. When we say that p is a necessary condition for q, we mean that q can  be TRUE only if p is TRUE. In other words, if p is not TRUE, then it is certain that q is not TRUE as well. The only conclusion that may be inferred is that if q is TRUE, p is TRUE with certainty. But even if p is TRUE, it cannot be inferred that q is TRUE as well. 
For example:
· Given two statements:  
p: There are clouds in the sky now. 
q: It is raining now. 
Is p a necessary condition for q? The answer is 'Yes' -- p is a necessary condition for q. In order for it to rain, it is necessary for there to be clouds. That is, clearly if it is raining now (q is TRUE), then there are necessarily clouds in the sky (p is TRUE). If it is FALSE that there are clouds in the sky now (p is FALSE), then it is FALSE with certainty that it is raining now (q is FALSE). But it is also possible that there are clouds in the sky now (p is TRUE), yet it is not raining now (q is FALSE). Therefore we say that the clouds are a necessary condition for rain, or, only if there are clouds is it raining. 
· Given two statements:  
s: A given polygon has four sides.
t: A given polygon is a square.
Is s a necessary condition for t? The answer is 'Yes' -- s is a necessary condition for t. In order to a polygon to be a square, it necessarily has four sides. That is, if the given polygon is a square (t is TRUE), then the polygon necessarily has four sides (s is TRUE). In other words, if the number of sides of the given polygon is not four (s is FALSE), then it cannot be a square (t is FALSE). Yet, even if the given polygon does have four sides, it is not necessarily a square. It could, for example, be a trapezoid. We therefore say that having four sides is a necessary condition for a polygon to be a square, or, a polygon is a square only if it has four sides.
· Given two statements:  
m: The units digit of a number is 2.
n: The number is even. 
Is m a necessary condition for n? The answer to this question is "No". As indicated, the meaning of "m is a necessary condition for n" is that if m is FALSE, then n is FALSE with certainty. In this case, it is possible that the units digit of a given number is not 2 (for example, 6), but the number is still even (for example, 36). 
B. Sufficient Conditions
p and q are statements. When we say that p is a sufficient condition for q, we mean that if p is TRUE, then q is TRUE. In other words, if q is not TRUE, then p is not TRUE either. Yet q could hold TRUE even if p is not TRUE. 
For example:
· Given two statements:
p: I have a dog. 
q: I have a pet. 
Is p a sufficient condition for q? The answer is 'Yes' -- p is a sufficient condition for q. If I have a dog (p is TRUE), then clearly I have a pet (q is TRUE). But it is also possible that I have a pet (q is TRUE) yet the pet is not a dog (p is FALSE), but rather it is a cat, for example. Still, it is clear that if I do not have a pet (q is FALSE), then with certainty I do not have a dog (p is FALSE). 
· Given two statements:
r A given quadrilateral is a square.
s: The quadrilateral has four right angles. 
Is r a necessary condition for s? The answer is 'Yes' -- r is a sufficient condition for s, since if a quadrilateral is a square (r is TRUE), it is sufficient to guarantee that the quadrilateral has four right angles (s is TRUE). But it is also possible that the quadrilateral has four right angles (s is TRUE), but the quadrilateral is not a square (r is FALSE), but an oblong rectangle.
· Given two statements:
g: A number a is divisible by five.
h: The units digit of the number a is 5.
Is g a sufficient condition for h? The answer is 'No' -- g is not a sufficient condition for h, since if a number is divisible by five (g is TRUE), it is possible that the units digit is not five (h is FALSE) but rather zero. On the other hand, h is a sufficient condition for g.
C. Necessary Conditions that are not Sufficient, Sufficient Conditions that are not Necessary, and Necessary and Sufficient Conditions
Necessary conditions and sufficient conditions are independent of one another. A necessary condition could be not sufficient, and a sufficient condition could be not necessary. 
For example:
· Divisibility by 2 is a necessary condition for divisibility by 6, but is not a sufficient condition for it (there are numbers that are divisible by 2 but are not divisible by 6; 8 is one such example). 
· Divisibility by 12 is a sufficient condition for divisibility by 6, but it is not a necessary condition for it (the number 18, for example, is divisible by 6 but is not divisible by 12).
· On the other hand, divisibility by both 2 and  3 is a necessary condition and a sufficient condition for divisibility by 6. 
There are many cases where a necessary condition is also a sufficient condition, or conversely -- cases where a sufficient condition is also a necessary condition. In these cases we say that the condition is necessary and sufficient. When a condition is both necessary and sufficient, we say that this condition can serve as a definition (see Section G below).
D. The Relationship Between Necessary Conditions and Sufficient Conditions
We begin with the examples already introduced above:
· Divisibility by 2 is a necessary condition for divisibility by 6. This is equivalent to the assertion: Divisibility by 6 is a sufficient condition for divisibility by 2. 
· Divisibility by 12 is a sufficient condition for divisibility by 6. This is equivalent to the assertion: Divisibility by 6 is a necessary condition for divisibility by 12. 
In general, if p is a necessary condition for q, then q is a sufficient condition for p, and conversely -- if q is a sufficient condition for p, then p is a necessary condition for q.
This can be described using a Venn diagram:
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For example, A is the set of squares; B is the set of quadrilaterals. 
Since A(B, the existence of an element x in A is a sufficient condition for its existence in B. 
For the same reason, existence of an element in B is a necessary condition for its existence in A. This is the case since if an element z does not exist in B, then clearly it could not exist in A either. 
On the other hand, existence of an element in A is not a necessary condition for its existence in B; it could certainly be the case that there exists an element y in B that does not exist in A. 
Or, in other words: "A given polygon has four sides" is a necessary condition for "The given polygon is a square"; and "A given polygon is a square" is a sufficient condition for "The given polygon has four sides."
E. The Relationship Between Necessary Conditions and Sufficient Conditions, and Conditional Statements
In Chapter 8 we learned about the implication connective  IF ... THEN ... . 
p and q are statements. Let us assume that p is a sufficient condition for q; in this case we can say that the conditional statement "IF p, THEN q" is TRUE. The equivalent conditional statement is: IF NOT q, THEN NOT p. In other words, q is a necessary condition for p. 
We can also see the relationship between the sufficient condition and the conditional statement, and between the necessary condition and the conditional statement, in the Venn diagram shown above. 
For example:
· "It is raining now" is a sufficient condition for "It is cloudy now" (p ["It is raining now"] is a sufficient condition for q ["It is cloudy now"]). Stated in the form of a conditional statement: "If it is raining, then it is cloudy" (IF p, THEN q). 
· "It is cloudy now" is a necessary condition for "It is raining now" (q is a necessary condition for p). Stated in the form of a conditional statement: "If it is not cloudy, then it is not raining" (IF NOT q, THEN NOT p). 
As stated above, there are many cases where a particular condition is necessary and sufficient. Such a case may be expressed as: p if and only if q (p  q) (this is discussed in further detail in Sections 8.7g and 8.7h). For example, the condition: "Diagonals that bisect each other in a quadrilateral" is a necessary and sufficient condition for the quadrilateral to be a parallelogram. Thus, this condition could be used as a definition for the parallelogram.
F. The Relationship Between Necessary Conditions and Sufficient Conditions, and the Quantifiers ALL and ONLY
By looking at the Venn diagram shown above in section D, we can see the connection that exists between necessary conditions and sufficient conditions on one hand, and the quantifiers ALL and ONLY on the other:
We see from the diagram that the set of squares is fully contained in the set of quadrilaterals. In other words: Every square is a quadrilateral. That is, it cannot be the case that there exists a square that is not a quadrilateral. This may also be expressed as follows: Only a polygon that is a quadrilateral could be a square. That is, it cannot be the case that there exists a polygon that is not four-sided that is a square. 
Nevertheless, we have seen that "The polygon is a square" is a sufficient condition for "The polygon is a quadrilateral", and "The polygon is a quadrilateral" is a necessary condition for "The polygon is a square". 
In general, the fact that p is a sufficient condition for q may be expressed as follows: EVERY p IS q.
The fact that q is a necessary condition for p may be expressed as: ONLY q IS p.
We use a Venn diagram to summarize the previous sections, drawing the following conclusions for all x:

· xA is a sufficient condition for xB; and xB is a necessary condition for xA.
· IF xA, THEN xB (xA xB); and IF xB, THEN  xA (xB  xA).
· Every element that is in A is in B; and only an element that is in B is in A.
7. The Meaning of a Definition, and its Relationship to the Necessary Condition, the Sufficient Condition, and the Necessary and Sufficient Condition
G.1 Introduction -- Mathematical Theories
A mathematical theory is a collection of truths (or proven assertions; that is, theorems, as they are conventionally called in mathematics). Every mathematical theory has a collection of terms used to express concepts, for which the relations between them or their special characteristics are the truths of that theory. (For example, in number theory, one of the terms is "prime number", and one of the truths is that there is an infinite number of prime numbers. It is important that each term be well-defined, in order to guarantee that everyone who uses the theory has the same thing in mind when using the term. Thus, the definition must be precise and unambiguous. (For example, "prime number" is defined as "a natural number divisible by exactly two unique natural numbers").
As seen from this example, every definition is based on additional, underlying terms. (For example, the definition of a prime number is based on the terms "natural number" and "divisible"). Of course these prior terms must also be defined; their definitions are, in turn, based on definitions that preceded them. This regression of underlying terms must terminate at some point, in order to base a mathematical theory on a solid foundation, and in order to build it "bottom up". The fundamental concepts must be simple and straightforward, in order to assure that all users of the theory feel that they understand their meaning. These concepts are referred to as primitive concepts. For example, a child learns that a tomato is red and a cucumber is green. That child is not provided with a definition of "red", but learns the concept "red" from experience, with examples and counterexamples. Two children could engage in a discussion of the color of the tomato, using the term "red" without it having been defined, nor will they ask "what is red?", but rather they will accept it as commonly understood; namely, as a primitive  term. The three conventionally accepted primitive concepts of Euclidean geometry are the point, the line and the plane.
The meaning of the primitive concepts is determined by the relations among them. These basic relations are called axioms, accepted as fundamentally true without proof. For example, in Euclidean geometry the following assertion is accepted as a fundamental truth: Between every two points there is one and only one straight line. 
Game rules could illustrate the concept of axioms: the players of a game accept the rules without question, and play according to the rules without doubting them. A change in the rules of the game brings about a transformation to another game, which may be played according to the new rules. 
In summary, the foundations of any mathematical theory are its primitive concepts and its axioms. After laying the foundation, the theory may be built up upon it. This is accomplished by answering the question: "What else is true in a 'world' in which the primitive concepts and the given axioms are accepted?" From here on in the theory is built up in two ways:
a. Definition of new terms to express new concepts based on the definitions of the primitive  concepts or on other concepts already defined based on them.
b. Proof of new truths (called theorems), based on the axioms or theorems that have already been proven, using the terminology of the theory and the basic rules of inference (see Chapter 8).
The primitive concepts and the system of axioms together with the newly defined concepts and the proven conclusions that follow from them form a mathematical theory. A mathematical theory strives for the most solid foundation possible. Therefore an axiomatic system must uphold three requirements:
1. Consistency -- contradictory assertions cannot be deduced using the rules of inference from the axioms and from the theorems derived from them.
2. Independence -- there does not exist an axiom that is actually a theorem that can be derived from other axioms (a minimal system).
3. Completeness -- it is possible to prove or disprove every assertion that can be expressed within  the theory based on this axiomatic system. 
G.2 Definitions of Terms
The definition of a term is a description of a concept represented by the term. As stated earlier, a definition must be precise and unambiguous in order for the idea associated with the defined term to be conceptualized uniformly in the minds of the different people who use it. The definition must include only previously defined terms as well as basic conjunctions of language. 
Why must terms be defined? -- Definitions in mathematics allow for precise communication using terms as a kind of shortcut instead of having to explicitly describe mathematical concepts or objects in question again and again.
As shown in Chapter 2, the decision as to whether a certain geometric shape is a quadrilateral depends only on how a "quadrilateral" is defined. 
What must a mathematical definition satisfy? 
-- According to Aristotle (322-384 B.C.) a mathematical definition must uphold the following four conditions:
· Criterion of Hierarchy -- Description of a new concept as a special case of a more general concept defined in a previous term, by indicating one or more properties that make this new concept a special case. 
For example: A right angle is an angle in which the two adjacent sides are perpendicular to one another.
The general concept is "angle", and the property that uniquely identifies the new concept is that "two adjacent sides are perpendicular to one another." The new concept is "right angle."
· Criterion of Existence -- A definition describes a concept, but doesn't establishthe existence of an object that realizes that concept. Thus it is necessary to prove existence of an object that satisfies the definition, otherwise there is no need for the mathematical definition.
For example:
· We would like to define the concept "trisquacle" as a three-dimensional object whose projections are a triangle, a square (or rectangle) and a circle. Does such an object exist? The answer is "Yes". An example of this is a small tube of toothpaste. So there is justification for introducing a new term to represent the new concept.
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· We would like to define an "exterior-median triangle" as a triangle whose medians intersect outside the triangle. Does such a triangle exist? -- The answer is "No". In every triangle the point of  intersection of the medians is interior to the triangle. Thus mathematically there is no need to define an "exterior-median triangle" Nonetheless, there is didactic importance to raising this possibility for discussion, in order to arrive at the conclusion that the definition of a new term to represent a non-existing concept is unnecessary.
· Criterion of Equivalence -- Sometimes a particular concept can be defined in two (or more) ways; that is, with different properties. Let us denote these two methods as A and B. Two definitions are considered equivalent if and only if A can be selected as the definition of the concept, and the properties in B can be proven from it, and conversely -- if B can be selected as the definition of the concept, and the properties in A can be proven from it.
Examples:
· The concept parallelogram can be defined in the following ways:
A. "A quadrilateral with two pairs of parallel sides."
B. "A quadrilateral in which both pairs of opposite sides are of equal length." 
C. "A quadrilateral in which one pair of opposite sides are parallel and of equal length." 
All three of these definitions are equivalent, because it is possible to accept each of them as a definition and then to prove the remaining two.
· Criterion of Minimality -- Euclid (325-365 B.C.) presented an additional criterion. According to his requirement, the definition should not include properties beyond the minimum required to uphold the concept.
For example:
· The definition "A rectangle is a quadrilateral with four right angles" does not satisfy this requirement, since it suffices to define a rectangle as having three right angles.
This criterion takes into account aesthetic-philosophical considerations more than logical ones, as a non-minimal definition does not create a contradiction in the mathematical theory. Still, for didactic reasons of clarity, it is often preferable to choose a non-minimal definition. For example, students may find it easier to accept a rectangle as a quadrilateral with four right angles rather than one with three, since the latter case relies also on the fact that the sum of interior angles in every quadrilateral is 360°.
G.3 Definitions -- Necessary and Sufficient Conditions
In view of the discussion above, a definition is, in effect, a necessary condition for a mathematical object to have a particular name. 
Examples:
· The definition of an even number is: An integer divisible by 2. That is, a necessary and sufficient condition for an integer to be even is that the number is divisible by 2. Alternatively, an even number may be defined as an integer whose units digit is 0, 2, 4, 6 or 8. That is, a necessary and sufficient condition for an integer to be even is that its units digit is 0, 2, 4, 6 or 8. (The two alternative definitions are equivalent. Why?) 
The equivalence of two assertions may be expressed using "if and only if" (iff). 
For example:
· A number is even iff its units digits is one of: 0, 2, 4, 6, 8.
· A quadrilateral has a pair of opposites that are both parallel and equal iff its diagonals bisect each other. 
Alternatively, as stated above, these assertions may be expressed using necessary and sufficient conditions.
	
	


9.5 Review of Answers to Worksheet 9b
After the students have become familiar with the logical foundations, it is advised that they go back and review their answers to Worksheet 9b and correct them if necessary. 
9.6 Worksheets 9c and 9d: Necessary Conditions, Sufficient Conditions and Necessary and Sufficient Conditions
Worksheets 9c and 9d address the relationship between conditional statements and quantifiers on one hand, and necessary conditions and sufficient conditions on the other. 
Remarks:
· This worksheet may be performed as individual practice, in pairs or in small groups, with group discussion encouraged. 
· Upon completion of the worksheet, the students may present their answers to the class; a classroom discussion of these solutions is recommended. 

Worksheet 9c and Proposed Solutions
In Worksheet 7d we used quantifiers to analyze the conversation between Alice and the Cheshire Cat about people who live in Wonderland. Below we recall part of the conversation between them (page 76):
"In that direction," the Cat said, waving its right paw round, "lives a Hatter: and in that direction," waving the other paw, "lives a March Hare. Visit either you like: they're both mad."
"But I don't want to go among mad people," Alice remarked.
"Oh, you can't help that," said the Cat: "we're all mad here. I'm mad. You're mad."
"How do you know I'm mad?" said Alice.
"You must be," said the Cat, "or you wouldn't have come here." 
Which of the statements below is expressed in the excerpt above? 
1. A necessary condition for someone to be mad is that they come to Wonderland.
2. A sufficient condition for someone to be mad is that they come to Wonderland.
3. In order for someone to come to Wonderland it is necessary for them to be mad.
4. In order for someone to come to Wonderland it is sufficient for them to be mad.
In order to find the right answer, we translate the excerpt above to a conditional statement. 
Actually, the Cat says to Alice that if she were not mad, then she would not have come to Wonderland. Or, equivalently but expressed in the positive: If Alice came to Wonderland, then she is mad. In other words, "coming to Wonderland" is a sufficient condition for "being mad", and "being mad" is a necessary condition for "coming to Wonderland".
Therefore statements 2 and 3 are the statements that are expressed in the above excerpt. (Note that they are expressed in different ways, and both expressions should be attempted for both statements).
Alternatively, the content of the excerpt could be expressed using the quantifier ALL (or one of its derivatives) as follows (as indicated in the solution to Worksheet 7d above as well):
Anyone who comes to Wonderland is mad.
Alice came to Wonderland.
Conclusion: Alice is mad.
Here, too, we see that statements 2 and 3 are the ones expressed in the above excerpt.
Worksheet 9d and Proposed Solutions
In Worksheet 3d we read a part of a conversation between Alice and the caterpillar. The caterpillar noticed that Alice was troubled by her height (which was, you may recall, only 3 inches tall), and it therefore suggested that she take

 a nibble of the mushroom on which it was sitting. The caterpillar promised her that a bite of the mushroom will make her taller. Alice nibbled on the mushroom, but evidently ate too much of it, since she grew so much that she started to feel that she could bend her neck easily in any direction, like a serpent. Because of her height, Alice's head reached the treetops, where she scared a pigeon who had flown into her face and was beating her violently with its wings. The Pigeon was certain that Alice was a serpent who had come to eat her eggs. Alice tried to convince the Pigeon that she was not a serpent. Below is an excerpt from the conversation between them (pages 61-62):
"But I'm not a serpent, I tell you!" said Alice. "I'm a—— I'm a ——"
"Well! What are you?" said the Pigeon. "I can see you're trying to invent something!"
"I—I'm a little girl," said Alice, rather doubtfully, as she remembered the number of changes she had gone through that day.
"A likely story indeed!" said the Pigeon in a tone of the deepest contempt. "I've seen a good many little girls in my time, but never one with such a neck as that! No, no! You're a serpent; and there's no use denying it. I suppose you'll be telling me next that you never tasted an egg!"
"I have tasted eggs, certainly," said Alice, who was a very truthful child; "but little girls eat eggs quite as much as serpents do, you know."
"I don't believe it," said the Pigeon; "but if they do, why then they're a kind of serpent, that's all I can say."
1. Which of the following statements describes what the Pigeon said? (there may be more than one right answer).
a. If a creature is a serpent, then it has a long neck.
The Pigeon did not say that. The Pigeon identifies the neck but not the serpent. There could be serpents with necks that are different from the strange neck that brought the Pigeon to the conclusion that Alice is a serpent. But whoever has a neck like Alice's is identified by the Pigeon as a serpent.
b. If a creature has a long neck, then the creature is a serpent. 
The Pigeon said that. When the Pigeon saw Alice's neck, it said: "You're a serpent; and there's no use denying it." In other words, if a creature has a neck like that, then the pigeon considers it  a serpent. 
c. Every serpent has a long neck.
The Pigeon did not say that. The Pigeon is not talking about serpents but about creatures that have necks like Alice's.
d. Only serpents have long necks.
The Pigeon said that. The Pigeon said that it had seen a good many little girls in its time, but never one with such a neck "as that". The Pigeon concludes that Alice must be a serpent, and it can be assumed that this follows from its overall experience that only serpents have long necks (but not necessarily all of them!)
e. A necessary condition for a creature to be a serpent is that it has a long neck.
The Pigeon did not say that. From what the Pigeon said it cannot be deduced that every serpent has a long neck like Alice's. Evidently the Pigeon deduces that Alice is a serpent based on its overall experience that only serpents have such a neck (but the Pigeon does not state explicitly that the conclusion follows from this general observation).
f. A sufficient condition for a creature to be a serpent is that the creature has a long neck.
The Pigeon said that.  The Pigeon saw Alice with the long neck, and this sufficed for it to deduce that Alice is a serpent.
g. Are the statements that you indicated as describing what the Pigeon said equivalent to one another?
We marked statements b, d and f. We observed mathematically that the following three statements are equivalent to one another: "If A, then B"; "Only B is A" and "A is a sufficient condition for B".
2. Below is a sequence of assertions. For each one of them answer the two following questions:
 A. Does the sequence reflect what is described in the quote above? 
 B. Is the sequence valid as far as its logical inference is concerned? 
First sequence of assertions:
Only serpents like to eat eggs.
Alice likes to eat eggs.
Conclusion: Alice is a serpent.
In order to make it easier to grasp, we express the first assertion as a conditional statement: 
If a creature likes to eat eggs, then it is a serpent.
Alice likes to eat eggs.
Conclusion: Alice is a serpent.
This sequence is valid, in accordance with the "modus ponens" rule of inference (Section 8.7F), and this sequence reflects what the Pigeon said.
Second sequence of assertions:
All serpents like to eat eggs.
Alice likes to eat eggs.
Conclusion: Alice is a serpent.
Here, too, it is easier to answer the question by expressing the first assertion as a conditional statement: 
If the creature is a snake, then it likes to eat eggs.
Alice likes to eat eggs.
Conclusion: Alice is a serpent.
This sequence is invalid (as indicated in the discussion on the logical fallacy of "accepting the consequent" in Section 8.7G), and does not reflect what the Pigeon said.
Third sequence of assertions:
A necessary condition for a creature to like to eat eggs is that it is a serpent.
Every little girl likes to eat eggs.
Conclusion: Every little girl is a serpent.
In this case we express the first two assertions as condition statements.
If a creature likes to eat eggs, then it is a serpent.
If a creature is a little girl, then it likes to eat eggs.
It is easy to see that these two assertions, especially if we change their order, have the structure: If A, then B; If B, then C. Therefore, by transitivity (Section 6.4 C.3), the following may be inferred from them: If A, then C; or, in other words: If a creature is a little girl, then it is a serpent. The conclusion that appears in the question -- Every little girl is a serpent -- is equivalent to this. Therefore this sequence is valid and reflects what the Pigeon said.
    Fourth sequence of assertions:
A sufficient condition for a creature to like to eat eggs is that it is a serpent.
Every little girl likes to eat eggs.
Conclusion: Every little girl is a serpent.
In this case, too, we express the first two assertions as conditional statements:
If a creature is a serpent, then it likes to eat eggs.
If a creature is a little girl, then it likes to eat eggs.
It is easy to see that these assertions have the structure: If A, then C; if B, then C. Therefore, it cannot be inferred that there is a relation between A and B. Phis sequence is invalid, and does not reflect what the Pigeon said.
3. Both of the following statements are TRUE in Wonderland:
    (i) If a creature has a long neck, then it is a serpent and likes to eat eggs.
    (ii) If a creature does not have a long neck, then it is not Alice.
Which of the following conclusions follows from the given statements? (there may be more than one right answer).
Before we answer, let us designate the statements as follows:
z - the creature has a long neck.
n - the creature is serpent.
b - the creature likes to eat eggs.
a - The creature is Alice.
We express the given statements using the indicated notation.
(i) z  (n  b)
(ii) z  a
Statement (ii) is equivalent to: a  z; therefore by transitivity we can create the following sequence:
   a  z  (n  b)
The given statements can also be expressed as a Venn diagram:
Let N represent the set of serpents, let B represent the set of egg-eaters, let Z represent the long-necked creatures, and let A represent the set that has a single element -- Alice. 

a. If a creature does not like to eat eggs, then the creature does not have a long neck. 
We express the assertion as follows: If 
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. Or, in other words: If xZ, then x  B.
That is, x Z is a sufficient condition for x  B; and we see this reflected in the diagram (Z  B). Therefore the assertion follows from the given information.
b. If it is Alice, then it is a serpent. 
We express the assertion as follows: If x  A, then x  N. Or, in other words, x A is sufficient for x N, and we see this reflected in the diagram (A  N). Therefore the assertion follows from the given information.
c. If a creature does not have a long neck, then it is not a serpent. 
We express the assertion as follows: If 
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. Or, in other words: If x, then x
That is, x N is a sufficient condition for xZ. But in the Venn diagram we see that Z  N. Therefore x N is not a sufficient condition for x Z.  (Moreover, it is a necessary condition). Therefore the assertion does not follow from the given information.
d. Whoever has a long neck is a serpent. 
We express the assertion as follows: If x  Z, then x  N. That is, x Z is a sufficient condition for x N. We see this reflected in the diagram (Z  B); therefore the assertion follows from the given information.
e. In order to have a long neck, it is necessary to be a serpent. 
We express the assertion as follows: If x  A, then x  N. We see this reflected in the diagram (Z  B); therefore the assertion follows from the given information.
f. If order to have a long neck it is necessary to be Alice. 
We express the assertion as follows: x  A is a necessary condition for x  Z. But from the diagram we see that A  Z. That is, x  A is not a necessary condition for this. Moreover, it is a sufficient condition for x  Z. Therefore the assertion does not follow from the given information.
g. In order to have a long neck it is necessary to like to eat eggs. 
We express the assertion as follows: x  B, if a necessary condition for x  Z. We see this reflected in the diagram (Z  B); therefore the assertion follows from the given information.
h. If a creature is a serpent and it is not Alice, then the creature does not have a long neck. 
Let us examine the elements n, m, k. These three elements describe the different possibilities satisfying the requirements presented in the assumption of the conditional statement. It is TRUE that m , k  Z, but n  Z. Therefore the assertion does not follow from the given information.

i. In order to be a serpent, it suffices to have a long neck.  
We express the assertion as follows: x  Z is a sufficient condition for x  N. We see this reflected in the diagram (Z  N); therefore the assertion follows from the given information.
j. If a creature does not have a long neck, and it likes to eat eggs, then it is not Alice. 
Let us take a look at the element m, indicated in the diagram of case h above. This element satisfies the requirements in the assumption of the conditional statement.
Another way to present this is by stating that x  ZN is equivalent to x  Z (since Z  N). Since x  Z is a necessary condition for x  A, we conclude that the assertion follows from the given information. 
k. There do not exist serpents that like to eat eggs, who are not long-necked. 
Let us take a look at the element m, indicated in the diagram of case h above. This element represents a creature that is a serpent and likes to eat eggs, but is not long-necked. Therefore the assertion does not follow from the given information.
l. In order not to be long-necked, it suffices not to be a serpent.
We express the assertion as follows:
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 is a sufficient condition for 
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. Or, in other words, xZ is a sufficient condition for xN. We see this reflected in the diagram (Z  N); therefore the assertion follows from the given information.
m. Whoever has a long neck is Alice. 
We express the assertion as follows: x  Z is a sufficient condition for x  A. But from the diagram we see that A  Z. That is, x  Z is not a sufficient condition for x  A; moreover, it is a necessary condition for it. Therefore the assertion does not follow from the given information.
n. Only a creature that is long-necked and likes to eat eggs is a serpent. 
We express the assertion as follows: x  ZB  is a necessary condition for x  N.  But
x  ZB is equivalent to x  Z (since Z  B). Therefore the assertion can be expressed as follows:  x  Z is a necessary condition for x  N. But in the diagram we see that x  Z  is not necessary for x  N.  (Moreover, it is a sufficient condition for it). Therefore the assertion does not follow from the given information.


9.7 Worksheets 9e and 9f: Summary Exercise for Necessary and Sufficient Conditions
The summary exercise is composed of two Worksheets: 9e and 9f.
Remarks:
· Worksheet 9e is to be performed as individual practice by the students. In Worksheet 9f (which appears in the students' workbook only) the students will compare their current answers with the answers they gave to the same questions at the start of the chapter (Worksheet 9a).
· Upon completion of the summary exercise a classroom discussion is recommended to consider the changes that have taken place in the students' understanding and perceptions through the course of this chapter, as well as the particular difficulties encountered with the subject matter.

Worksheet 9e and Proposed Solutions
In math class the students in Wonderland learned about a geometric shape called a "quantagon". 
In their textbook the following statement appeared: "In a quantagon, every pair of opposite sides are quantivalent".
Which of the following assertions are TRUE and which are FALSE (provide an explanation for each case):
Before answering the question we draw a Venn diagram describing the information about the quantagon.
A – quantagon
B – Geometric shapes whose opposite sides are quantivalent.


We express the properties of the quantagon in several ways, all of which are equivalent to one another.
a. If a geometric shape is a quantagon, then its opposite sides are quantivalent to one another.
b. If not all pairs of opposite sides of a geometric shape are quantivalent to one another, then the shape is not a quantagon.
c. In every quantagon every pair of opposite sides are quantivalent to one another.
d. Only geometric shapes whose opposite sides are quantivalent to one another are quantagons.
e. A sufficient condition for all pairs of opposite sides of a geometric shape to be quantivalent to one another is that the shape is a quantagon.
f. A necessary condition for a geometric shape to be a quantagon is that all pairs of opposite sides are quantivalent to one another.
1. The condition that every pair of opposite sides are quantivalent is a sufficient condition for a geometric shape to be a quantagon. 
The assertion is FALSE. Opposite sides that are quantivalent to one another is a necessary condition for a geometric shape to be a quantagon (as stated in property f ).
2. In every quantagon every pair of opposite sides are quantivalent to one another.
This assertion is TRUE (as stated in property c ).
3. If in a particular geometric shape not every pair of opposite sides are quantivalent to one another, then the shape is not a quantagon.
The assertion is TRUE (as stated in property b).
4. If a geometric shape is not a quantagon, then not every pair of opposite sides are quantivalent to one another.
5. The assertion is FALSE. "Being a quantagon" is a sufficient condition for all pairs of opposite sides to be quantivalent to one another; however it is not a necessary condition. It is certainly possible that there exist other geometric shapes that are not quantagons for which all pairs of opposite sides are quantivalent to one another.
6. In order for a geometric shape to be a quantagon, it is necessary for each pair of opposite sides to be quantivalent.
The assertion is TRUE (as stated in property e ).
A necessary condition for Alice to be able to go into the garden is for her to be little.


A sufficient condition for the Rabbit to know the time is for it to have a watch in its waistcoat-pocket.
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�Is this right? Should it not be “takes”? or “took”???


It is correct as written. �
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