David S. Glass

Education

2011 – 2017 M.S. & Ph.D. in Bioengineering at Stanford University

Thesis with Prof. Ingmar Riedel-Kruse: "Natural and synthetic mechanisms for emergent multicellular patterning."

2007 – 2011 A.B. in Chemistry, *magna cum laude* at Princeton University Thesis with Prof. Joshua Rabinowitz: "Intrinsic and phosphorylation-based regulations of metabolic starvation response in *Saccharomyces cerevisiae*." Certificates: Quantitative & Computational Biology, Engineering Biology

Research Experience

2018 - 2024	Postdoctoral Scholar with Prof. Uri Alon
	Weizmann Institute of Science
	Systems & synthetic biology: bacterial physiology of antibiotic tolerance, evolutionarily and $E_{ij} = E_{ij} E_{ij}$
2012 2010	environmentally stable synthetic differentiation in <i>E. coli</i>
2012 – 2018	Ph.D. & Postdoctoral research with Prof. Ingmar Riedel-Kruse
	Stanford University
	Synthetic biology and biophysics: modeling of multicellular patterning, synthetic cell-cell adhesion
2011 – 2012	Ph.D. rotations with Profs. Drew Endy, Ingmar Riedel-Kruse, Christina Smolke
	Stanford University
	Systems & synthetic biology: DNA-encoded memory, yeast metabolic engineering, patterning models
2010 - 2011	Senior Thesis with Prof. Joshua Rabinowitz
	Princeton University
	Metabolomics: systems-level control of yeast starvation response
2009	Project lab research with Profs. Amy Caudy & David Botstein
	Princeton University
	Systems biology: mating-related gene expression in sterile yeast mutants
2009	Research intern with Prof. Yaakov Benenson
	Harvard University
	Synthetic biology: incoherent feedforward loops for robustness to DNA copy number
2008 – 2009	Research intern & iGEM team member with Prof. Ron Weiss
	Princeton University
	Synthetic biology: engineering of neuronal networks

Publications in preparation

- E. Vaisbourd, A. Bren, U. Alon, D.S. Glass
 - Preventing plasmid multimer formation in commonly used synthetic biology plasmids. *In review*. BioRxiv: doi.org/10.1101/2024.07.23.604805 Corresponding author.
- M. Raz, D.S. Glass, T. Milo, Y. Korem Kohanim, O. Karin, A. Tendler, A. Mayo, U. Alon. Unifying design principles of endocrine regulatory circuits. *In review*. BioRxiv: doi.org/10.1101/2023.07.03.547486
- M. Raz, T. Milo, D.S. Glass, A. Bar, A. Mayo, U. Alon. Endocrine gland size is proportional to its target tissue size. *iScience, in press* (2024).

Publications

D.S. Glass[†], A. Bren, E. Vaisbourd, A. Mayo, U. Alon[†].

A synthetic differentiation circuit in Escherichia coli for suppressing mutant takeover. *Cell* (2024).

Corresponding author and lead contact.

A. Bren*, D.S. Glass* , Y. Korem Kohanim, A. Mayo, U. Alon.
Tradeoffs in bacterial physiology determine the efficiency of antibiotic killing.
PNAS (2023).
H. Kim, D.J. Skinner, D.S. Glass , A.E. Hamby, B.A.R. Stuart, J. Dunkel, I.H. Riedel-Kruse.
4-bit adhesion logic enables universal multicellular interface patterning.
<i>Nature</i> (2022).
D.S. Glass, X. Jin, I.H. Riedel-Kruse.
Nonlinear delay differential equations and their application to modeling biological network motifs.
Nature Communications (2021).
H. Kim, X. Jin, D.S. Glass , I.H. Riedel-Kruse.
Engineering and modeling of multicellular morphologies and patterns.
Current Opinion in Genetics & Development (2020).
D.S. Glass & U. Alon.
Programming cells and tissues.
Science News & Views (2018).
D.S. Glass & I.H. Riedel-Kruse.
A synthetic cell-cell adhesion toolbox for programming multicellular morphologies and patterns.
Cell (2018).
D.S. Glass*, X. Jin*, I.H. Riedel-Kruse.
Signaling delays preclude defects in lateral inhibition patterning.
Physical Review Letters (2016).
A. Caudy, et al.
A new system for comparative functional genomics of <i>Saccharomyces</i> yeasts.
<i>Genetics</i> (2013).
Y.F. Xu, X. Zhao, D.S. Glass , F. Absalan, D.H. Perlman, J.R. Broach, J.D. Rabinowitz.
Regulation of yeast pyruvate kinase by ultrasensitive allostery independent of phosphorylation.
<i>Molecular Cell</i> (2012).
L. Bleris, Z. Xie, D. Glass , A. Adadey, E. Sontag, Y. Benenson.
Synthetic incoherent feedforward circuits show adaptation to the amount of their genetic template.
Molecular Systems Biology (2011).
Review
2020 – Pres. Reviewed articles for Cell, ACS Synthetic Biology, and iScience
Teaching
i cacining

2021 – 2022 ORT Arab School for Science and Engineering

Taught 11th grade biology enrichment bimonthly to students in an at-risk neighborhood in Lod, Israel.

- 2013 **Stanford University BioE 311: "Biophysics of multicellular systems and amorphous computing"** Helped design a new graduate-course curriculum, wrote all problem sets, taught mathematical lectures.
- 2013 **Stanford University BioE 42: "Physical Biology of cells"** Co-TAed undergraduate biophysics. Guest-lectured on the Poisson-Boltzmann equation.

2012 – 2014 Stanford Splash: "Genes and genetic engineering"

Co-taught a brief introduction to synthetic biology twice a year for middle and high school students.

2012 – 2016 Stanford 49ers:

Helped run middle school biology labs in East Palo Alto. Financial officer starting fall 2013

2012 – 2014 Stanford mentorship:

Mentored undergraduate bioengineering students

Honors

- 2018 Zuckerman Scholars Postdoctoral Fellowship (3 years of postdoc salary + ~\$50k research funds)
- 2018 Weizmann Faculty Dean's Fellowship (declined) (2 years of postdoc salary)
- 2013 Bio-X Bowes Graduate Fellowship (3 years of graduate salary)
- 2010 Princeton Dean's Senior Thesis Fund
- 2010 Leach Summer Scholar
- 2007 National Merit Scholar
- 2007 Robert C. Byrd Honors Scholar
- 2007 Edward J. Bloustein Distinguished Scholar

Conferences & Talks

- 2023 University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ. Invited Talk
- 2022 Next Generation in Biomedicine Symposium, Broad Institute, Cambridge, MA. Invited Talk
- 2022 Israeli Society for Microbiology, Ben Gurion University, Beer Sheva, Israel. Talk
- 2018 American Physical Society March Meeting, Los Angeles, CA. **Talk**
- 2018 Biophysical Society Annual Meeting, San Francisco, CA. Poster
- 2017 SB7.0, National University of Singapore, Singapore. Poster
- 2017 American Society for Microbiology Microbe, New Orleans, LA. Poster
- 2015 Biophysical Society Annual Meeting, Baltimore, MD. Poster
- 2015 American Society for Microbiology Conference on Biofilms, Chicago, IL. Poster

Work Experience

2017 – 2018 Scientific Consultant, BillionToOne

Developed targeted resequencing protocols and machine learning algorithms for genetic screening.

2015-2017~ Co-Founder & CTO of Genesis DNA, Inc.

Co-founded Genesis to develop a next-generation gene synthesis platform. Together with my co-founders, I built Genesis from the ground up, putting together a team, writing grants, raising capital, and setting up a biotech lab. At its largest we had a team of 3 founders, 2 employees, 3 advisors, and several investors. We developed hardware, software, and biochemistry/sequencing protocols. We participated in MIT's Global Founders Skills Accelerator, MassChallenge, and Indie Bio. We closed for lack of funding.

2010 – 2011 IT assistant, Princeton Office of Information Technology

Assisted Princeton University affiliates with computer setup, repair, and virus removal.

2009 – 2012 Linux Software Development

Created and maintained an extensible talking alarm clock for Ubuntu (launchpad.net/wakeup).

Skills

Laboratory techniques: synthetic biology, molecular biology, sequencing, mass spectrometry, FACS, microscopy, robotic automation, cell culture, yeast genetics.

Programming languages: Bash, C, Java, LaTeX, Mathematica, MATLAB, Perl, Python, R.

Human languages: English (native), Hebrew (fluent).