
Chapter 1

The Maxwell equations

A short recap of the mathematical basics can be found in chapter 5.

1.1 The complete Maxwell equations

The complete set of Maxwell equations and the field quantities were introduced in the lecture
“Grundgebiete der Elektrotechnik III”, and the same nomenclature is generally used here.
The field quantities are

~E electric field strength [V/m]

~D electric displacement [As/m2]

~H magnetic field strength [A/m]

~B magnetic flux density [Vs/m2]

and in general depend on the position ~r and time t. The sources of the electric and magnetic
fields are

ρ space charge density [As/m3]

~J electric current density [A/m2]

1.1.1 The Maxwell equations in integral form

It will be assumed that all boundary curves C and surfaces F are static, and relativistic
effects can thus be ignored.

1st Maxwell equation (Ampère’s circuital law, field equation for ~H)
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Figure 1.1: Law of flux

Figure 1.2: The fourth Maxwell equation.

2nd Maxwell equation (law of induction, field equation for ~E)
I

C

~E ·md~r = −
Z

F

∂

∂t
~B ·md

~F (1.2)

3rd Maxwell equation (field equation for ~D)
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4th Maxwell equation (field equation for ~B)
I

F

~B ·md
~F = 0 (1.4)

The closed boundary curve C encloses the area F , with the two positively oriented towards
each other in the mathematical sense. The surface F fully encloses the volume V and is
oriented outwards.

1.1.2 The constitutive relations in static matter

The constitutive relations with electric field constant (ε0 = 8.854187817 · 10−12 As
Vm) and

magnetic field constant (µ0 = 4π · 10−7 N
A2 ) in a vacuum are

~D = ε0 ~E + ~P (1.5)

~B = µ0

�

~H + ~M
�

(1.6)

and the values defined in matter

~P electric polarisation [As/m2]

~M magnetisation [A/m] .

(1.1) - (1.6) are always valid in a vacuum; in the presence of matter, strictly speaking they
hold only as long as the field values do not vary much with the distances between the atoms
or molecules (−→ electron theory)

No relationship analogous to (1.5), (1.6) with comparable generality exists for ~E and ~J .
However, for many technically important, static, linear, isotropic fixed bodies, the following
applies as a close approximation:

~J = σ
�

~E + ~E(e)
�

. (1.7)

~E(e) here captures current density components whose occurrence is not due to the dynamic
effect of the electrical field strength ~E. For example, these could be diffusion currents in
semiconductive components. σ is the conductivity of the material.



1.1. The complete Maxwell equations 3

1.1.3 The Maxwell equations in differential form and the corresponding

interface conditions

Should there be no singularities other than interfaces, such as e.g. point charges, linear
charges or linear currents, then the Maxwell equations in integral form (1.1) - (1.4) lead
directly to the validity of the Maxwell equations in differential form and the associated
interface conditions.

1st Maxwell equation in differential form and associated interface conditions

rot ~H = ~J + ∂
∂t

~D apart from interfaces

Rot ~H = ~JF at the interfaces

(1.8)

( ~JF is the surface current density (linear current density) with units [A/m]. Except
for a special case covered later, in static matter ~JF = ~N always holds for the surface
current.)

2nd Maxwell equation in differential form and associated interface conditions

rot ~E = − ∂
∂t

~B apart from interfaces

Rot ~E = ~N at the interfaces

(1.9)

3rd Maxwell equation in differential form and associated interface conditions

div ~D = ρ apart from interfaces

Div ~D = ρF at the interfaces

(1.10)

(ρF is the surface charge density with units [As/m2]. In this course, it will only be
taken into account for conductors.)

4th Maxwell equation in differential form and associated interface conditions

div ~B = 0 apart from interfaces

Div ~B = 0 at the interfaces

(1.11)

Inverting these under the conditions given in (1.8) - (1.11) in all spatial points immediately
yields in turn the validity of (1.1) - (1.4) for arbitrary curves C enclosing areas F and arbitrary
volumes V with surface areas F . Thus in this respect, (1.1) - (1.4) and (1.8) - (1.11) are
equivalent.

The definitions of surface divergence Div (5.45) and surface rotation Rot (5.46) are given in
Section 5.4. The surface charge density ρF and the surface current density ~JF are ideals; in
reality these are very high densities in very thin layers. The ideal interfaces stand for constant
changes in matter, often taking place within a few atomic layers through abrupt transitions.
Making such idealised assumptions simplifies the problem and is very often justifiable.
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It should furthermore be noted that the Maxwell equations are not completely independent
of each other. If we apply the divergence from (1.9) to both sides of the equals sign, then for
sufficiently smooth fields

div
�
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�

= ∇·
�

∇× ~E
�

= (∇×∇)· ~E = 0 = div

�

− ∂
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�

= − ∂

∂t
div ~B . (1.12)

This, however, corresponds precisely to the negative temporal derivative of (1.11).

1.1.4 The continuity equation

Taking the divergence of the first Maxwell equation (1.8) and using (1.10), we obtain the
continuity equation
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(1.13)

and thus

div ~J +
∂ρ

∂t
= 0 . (1.14)

The corresponding interface condition is

Div ~J +
∂ρF
∂t

= 0 . (1.15)

1.2 The energy theorem

The scalar multiplication of (1.8) with ~E and (1.9) with ~H away from the interfaces yields,
after differentiation,

~E · rot ~H − ~H · rot ~E = ~E · ~J + ~E · ∂

∂t
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∂t
~B . (1.16)

Taking (5.53), we obtain
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(1.17)

where the arrows indicate which value in the bracketed expression the nabla operator is
applied to.

Overall, it thus follows from (1.16), (1.17) away from the interfaces, that

− div
�

~E × ~H
�

= ~E · ~J + ~E · ∂

∂t
~D + ~H · ∂

∂t
~B . (1.18)


