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The effects of common approximations made when modeling convection in the interior of giant planets, like
Jupiter, are examined using two-dimensional (2D) numerical calculations at high Rayleigh number (10'°).
Small scale flow structures along the upper boundary and large scales in the lower region are observed for
an anelastic fluid spanning five density scale heights. A much more symmetric distribution in the scale of
flow structures is observed for a Boussinesq fluid in which density stratification is neglected. The absence
of magnetic fields results in higher fluid velocities and smaller scale flow structures. Neglecting the inertial
terms produces narrower plumes and a fundamentally different fluid flow pattern for anelastic fluids.
Although restricted to two dimensions, our results demonstrate that the spatial structure and time dependence
of thermal convection are significantly influenced by density stratification, magnetic fields and inertia. These
effects should not be ignored in three-dimensional (3D) convection models of giant planets.
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1 INTRODUCTION

Approximations, such as assuming constant density and neglecting magnetic fields and
inertial terms, are often used when modeling convection in the interior of giant planets
like Jupiter. Models with these approximations, however, may not accurately capture
the fluid dynamics within these giant planets. For example, giant gaseous planets
experience a significant change in density with depth (Guillot, 1999). Models that
assume a constant background density profile, the Boussinesq approximation, are
approximately valid only for very thin shells within a giant planet. However, deep inter-
ior models of Jupiter have employed the Boussinesq approximation (e.g., Sun et al.,
1993; Aurnou and Olson, 2001; Christensen, 2001, 2002; Wicht et al., 2002).

Shock pressure experiments suggest that hydrogen in Jupiter should become metallic
at roughly 1.4 Mbars (Nellis et al., 1996) which corresponds to about 0.84 of Jupiter’s
radius (Guillot, 1999). Convection of this electrically-conducting hydrogen in the deep
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interior of Jupiter, under the influence of planetary rotation, maintains Jupiter’s
magnetic field. The resulting strong Lorentz forces on the fluid may significantly
influence the convective structure; however most models of Jupiter neglect magnetic
fields.

Neglecting the inertial terms is a common practice when modeling convection in the
Earth’s mantle (e.g., Tackley ef al., 1993; Bunge et al., 1996). Several models for the
geodynamo also neglect part or all of the inertial term (e.g., Glatzmaier and Roberts,
1995; Kuang and Bloxham, 1999). If we look at the ratio of inertial to Coriolis
terms, the Rossby Number, we get roughly 10~'* for the Earth’s mantle, 10~ for the
Earth’s liquid core, and 10~2 for Jupiter’s interior. Therefore neglecting the inertial
terms is a good approximation for mantle convection and a relatively good approxima-
tion for the geodynamo; but it is a poor approximation for Jupiter. Neglecting inertial
terms is usually justified when the ratio of viscous to thermal diffusivities, the Prandtl
number, is very large (see (14) below), as it is for the Earth’s mantle; but again, this is
not the case for Jupiter.

In order to look at the effects of these approximations in closer detail, seven model
cases were examined using two-dimensional (2D) numerical calculations at high
Rayleigh number (10'°). The cases consisted of constant density and stratified density
profiles with rotation and magnetic fields, with magnetic fields but without rotation,
without magnetic fields, and without inertial terms.

2 NUMERICAL MODEL

We numerically simulate 2D thermal convection in a rotating, electrically-conducting
fluid with flow and field in the x—z plane. Two density profiles are considered: a
Boussinesq profile with no density stratification, and therefore no rotational effects,
and an anelastic profile spanning five density scale heights (N, = 5), making the fluid
at the bottom 148 times as dense as the fluid at the top. In all other aspects these
two calculations are the same. Calculations with each density profile are then simplified
by excluding first the rotational terms for the anelastic case, then the magnetic fields,
and finally the inertial terms.

The governing equations for perturbations relative to an adiabatic, hydrostatic,
rotating reference state are the momentum equation (1), the heat equation (2), the mag-
netic induction equation (3), and the equations governing the conservation of mass (4)
and magnetic flux (5) are
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Here v is the velocity vector, S is the specific entropy perturbation, B is the magnetic
field, J = u~'Vx B is the electric current density, p is the reference state density
(a function of depth), and p is the sum of the pressure perturbation divided by p and
the gravitational potential perturbation (Braginsky and Roberts, 1995). We assume
the viscous, v, thermal, x, and magnetic, n, diffusivities are constants, as are the specific
heat capacity at constant pressure, C,, the magnetic permeability, u, the gravitational
acceleration, g,, in the —z direction and the angular velocity, Q, of the rotating frame.
For these calculations we choose € to be negative, i.e. in the —y direction. Since we are
interested in turbulent convection in the deep interiors of giant planets, v and « are
considered turbulent diffusivities and the diffusive heat flux in equation (2) has been
set proportional to the entropy gradient (Braginsky and Roberts, 1995). The momen-
tum equation (1) has been simplified by dropping the additional viscous diffusion
terms that would depend on the density gradient if v were a molecular viscosity. In addi-
tion, viscous and ohmic heating have been neglected in the heat equation (2) for these
high Rayleigh number, low diffusion, simulations.

We assume a polytropic reference state to determine the relationship between p and
N,, the number of density scale heights, in the following two equations (6) and (7)
where z indicates the height, p, is the reference state density at the lower boundary,
z, 18 the stratification parameter, and » is the polytropic index:
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We choose the adiabatic reference state to be
4
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as it would be for a polytropic perfect gas. The Boussinesq limit is reached as z, — oo
and the strongly stratified limit as z, — D, where D is the depth of the box in z direc-
tion. The polytropic index, n, is set to 0.95 for the deep interior of Jupiter (Hubbard,
1984).

The upper and lower boundaries of the box are impermeable, stress-free (free-slip),
and are set to a constant value of entropy. The side boundaries are periodic. The
length of the box in the x direction is L, so the aspect ratio is @ = L/D. A uniform
background magnetic field with amplitude B, is applied in the z direction. The total
magnetic flux (per unit length in the y direction) through any z level is constrained
to be B,L.

The governing dimensionless parameters are the Rayleigh number, Ra =
goASD? /vC, = 10!, the Prandtl number, Pr = v/k =1 or oo, the Ekman number,
Ek =v/2|Q|D* =107 or oo, the Roberts number, g=«/n=1, and the
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Chandrasekhar number, Q = B2D?*/pvuun = 10* or 0. Here AS is the specified drop
in specific entropy across the box and p is the reference state density in the middle
of the box. For Pr=1, Ek =107, and Ra = 10'° the convective Rossby number,
Ro = (RaEK?*/ Pr)'* = (g,AS/4Q2DC,)'/%, is 1.0, meaning the Coriolis and buoyancy
forces should be roughly comparable.

We use the vorticity-stream-function method (Weiss, 1981a) where the curl of the
momentum equation is written in terms of the vorticity, @ = V xv. The stream func-
tion, ¥, for our anelastic model is defined such that the mass flux pv =V x¥. In
this 2D model, w and W are in the y direction. Their amplitudes, w and W, are related
by

| W
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The magnetic induction equation is written in terms of the vector potential, A such
that B =V x A; we choose the Coulomb gauge, V-A = 0. In 2D, A and J are in the
v direction. Their amplitudes, 4 and J, are related by

1
J=—-V*4 (12)
"

with

0A4 04
—— and B.=

B, = = —.
ox

(13)

After scaling length by D, time by D?/k, entropy by AS, magnetic field by B, and
density by p,, the resulting nondimensional, anelastic equations are
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where

hr==—=— : (17)

The numerical technique consists of a spectral method in the horizontal direction
with 200 complex Fourier modes and finite differencing in the vertical direction on a
Chebyshev grid with 600 levels. The Chebyshev grid naturally provides greater resolu-
tion near the boundaries where it is needed. The Fourier expansion for a variable, f, is

M
feez) =3 fulz )exp (ikyx)

m=—M

M
= fo(z, ) +2 ) Real [fu(z, 1) exp (iknx)] (18)

m=1

where M is the truncation degree and k,, = 2wm/a. The vector potential, 4, has an
additional term, x, outside the summation that represents the uniform, vertical, back-
ground magnetic field, scaled by B,.

This type of expansion allows for periodic boundary conditions at the side bound-
aries. Boundary conditions on the top and bottom borders are: S,,.o = 94,,/0z =
U, = (0*V,,/32> — h,(3¥,,/0z)) = 0 and therefore w, = 0. At the bottom boundary
(z=0), S, =1 and at the top boundary (z = 1), S, = 0.

The prognostic equations (14)—(16) are evolved in time using an implicit Crank—
Nicolson scheme for the linear terms and an explicit Adams—Bashforth scheme for
the nonlinear terms. A spectral transform method is employed to calculate the non-
linear terms.

The 2D box is oriented so as to represent convection on the equatorial plane of the
planet. This allows for the addition of the rotational term with the axis of rotation
perpendicular to the plane of the box. Counter-clockwise rotation of the box, with
the axis of rotation out of the page, causes the expanding fluid to spin clockwise and
contracting fluid to spin counter-clockwise (Glatzmaier and Gilman, 1981). In 2D
Cartesian geometry, the Coriolis forces are totally balanced by part of the pressure
field in the Boussinesq limit. That is, there is no vorticity generation due to Coriolis
effects when the reference state density is constant (i.e., i, =0 in (14)). Only our
anelastic cases are influenced by rotation. Rotating convection in three dimensions
(3D) certainly feels the effects of Coriolis forces (i.e., Julien et al., 1996), but that
flow structure would of course not be present in our 2D simulation.

3 RESULTS

We first compare the various cases in this study by visual inspection of snapshots
of the entropy field. Then we compare the entropy fields using the vertical profile of

the mean in time and horizontal dimension, u, = (S), the standard deviation, 0!/? =

([S — (S)]*)!/, the flatness, F, = ([S — (S)]*) /02, and the skewness, s, = ([S — (S)]})/o?/2.
In addition, the root mean square (RMS) velocity in the horizontal direction, ¢!/ 2=
(v« — (v))/2, and in the vertical direction, ¢!/ = ([v. — (v.)]*)!/?, the skewness of

zZ
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the vertical velocity, s, = ([v. — (vz)]3) /03/2, and the skewness of the vorticity, s, =
(o — (a))]3 Y/ {[w — (w)]2)3/ 2 are examined. Another measure of how the various simpli-
fications examined here affect the solution is provided by probability density functions
(PDFs) for the entropy and vorticity. We approximate the PDF for a variable by
measuring the relative frequency of its normalized deviation from the average in time
and x for a given range in z.

A visual examination of the resulting entropy fields, shown in Fig. 1 for three of the
anelastic cases (rotation and magnetic field, without rotation or magnetic field, and
without inertial terms) and a Boussinesq case (inertial without magnetic fields) easily

Anelastic: Rotation and B—Fields Anelastic: no Rotation or B—Fields
1 ! 1Y Fi .” y R . I i -\.‘?

Boussinesg: no B—Fields Anelastic: no Inertial Terms

T AR ? T

FIGURE 1 Snapshots of the entropy field showing three anelastic cases and one Boussinesq case. The
anelastic cases are with rotation and magnetic fields (upper left), without rotation or magnetic fields
(upper right) and without inertial terms (lower right). The Boussinesq case shown is inertial without magnetic
fields (lower left). High entropy is represented by lighter shades of red and low entropy is represented by
darker shades of red. These snapshots are typical of the solutions seen in these cases.
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TABLE I The standard deviation of & relative to its mean over 100000 time steps and 360 000 grid points

Nonmagnetic Magnetic Noninertial
Boussinesq 9.41 x 1073 441 x 1072 1.95x 107!
Anelastic 1.30 x 1072 6.58 x 1072 1.24 x 107!

demonstrates that there are differences in the fluid behavior and the size, shape and
abundance of thermal plumes. Horizontal fluid motion causes the magnetic field
lines to converge where plumes develop, as seen in earlier Boussinesq simulations
at much lower Rayleigh numbers (Weiss, 1981b). When the magnetic field is absent,
smaller scale features are observed on the upper, low density boundary of the anelastic
fluid, and along both the upper and lower boundaries of the Boussinesq fluid. The
magnetic field, via the induction of electric current and the resulting Lorentz force,
opposes fluid motion perpendicular to it; therefore without magnetic field to resist
fluid flow, higher fluid velocities with smaller scale features develop. The temporal
variability is also affected by the magnetic field. For example, the standard deviation
of w? divided by its mean over both time and space was greater in the cases with
magnetic fields than in the cases without (Table I).

Removing the inertial terms, by using the infinite Prandtl number approximation,
results in even finer scale structures, and larger, more time dependent fluid velocities.
For these noninertial cases, the velocity solution at each time step needs to exactly
balance, via the viscous term, all the other forces in the momentum equation. This
typically requires more energy in the smallest resolved scales. Subsequently the velocity
structure needs to adjust every time step without a history. For the inertial solutions
however, the small scales of the net force determine the time rate of change of the
small scale velocity and tend to average out over many time steps. Dropping the inertial
terms also affects the temporal variation. This can be seen in the larger variation of w?
in the noninertial cases than in the inertial cases where the vorticity changes more
slowly as forces are effectively time-averaged (Table I). While the noninertial
Boussinesq case manages to maintain a convection cell with a single upwelling and
down-welling plume, the noninertial anelastic case loses its one cell convective
behavior opting for several rising and sinking plumes that do not span the vertical
extent of the box.

The large density stratification in the anelastic cases results in the bulk of the mass
being restricted to the lower regions of the simulation. This causes an effective increase
of the aspect ratio as the center of the circulation of material is shifted downward with
respect to the Boussinesq cases. This effect is also seen in 2D fully compressible simula-
tions where the density stratification was varied (Hurlburt et al., 1984).

A more quantitative method of examining the model behavior is via the mean
entropy profile, i, and the standard deviation, o!/?, as functions of z (Fig. 2). The
mean entropy profiles illustrate the division of turbulent convection into thin thermal
boundary layers with steep entropy gradients that accelerate plumes away from the
boundaries, and the bulk of the well mixed convection zone where the mean entropy
gradient is small, that is, nearly adiabatic. The u, profiles of the three Boussinesq
cases are identical and have a mean entropy in the bulk half way between the value
for the top boundary and the bottom boundary. The standard deviation from this
mean is also symmetric with respect to mid-depth, and peaks in the boundary layers.
These Boussinesq profiles are similar to those seen for low Rayleigh number 3D,
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FIGURE 2 The mean and standard deviation of the entropy with height in the simulation is shown for
anelastic with rotation and magnetic fields (solid line), anelastic without rotation or magnetic fields (dashed
line), anelastic without inertial terms (dash single dot line), and Boussinesq with magnetic fields (dash triple
dot line).

periodic, Boussinesq studies (Sirovich et al., 1989; Kerr, 1996), however our higher
Rayleigh number causes the thermal boundary layers to be much thinner. Notice,
however, how the mean entropy in the bulk is significantly higher for the anelastic
cases and the standard deviation is relatively small near the bottom boundary and
large near the top.

Density stratification is responsible for these anisotropic profiles for the anelastic
cases. The diffusive heat fluxes through the bottom and top boundaries are, on average,
the same and equal to —pT«dS/dz. Since pT is much greater at the bottom boundary,
|0S/0z| needs to be much greater at the top boundary. Since the depth of the thermal
boundary layers are comparable, there is a larger drop in entropy across the top
thermal boundary layer and therefore a mean entropy is greater than 0.5 in the
bulk of the convection zone. The standard deviation vanishes at the boundaries because
of our boundary conditions and peaks within the thermal boundary layers because of
the intense, small scale plumes that develop there. These plumes develop from the
boundary layer instabilities driven by the large superadiabatic temperature gradients.
Large scale horizontal winds, at both boundaries, sweep the small scale plumes into
larger scale plumes.

The nonmagnetic, nonrotating anelastic case displays subadiabatic behavior that
is very pronounced. These sinuous y, and o!/? profiles, indicate the presence of over-
shooting thermal plumes. Cold sinking plumes are not able to heat up fast enough
and therefore over cool the lower region before hitting the lower boundary. Likewise,
hot, rising plumes over heat the upper regions. All the thermal driving occurs in the
shallow thermal boundary layers as the plumes get shot out and then coast through
the bulk of the convection zone to the other side. In the cases examined here,
Coriolis and Lorentz forces produce a more adiabatic mean in the bulk, suppressing
the over-shooting of thermal plumes and deviations from the mean entropy.

The flatness of the entropy, F, indicates how peaked a PDF is relative to a normal
distribution; a pure Gaussian has a flatness of 3, whereas a pure exponential has a
flatness of 6. High values of flatness correspond to a more distinct peak in the PDF
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near the mean whereas low values of flatness correspond to a PDF with a flatter top
near the mean. A uniform distribution would be the extreme case of low Fy. In the
original hard turbulence experiment of Heslot et al. (1987), PDFs of temperature in
the central plane changed from Gaussian to exponential as the Nusselt—Rayleigh
number power law scale changed from its soft turbulent value of 1/3 to its hard turbu-
lent value of 2/7. Simulations by Kerr (1996) at various Rayleigh numbers from 5 x 10*
to 2x 107 show the beginning of the transition to exponential (Fy~4.5) for 3D
Boussinesq runs. Exponential PDFs in 2D were seen for both soft and hard turbulence
by DeLuca et al. (1990) for Rayleigh numbers between 1.9 x 10% and 1.6 x 10%. They
determined that the appearance of the exponential form was purely diagnostic of the
presence of plumes within the flow and not a transition to the hard turbulent state.

Vertical profiles of flatness for four of our cases are plotted in Fig. 3. PDF profiles
of entropy for the nonmagnetic Boussinesq case and the magnetic rotating anelastic
case are displayed in Fig. 4 at various ranges of depth in the fluid: 0.0 < z < 0.083,
0.125 <2<0.292, 0.375 <z <0.625, 0.708 <z <0.875, and 0917 <z <1.0. The
magnetic Boussinesq case has large flatness values through its central regions in accor-
dance with the sharp peaks in the PDFs. The inertial, anelastic cases have much lower
F; in their central regions which correspond to flatter distributions of the deviations
of entropy from its mean. However, the two anelastic cases shown in Fig. 3 show
different vertical distributions of flatness, as opposed to the Boussinesq cases which
varied in magnitude but not shape. The magnetic, rotating anelastic case has compar-
able peaks in the flatness at the top and bottom boundaries while the noninertial case
has values of flatness everywhere greater than the inertial cases and has a larger peak at
the lower boundary.

The skewness of the entropy, s,, (Fig. 5) can give insight into the nonsymmetry of
the entropy PDFs shown in Fig. 4. The long tails to the right in the entropy PDFs
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FIGURE 3 The flatness of the entropy with depth indicates how peaked the PDF is relative to a normal
distribution. Cases shown here are the anelastic with rotation and magnetic fields (solid line), anelastic
without inertial terms (dash single dot line), Boussinesq without inertial terms (dash triple dot line), and
Boussinesq with magnetic fields (dashed line).
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Anelastic

z = [0.0,0.083]

N

= [0.125,0.292] z = [0.375,0.625] z = [0.708,0.875] z = [0.917,1.0]

Boussinesq

FIGURE 4 The probability density functions (PDFs) are shown here for anelastic with rotation and
magnetic fields (top row) and Boussinesq with magnetic fields (bottom row). The PDFs are arranged by
height from the bottom on the left to the top on the right. Specific ranges in z are shown between the two
rows. The horizontal axis of each PDF corres;i)onds to entropy with 0.0 on the left and 1.0 on the right. The
vertical axis is on a log scale ranging from 10" to 107.
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FIGURE 5 The skewness of entropy as a function of depth is shown here for anelastic with rotation and
magnetic fields (solid line), anelastic without inertial terms (dash single dot line), Boussinesq without inertial
terms (dash triple dot line), and Boussinesq with magnetic fields (dashed line).

correspond to positive skewness, tails to the left correspond to negative skewness, and
symmetry to zero skewness. The entropy PDF (Fig. 4) is strongly peaked near the
boundaries for the Boussinesq cases but has a long tail due to the influence of
the boundary heating by small scale, hot plumes rising from the bottom boundary,
and boundary cooling by small cold plumes sinking from the top boundary. This tail
decreases in the intermediate region and is gone in the mid-plane. This structure for
the Boussinesq case is also illustrated in Fig. 5 as a positive skewness in the bottom
half and a negative skewness in the upper half. The anelastic cases have somewhat
similar skewness profiles, but tend to reach symmetry much closer to the upper
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boundary. This illustrates how the influence of the lower boundary has increased with
the presence of a density stratification. The skewness peak near the upper boundary in
the inertial anelastic cases, especially the nonrotating case, tends to have a greater
magnitude than the skewness peak near the lower boundary as the transition from
the high mean entropy of the midsection to the set boundary entropy value is more
drastic at the upper boundary than at the lower boundary.

The RMS velocities of the fluids show how the bulk flow varies with depth. Figure 6
shows the vertical profiles of the RMS velocities in the horizontal direction, o!/? and in
the vertical direction, !/2. Maximum values of the horizontal RMS near the boundaries
indicates the presence of shear layers. Boundary shear layers are symmetric and much
stronger in the Boussinesq cases, whereas for the inertial anelastic cases the shear flow
near the bottom boundary is stronger than near the top, where the density scale
height (—h;l) is smallest. In the Boussinesq cases rising and sinking flows are
symmetric, first forming small scale boundary-layer plumes which are then quickly
swept into one large plume forming a single convection cell that spans the box and is
vertically symmetric. In this relatively straight forward convection the vertical RMS
velocity peaks at mid-depth where the horizontal RMS velocity is at its minimum.
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FIGURE 6 The RMS velocities of the fluids show the bulk flow patterns of the fluid with depth. The upper
row shows the RMS of the horizontal velocity for the anelastic cases (left) and Boussinesq cases (right). The
lower row shows the RMS of the vertical velocities for the same cases. Cases in the anelastic plots are magnetic
with rotation (solid line), magnetic without rotation (dashed line), nonmagnetic and nonrotating (dashed
single dot line), and noninertial (dashed triple dot line). Cases in the Boussinesq plots are magnetic (solid line),
nonmagnetic (dashed line), and noninertial (dashed single dot line).
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In the anelastic cases the density stratification causes rising material to expand and
sinking material to contract which increases the effective aspect ratio since most of
the mass is in the lower part of the box. Therefore, the maximum RMS vertical velocity
and minimum RMS horizontal velocity occur closer to the bottom boundary. Most of
the fluid rising from the dense lower region never comes close to the upper boundary
because of the expansion. Plumes sinking from the top boundary quickly lose their
identity because of the contraction. The noninertial anelastic case, however, shows
a very different behavior; narrow sinking and rising plumes meet above the mid-
plane with RMS vertical velocities nearly constant in height and relatively large RMS
horizontal velocities near the top. In the cases examined here, RMS velocities are
larger when there are no magnetic or Coriolis forces to resist the convective circulation.

By looking at the skewness of the vertical velocity, s., we can examine the fluid
behavior in more detail (Fig. 7). A skewness of zero, as seen in the central regions of
the Boussinesq cases, indicates an equal magnitude of rising and sinking material
since the density is constant. In several past studies (Moeng and Rotunno, 1990;
Kerr, 1996) with no slip boundaries, the vertical velocity skewness for Rayleigh—
Bénard convection is observed to be negative in the surface layer above the lower sur-
face and correspondingly positive under the upper surface. The reasoning given is that
the negative s. at the lower surface is caused by plumes of cold, descending fluid that
extend between the two surfaces, hitting the lower surface with localized negative
velocities (Kerr, 1996). Likewise positive s. occurs at the upper boundary as rising
plumes hit it. However, we see the opposite, positive skewness at the lower boundary
and negative skewness near the upper boundary. This indicates that in our simulations
the upwelling velocities at the lower boundary are stronger than the velocities of the
sinking plumes as they hit the lower surface. An analogous situation occurs at the
upper boundary. We believe this is a result of the free slip boundary condition, the
high Rayleigh number, and our 2D geometry. In the inertial, anelastic cases we see
large regions of negative s, below the upper boundary as there are a multitude of

Skewness of Vertical Velocity
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FIGURE 7 The skewness of the vertical velocity with depth is shown for anelastic with rotation and
magnetic fields (solid line), Boussinesq with magnetic fields (dashed line), Boussinesq without inertial terms
(dash triple dot line), and anelastic without inertial terms (dash single dot line).
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Skewness of Vorticity
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FIGURE 8 The skewness of the vorticity is shown for two sample cases: anelastic with rotation and
magnetic fields (solid line) and Boussinesq without magnetic fields (dashed line). The anelastic case is influ-
enced by Coriolis forces and shows major deviations from zero indicating additional vorticity generation
caused by rotation and density stratification. The Boussinesq case, averaging zero, shows an even distribution
of vorticity to either side of the mean vorticity.

small sinking plumes but no correspondingly concentrated upwelling because the large
upwelling plume that dominates the convection in the lower, dense regions expands as it
impinges upon the less dense regions converting much of its rising kinetic energy to hor-
izontal kinetic energy. The noninertial case is again quite unique; rising plume velocities
tend to be greater than sinking plume velocities over most of the region, resulting in a
positive skewness in the vertical velocity everywhere but near the top boundary.

The sign of the vorticity, w, of the fluid indicates the direction the fluid is spinning
relative to the box, positive for clockwise rotation and negative for counter-clockwise
rotation. All of our cases, except the rotating, magnetic anelastic case, have mean
vorticities and vorticities skewness close to zero, as would be expected for these
horizontally periodic solutions where there are two equally probable types of vorticity
corresponding to clockwise and counter-clockwise circulations. Rotation however
breaks this symmetry. With Q being in the —y direction, Coriolis forces generate
positive vorticity in rising, expanding plumes and negative vorticity in sinking, contract-
ing plumes (Glatzmaier and Gilman, 1981). This produces a slight positive skewness of
vorticity in the lower part of the box and negative skewness of vorticity in the upper
part. This is illustrated in Fig. 8 where the vorticity skewness for the rotating anelastic
case is compared with that for the nonrotating Boussinesq case, which has vorticity
skewness close to zero at all depths, indicating symmetric distribution of positive and
negative vorticity.

4 CONCLUSIONS

We have shown that the differences between anelastic and Boussinesq convection are
readily apparent in the structure, distribution, and the abundance of thermal plumes.
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In addition, the expansion and contraction of the fluid as its depth changes in the
anelastic case allows Coriolis forces to play an important role in the generation of
vorticity. Removing the influence of the magnetic field results in finer structure and
greater fluid velocities. Neglecting the inertial terms results in artificially finer scale
structures and a significantly different style of fluid motion for the aneclastic fluid.
A statistical comparison of these cases demonstrates significant differences between
each of the approximations especially among the various anelastic cases.

We have considered a relatively high value of the Rayleigh number and investigated
the effects of common approximations made when modeling convection. Rogers et al.
(2003), using a similar 2D anelastic model, show how the Nusselt number and Reynolds
number vary with the Rayleigh number for turbulent anelastic convection. However
instead of specifying viscous and thermal diffusivities constant in z, as we do here,
they specify constant dynamic viscosity (pv) and thermal conductivity (C,pk). This
suppresses small scale sinking plumes at the top boundary.

Each of these approximations, neglecting density stratification, magnetic fields, or
inertial terms, causes changes in the fluid behavior and therefore should be avoided
when modeling the dynamics of the low viscosity, density-stratified, electrically-
conducting fluid interiors of giant planets. However, the magnetic field appears to
have the smallest effect on bulk fluid properties and, in a model of Jupiter, would
not have a significant effect in the upper region where the electrical conductivity is
relatively small. It would be interesting to see how density stratification and magnetic
fields affect the dynamics seen in recent 3D global simulations of convection in Jupiter
(Aurnou and Olson, 2001; Christensen, 2001, 2002; Wicht et al., 2002).
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