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Abstract

In the wake of the current pandemic of COVID19 it is
ever more important to speed up the reliable drug discovery
process. Deep learning has been introduced into the field of
Cheminformatics to predict the Binding Affinities from pairs
of drugs and target proteins. The drugs and proteins can
both be represented as text sequences, graphs and 3D struc-
tures. Additionally, meaningful molecular images that hold
atomic and bonding information of the molecule are also
viable representations. Images of Proteins however don’t
hold any meaningful information. Image, Graph, 3D and
Text based representations for molecular inputs have been
considered for the task of DTA, but proteins have mostly
been used as character sequences or expensive 3D crys-
tal structure is used, which is not suitable for the prompt
and low budget prediction task. The baseline we followed
uses the protein sequence information to estimate the con-
tact maps for proteins which can be used to generate pro-
tein graphs. In our project, we explore the limitations of
their method, and perform a series of experiments with the
aim to improve upon their results. Finally, we predict the
binding affinities for COVID Protienase 3CL-PRO with the
drugs from baseline Davis dataset, using our experimental
models. The contact map for the COVID Proteinase was es-

timated from the MapPred webserver.
link to the github for our code is provided.

1. INTRODUCTION
The recent outbreak of pandemic caused by SARS

CoV-2 has urged the scientific community to identify
drugs that can act as inhibitors for this virus. In-silico
(computational) techniques have been leveraged for their
efficiency to narrow the drug search space of potential
inhibitors for laboratory experimentation. A huge body of
contributions can be found that employ both simulation
based [1] and machine/deep learning based[2] approaches
to identify the best binding drugs for SARS CoV2.
The efficacy of a drug for inhibition action against a pro-
tein, is measured in terms of binding affinity. Drug-Target
Affinity Prediction is the branch of Cheminformatics
that predicts the binding affinities of drugs for the target
proteins using data driven approaches.

1.1. Drug Target Affinity (DTA)

When two chemical entities bind, in our case being the
target protein and the drug molecule, old bonds are broken
to form newer bonds. This can result in inhibition of
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certain chemical reactions that the proteins were originally
involved in. So, the action of the drug can be measured
in terms of the inhibition in the original function of the
protein or dissociation (breaking of bonds) of the protein
by the introduction of drug molecules.
These chemical reactions (dissociation and protein
function) are represented by chemical equations, and
equilibrium measures (equilibrium concentrations and
equilibrium constants) of these chemical reactions are used
to represent strength of the binding affinities of drug-target
pairs.
The binding affinities are measured in terms of equilibrium
concentrations in units of micro Molars, or equilibrium
constants that are ratios of concentrations of reactants
and products of a chemical reaction when the reaction is
at equilibrium. Dissociation constant (Kd) , Inhibition
constant (Ki) and half maximal inhibitory concentration
(I250 ) are the three common measures of binding affinity.
Data driven approaches can be used to regress for the
binding affinity measures, using drug-target pairs as inputs
to deep learning models.

1.2. Problem Statement

Accurate input representation, specially accurate protein
representation, for the task of affinity prediction is an open
problem.

2. LITERATURE REVIEW
Machine learning techniques like SVM (Support Vector

Machine) and RF(Random Forecast) were already being
used with handcrafted features like molecular fingerprints
for Drug Target Affinity prediction.
With the introduction of deep learning, hand crafted
features have been replaced with learned complex higher
order features. The input representations, play an important
role in the type of features that are learned.
Deep learning techniques were introduced to directly
process drug SMILES strings with Natural Language
Processing( NLP) techniques, through Recurent Neurall
Network (RNN), 1D CNN [3],[4] or Transformer[5] based
approaches for representation learning[6]. Around the same
time graph-based representation learning from molecule
graphs[7],[8] was also gaining ground. Only recently
however, image based features[9] have been explored and
have proven to hold remarkable performance.
Although great effort has been expended on molecular
feature representation, very little attention has been given
to better representation learning for proteins. The FASTA
format proteins just capture the peptide chain structure,
where in fact proteins are topologically more complex and

exist in the form of globules. One of the papers that we are
following[10] uses protein sequence alignment to estimate
the contact map for protein residues and represents proteins
as graphs. We will further explore the limitations and
possible improvements to the literature in our methodology
section.

3. METHODOLOGY
For our problem, we need to estimate the binding affini-

ties of known drugs with a protein that is novel. It can
be naturally formulated as inference on a DTA prediction
model.

3.1. Baselines

We followed two papers on DTA as baselines, that
worked with different input representations. [10] proposed
DGraphDTA that uses protein and molecular graphs,
projected to embedding space with Graph Neural Networks
to regress a numeric affinity measure for each pair of drug
molecule and target protein. The DgraphDTA model is
shown in Figure1.

Figure 1. DGraphDTA model
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They worked with two benchmark datasets Davis and
KIBA, for our experiments we only used Davis dataset.
Davis is a dataset 68 unique drug molecules and 442 unique
proteins. 68 x 442 pairs of these molecules and proteins
are labeled with the measures of binding affinities in terms
of Dissociation Constant Kd in units of micro Molars. The
molecule and drug representations in this dataset are in the
forms of character strings. The molecules are in SMLES
format (simplified molecular input line entry system), refer
to Figure 2. SMILES are a standard in chemistry used to
represent atoms and bonds in a molecule by unique charac-
ters. And Proteins are provided in FASTA format, which is
a string of characters that represents the chain of residues
in the protein, each unique character representing a unique
residue. A sample from the dataset is given in Table 1
Other molecular representations can be visualized in Figure
2

Figure 2. Molecules Representions

The paper uses RDKit a python library to convert the drug
molecule SMILES to graph representation. And Protein Se-
quence Alignment to convert the protein chains into graphs
as shown in Figure 3.

Figure 3. Protein Sequence Alignment

Molecule dictionary {”11314340”: ”CC1=C2C=C
(C=CC2=NN1)C3=CC
(=CN=C3)OCC(CC4=
CC=CC=C4)N”,...}

Protein dictionary {”AAK1”: ”MKKFFDSR
REQGGSGLGSGSSGG
GGSTSGLGSGYIGRV
F. . . ”,..}

Table 1. A molecule (drug)2and protein samples from Davis
Dataset

[9] used molecular images as inputs to their DEEP-
Screen model and solved a simpler problem of binary
classification for activity/inactivity against a single target
protein, using as input the positive and negative samples of
a single protein only.

The model of DEEPScreen Figure 4 is a stack of five
convolution layers, with 2 fc layers, before the last binary
classification layer. DEEPScreen, since it does not train
on pairs of drugs and targets, can’t be used for inference
on our problem. But the baseline served the important
purpose of comparison of input representations and gains
in performance for various experiments.

For all experiments the hyperparameter were kept same
as provided by the paper, unless mentioned otherwise.
The only hyperparameter that we failed to control was
the number of epochs, due to the limitation of compute
resources and unreliable colab sessions.

4. Experiments and Results
Against these baselines we designed a series of ex-

periments to determine the advantages and disadvantages
of each input representation, and performed a few archi-
tectural modifications as well. The list of experiments is
follows:

• Replacing molecular graphs with molecular images in
DGraphDTA

• Replacing molecular images with molecular graphs in
DEEPScreen

• Combining molecular images with molecules graphs
in DGraphsDTA

2In above table, Molecule key is drug ID reference from https:
//pubchem.ncbi.nlm.nih.gov/compound/. From their website
exact name of drugs can be found using the these keys. Protein key is the
standard keys used in Davis dataset.
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Figure 4. DeepScreen Model

• Applying edge dropout to the Graph Neural Network
(GNN) branch of proteins in DGraphDTA

For each experiment we modified the original code pro-
vided with the paper, for custom preprocessing, data load-
ing and model definition, suitable for the new input repre-
sentation.

4.1. Experiment 1

For the first experiment the the InMemoryDataset
defined in original code by DGRaphDTA was modified to
accept images of molecules in place of molecule graphs.
Loading images of 200 x 200 resolution for 68 molecules
and the protein graphs for 442 proteins in the Davis dataset,
in the memory left little RAM space for the training. The
original DGraphDTA model was trained with the batch
size of 512, and original DEEPScreen model was trained
with images of resolution 200 x 200. With high RAM
consumption of our modified dataset the maximum batch
size we could use was 128 with image resolution of 100 x
100, to avoid out of memory error on CUDA.The modified
model can be seen in Figure 5 .The initial training seemed
very promising, with the validation loss Figure 6 falling at
a better rate than the original DGraphDTA model.

Figure 5. DGraphDTA with CNN

Figure 6. Loss Curve-Replacing Molecule Graphs with Images
(100x100) in DGraphDTA

But the test results were seriously degraded, as can
be seen in CNN (100 x 100) row of the DGraphDTA
experiments Table 2.

This led to a series of more experiments designed to
identify the root cause of the problem. The first hunch was
that reduced image size could be causing the performance
degradation. To verify this hypothesis, the DEEPScreen
model was trained with lower image resolution at 100 x
100. And the loss curve on the validation set Figure 7
being very oscillatory, verified our hypothesis that lower
image resolution was resulting in the degradation of results
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Experiments CI(std) MSE(std) Pearson(std)
reported 0.89 0.21 0.85
Reproduced 0.89 0.23 0.84
CNN(100x100) 0.76 0.58 0.55
CNN(200x200) 0.88 0.25 0.83
no aug.(100x100) 0.88 0.23 0.84
Ensemble no aug. 0.88 0.23 0.83
Dropout 0.88 0.23 0.84

Table 2. Experiment (DGraphDTA) results produced on Davis test
dataset

Experiment Pre. Recall F1-sc. Acc. MCC
reported 0.89 0.92 0.90 0.88 0.76
Reproduced 0.87 0.92 0.90 0.87 0.74
100 x 100 0.82 0.90 0.86 0.82 0.63
CNN with GNN 0.85 0.95 0.90 0.87 0.73

Table 3. Experiment (DEEPScreen) results produced on Davis test
dataset

through lack of robustness.

Figure 7. Loss curves for 100x100 molecule images experiment
with DEEPScreen

To counter this negative effect of the lower image
resolution, the DGraphDTA code was again modified, by
saving all the preprocessed data to files and modifying
the data loader of pytorch to read from files, we saved
a lot of RAM space that was being consumed with the
InMemoryDataset and thus the image resolution and batch
size could be doubled. This resulted in metrics that were
better than the last experiment, as can be verified in Table
2 with row CNN (200 x 200). And the validation loss was
still better as seen in the Figure 8.

Along the parallel dimension, the image augmentation
(random rotations, and skew) was dropped and the results

Figure 8. Loss Curve - Replacing Molecule Graphs with Images
in DGraphDTA (200x200)

were seen to improve. Refer to the Table 2 for results. The
transformations applied at lower resolution could be distort-
ing the useful information passed to the model.

4.2. Experiment 2

Since the validation loss curve with CNN based molec-
ular features in DGraphDTA was observed to give lower
loss, this urged us to cross check if the performance of
DEEPScreen would also degrade if the CNN was replaced
with GNN from DGraphDTA as shown in Figure 9.

Figure 9. DEEPScreen with GNN

But the experiment gave contradictory results and shown
in Figure 10.

But then, since the distribution of data for DEEPScreen
was very different from the distribution of data from
DGraphDTA, we concluded that the comparison is not
justified. Since the DEEPScreen model was trained for
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Figure 10. Comparison of loss curves for GNN experiment with
DEEPScreen For ChEMBL 286 only

a single protein, the positive and negative samples of the
proteins were bound to share much more similarities,
then in the case of binding and non-binding drugs across
different proteins.
The experimental results on binary classification metrics on
test set can be seen in Table 3. GNN based features proved
to be more robust in this case and resulted in a remarkable
improvement in Recall, while maintaining comparable
performance on other metrics.

4.3. Experiment 3

Assuming the ensemble of molecular graph and image
based features might work better. We trained an ensemble
model, shown in the Figure 11.

The results on the test set can be seen in the Table 2. En-
semble model gave even worse results than the model with
image based features. This is a really unlikely event, since
ensembles are always seen to perform better than individual
models. But we believe that it might be the protein represen-
tation that is causing the bottleneck and not the molecular
representation.

Figure 11. Ensemble on DGraphDTA

Figure 12. Loss Curve-Ensemble Molecule Graphs with Im-
ages(100x100) in DGraphDTA

4.4. Experiment 4

Additionally, one limitation we observed in the
DGraphDTA paper was that it used predictions of contact
maps for protein residues. The ground truth contact maps
could be obtained from the 3D structure of the protein, but
the 3D structure is obtained through crystallography, which
is an expensive process making 3D protein structures hard
to obtain. But the paper needed these contact maps to define
protein graphs. In order to make the predictions from these
noisy and inaccurate graphs more robust, we suggested us-
ing edge dropout[11]. The edge dropout technique ran-
domly holds out certain edges from the graph, at the time
of training, to make the predictions more robust to the noisy
or absent edges. We experimented with different configura-
tions of dropout, by changing the number of dropout layer
and the dropout probability. With dropout probability of 0.5
and edge drop applied before each graph convolution layer,
the validation loss curve is visualized in the Figure 4.4.
And the metrics on the test set are shown in the Dropout
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Figure 13. Edge Drop on Protein Graphs in DGraphDTA

row of the Table 2.

5. Affinity Prediction For CoVID Proteinase
Since for our problem, we need to predict affinities for

drugs with target protein as COVID main protease. We
needed to perform preprocessing on the sequence of pro-
teinase, to generate a contact map for it, which could be
used as an adjacency matrix for protein graph generation.

Proteinase 3CL-PRO. Amino acid sequence was taken
from here generated through their deep learning algorithms.
For preprocessing, 1stly inter residue protein contact map
was generated using online webserver MapPred from link
. They used their Deep residual neural network model
which is trained on available databases and modification of
DeepMSA [12] from Zhang lab from where we took covid
19 proteinase structure (link is shown above). Based on
their trained model contact map was generated as shown
in Figure 14.

Figure 14. COVID 19 Proteinase Contact Map

Drug ID Predicted Affinity in pKD
126565 9.907675
44259 9.612669

9809715 8.944876
11984591 8.742044
11427553 8.671042
16038120 8.623212
5329102 8.481388

16722836 8.377007
447077 8.320545

Table 4. Covid19 Proteinase 3CL-PRO protein Binding Affini-
ties4with Davis dataset drugs predicted using DGraphDTA’s sup-
plied model.

Drug ID Predicted Affinity in pKD
44259 6.672781

126565 6.1242332
11984591 6.019435
16722836 5.5392294
16038120 5.535989
11427553 5.5091653
5287969 5.4815736
176155 5.403635

11667893 5.3888054

Table 5. Covid19 Proteinase 3CL-PRO protein Binding Affinities
with Davis dataset drugs predicted using DGraphDTA’s supplied
model with edge dropout.

The Mappred generated the .a3m file containing inter
residue sequence alignments in pairs and multiple contact
maps. From script code of DGraphDTA, first two steps
(generating .seq file and using hhblits to generate .a3m file )
were already performed so they were skipped. From hhfilter
to reformat and pconsc4 were performed to generate contact
map in numpy array where pconsc4 generated contact maps
based on multiple contact maps from given file. The output
of pconsc4 was used to as an input to generate PSSM to gen-
erate scoring matrix. The top 10 most affine drug molecules
from Davis dataset for COVID Proteinase, predicted using
our experimental models are shown in Tables 4,5,6,7. These
affinity values can only be validated through laboratory ex-
perimentation of computer based docking simulations if 3D
structure of the binding pair is available. So validating the
results is out of our scope.

4Affinity values are in log scale pKD(nM) = − ln(KD
109

). Where
KD is in 10,000 nM range. The 10,000 nM results in pKD = 5nM means
no binding. Values from greater than 5 nM are required for drug binding
with Covid19 Proteinase.
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Drug ID Predicted Affinity in pKD
44259 9.081171

16038120 7.864847
126565 7.2855363
9809715 7.118546
5328940 6.716422
5329102 6.7150183

25127112 6.5924306
11427553 6.4434547
11984591 6.354123

Table 6. Covid19 Proteinase 3CL-PRO protein Binding Affinities
with Davis dataset drugs predicted using the Drugs Images with
Protein Graph.

Drug ID Predicted Affinity in pKD
44259 7.8419065

126565 6.424454
9809715 6.2218676

25127112 5.7972865
11984591 5.781021
51004351 5.7474995
11409972 5.6736794
5329102 5.639513

16038120 5.5416374

Table 7. Covid19 Proteinase 3CL-PRO protein Binding Affinities
with Davis dataset drugs Ensemble model.

6. Conclusion and Future Work

From the results that we have, it appears that graph-
based features are more robust molecular representations
and image-based features result in faster error decay in the
early phases of the training. Edge dropout although re-
sulting in comparable performance is not showing any im-
provement on the protein representation learning. This con-
tradicts our hypothesis that protein graphs are noisy, but
can be justified by considering that proteins are huge, with
small binding sites where a drug molecule can dock. Iden-
tifying that one site in the huge protein might work better
with attention-based approaches to narrow down the unnec-
essary information and improve predictions, which can be
explored in the future. Although our ensemble model also
did not work quite well that might because of the individual
representations were not complimentary but contradictory
or might be it was in actual protein branch that was really
the bottleneck. From the above discussion, the predicted
binding affinities of Covid19 Proteinase 3CL-PRO,protein
with drugs produced using the baseline DGraphDTA model
is more reliable than other models.
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[3] Hakime Öztürk, Arzucan Özgür, and Elif Ozkirimli. Deep-
dta: deep drug–target binding affinity prediction. Bioinfor-
matics, 34(17):i821–i829, 2018.
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edta: prediction of drug-target binding affinity. arXiv
preprint arXiv:1902.04166, 2019.

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017.

[6] Bonggun Shin, Sungsoo Park, Keunsoo Kang, and
Joyce C Ho. Self-attention based molecule representa-
tion for predicting drug-target interaction. arXiv preprint
arXiv:1908.06760, 2019.

[7] Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay
Pande, and Patrick Riley. Molecular graph convolutions:
moving beyond fingerprints. Journal of computer-aided
molecular design, 30(8):595–608, 2016.

[8] Thomas N Kipf and Max Welling. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

[9] Ahmet Sureyya Rifaioglu, Esra Nalbat, Volkan Atalay,
Maria Jesus Martin, Rengul Cetin-Atalay, and Tunca
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