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ABSTRACT
Background Rapid progression of CKD is associated with poor clinical outcomes. Despite extensive study
of the genetics of cross-sectional eGFR, only a few loci associated with eGFR decline over time have been
identified.

Methods We performed a meta-analysis of genome-wide association studies of eGFR decline among
116,870 participants with CKD—defined by two outpatient eGFR measurements of ,60 ml/min per
1.73m2, obtained 90–365 days apart—from theMillion Veteran Program and Vanderbilt UniversityMedical
Center’s DNA biobank. The primary outcome was the annualized relative slope in outpatient eGFR.
Analyses were stratified by ethnicity and diabetes status and meta-analyzed thereafter.

Results In cross-ancestry meta-analysis, the strongest association was rs77924615, near UMOD/PDILT;
each copy of the G allele was associated with a 0.30%/yr faster eGFR decline (P 5 4.9310227). We also
observed an association within BICC1 (rs11592748), where every additional minor allele was associated
with a 0.13%/yr slower eGFR decline (P5 5.631029). Among participants without diabetes, the strongest
association was the UMOD/PDILT variant rs36060036, associated with a 0.27%/yr faster eGFR decline per
copy of the C allele (P 5 1.9310217). Among Black participants, a significantly faster eGFR decline was
associated with variant rs16996674 near APOL1 (R250.29 with the G1 high-risk genotype); among Black
participants with diabetes, lead variant rs11624911 near HEATR4 also was associated with a significantly
faster eGFR decline. We also nominally replicated loci with known associations with eGFR decline, near
PRKAG2, FGF5, and C15ORF54.

Conclusions Three loci were significantly associated with longitudinal eGFR change at genome-wide
significance. These findings help characterize molecular mechanisms of eGFR decline and may contribute
to the development of new therapeutic approaches for progressive CKD.

JASN 00: 1–13, 2023. doi: https://doi.org/10.1681/ASN.0000000000000170

INTRODUCTION

The rate of decline in kidney function varies widely
among individuals with CKD and is incompletely
explained by known risk factors. More rapid CKD
progression is associated with worse clinical outcomes,
including higher risks of ESKD, cardiovascular events,
and mortality, independent of cross-sectional eGFR.1,2

Previous genome-wide association studies (GWASs)
have evidenced associations of common variants of
several genes with eGFR and CKD from a

single time point.3–10 Among these, UMOD is a
well-established causal gene for the development
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of CKD, and GATM and PRKAG2 have been repeatedly
associated with eGFR.5 Such variants are informative for
identifying and understanding mechanisms of predisposition
to disease, but not necessarily for influencing disease progres-
sion. Because progression of CKD may depend on factors
unrelated to the primary disorder (e.g., glomerular hyperten-
sion, inflammation, fibrosis), unique loci may exist for renal
function decline beyond those identified for a one-time mea-
sure of eGFR.11,12 One GWAS of longitudinal change in eGFR
has been conducted exclusively among individuals with
CKD.13 However, limited statistical power, owing to a small
sample size, may have hampered the discovery of novel hits.

Identifying individuals with a higher genetic risk of rapid
kidney function decline will likely improve prediction of ESKD
risk, advance prognostication of CKD outcomes, and provide a
pool of genetic markers that may lead to actionable protein
targets and disease mechanisms.

To investigate the role of common genetic variants in
longitudinal eGFR change among individuals with CKD, we
conducted a GWAS of the rate of eGFR decline among 109,570
participants from the Million Veteran Program (MVP) and
7300 participants within Vanderbilt University Medical Cen-
ter’s DNA biobank (BioVU).

METHODS

Participants
The MVP is a large health care system observational cohort
study and biobank supported by the Department of Veterans
Affairs (VA) of participants recruited from the patient pop-
ulations of 63 VAmedical facilities. This study was approved by
the VA central and site-specific institutional review boards, and
all participants provided informed consent. Study population
and recruitment methods have been previously described.14 In
brief, MVP recruitment commenced in 2011 and is ongoing,
with over 775,000 participants enrolled to date. Each partici-
pating veteran completed baseline and lifestyle surveys and
gave permission to access the VA electronic health record data
and obtain a blood sample for genetic analysis.

The BioVU is Vanderbilt University Medical Center’s DNA
repository. The BioVU resource and its ethical, privacy and
other protection, has been described.15,16 In brief, BioVU
accrues DNA samples during routine clinical care from pa-
tients at the Vanderbilt University Medical Center (VUMC)
who have not opted out of participation, using blood that
would otherwise be discarded after clinical testing. The sam-
ples are deidentified and considered nonhuman subjects re-
search. Samples and genetic data within BioVU are linked to a
deidentified and research-enabled version of VUMC’s elec-
tronic medical record, with detailed longitudinal clinical data
dating back to the 1990s.

For the purposes of this study, we restricted analyses to
participants with CKD, defined by the presence of two out-
patient eGFR measurements,60 ml/min per 1.73 m2 within a

minimum of 90 days and a maximum of 365 days apart. We
excluded individuals who were on dialysis or had received a
kidney transplantation before cohort entry. We excluded se-
rum creatinine values ,0.4 and .20 mg/dl because they
likely represented laboratory or data entry errors. We excluded
participants with .24 outpatient eGFR measurements per
year and those with ,2 years of follow-up time within the VA
or VUMC’s electronic health record. In addition, analyses were
restricted to individuals with a minimum of four longitudinal
eGFR measurements to optimize estimation of the slope.
Participants were censored at ESKD, defined as chronic dialysis
initiation or kidney transplantation.

Genotyping and Imputation
MVP genotyping was performed using an Affymetrix Axiom
biobank array, the MVP 1.0 Genotyping Array. Quality control
pipelines included the exclusion of duplicate samples, those
with discordant reported and genotyped sex, and samples with
more heterozygosity than expected. One participant randomly
selected from each pair of related individuals (closer than
halfway between second and third-degree relatives or closer)
was excluded. After using EAGLE v2 to prephase each chro-
mosome, genotypes from the 1000 Genomes Project Phase 3
were imputed into MVP participants using Minimac3
software.17–19 Ethnicity was assigned using a harmonized
ancestry and ethnicity variable on the basis of an algorithm
that integrates genetically inferred ancestry on the basis of the
top 30 principal components with self-identified ethnicity.
Details have been described elsewhere.20 On the basis of the
harmonized ancestry and ethnicity variable, MVP participants
with genotype data are assigned to one of the following four
nonoverlapping groups: non-Hispanic White, non-Hispanic
Black, non-Hispanic Asian, and Hispanic participants.

In BioVU, GWAS-level genotyping was performed using a
custom Illumina MEGA-Ex chip, which includes .2 million
common and rare variants before imputation. We obtained
genotyped data in PLINK format from the Vanderbilt core
after the following quality control steps: excluding either sam-
ples or variants with$5% missingness, mismatched identifiers
as detected by identity by descent checks, and nonconcordance

Significance Statement

Rapid progression of CKD is associated with poor clinical outcomes.
Most previous studies looking for genetic factors associated with
low eGFR have used cross-sectional data. The authors conducted a
meta-analysis of genome-wide association studies of eGFR decline
among 116,870 participants with CKD, focusing on longitudinal
data. They identified three loci (two of them novel) associated with
longitudinal eGFR decline. In addition to the known UMOD/PDILT
locus, variants within BICC1 were associated with significant dif-
ferences in longitudinal eGFR slope. Variants within HEATR4 also
were associated with differences in eGFR decline, but only among
Black/African American individuals without diabetes. These findings
help characterize molecular mechanisms of eGFR decline in CKD
and may inform new therapeutic approaches for progressive kid-
ney disease.
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between reported sex and genetically determined sex. Over-
lapping variants with 1000 Genomes demonstrated $99.98%
variant call concordance using HapMap sample aliquots.
After filtering out suboptimal markers and individuals
with call rate,95%, variants across the genome were phased
and imputed to the 1000 Genomes panel using the IMPUTE2
program.

In both cohorts, we restricted analyses to genetic variants
with minor allele frequency (MAF) .0.01. Principal compo-
nent analysis was performed using common genetic variants
(MAF.0.05) using EIGENSOFT.21 For the purposes of this
study, analyses were restricted to non-Hispanic White and
non-Hispanic Black participants.

Phenotype
The primary study phenotype was the relative annualized
change in kidney function, defined by the exponentiated slope
of log-transformed eGFR minus one and interpreted as per-
centage change in eGFR per year. This phenotype was chosen
on the basis of ongoing work demonstrating minimal depen-
dence of relative eGFR change on baseline eGFR and straight-
forward interpretation of regression coefficients. Estimated
GFR was calculated using the Chronic Kidney Disease Epide-
miology Collaboration serum creatinine equation.22 Only out-
patient eGFR measurements were included in the slope
estimation, with additional restriction to one creatinine per
day, given the following rules: (1) If a participant had multiple
outpatient creatinine measurements on a given day and the
difference between the trough and peak of creatinine mea-
surements was#0.3 ml/dl, the average of creatinine measure-
ments for that day was retained for eGFR and slope estimation,
and (2) if a participant had multiple outpatient creatinine
measurements on a given day and the difference between the
trough and peak of creatinine measurements was .0.3 ml/dl,
measurements from that day were excluded from the slope
estimation, to exclude measurements reflecting acute fluctu-
ations in kidney function.

To generate the relative eGFR slopes for GWASs, we per-
formed linear mixed model (LMM) analysis of the repeated
log-transformed eGFR measurements stratified by ethnicity
and diabetes status at baseline using the R package lme4. In
each analysis, we included baseline age, sex, and time (in years)
as fixed effects and a random intercept and random slope in
the model. The random intercept term accounts for unob-
served individual-level factors that contribute to differences in
eGFR levels that are not explained by age, sex, or time. The
inclusion of random intercepts in the LMM analysis allows for
estimation of the fixed effects of genetic variants on changes in
eGFR over time while accounting for individual-level differ-
ences in eGFR at age and time of zero. This can lead to more
accurate and efficient estimation of the fixed effects of the
genetic variants and improve the overall fit of the model. We
used the inverse-normal transformed best linear unbiased
predictor (BLUP) of the random slopes obtained from the
LMM as our trait of interest in the GWAS.

In secondary analyses, we also examined the absolute
change in kidney function, defined as the annualized slope
of eGFR in ml/min per 1.73 m2 per year. The absolute eGFR
slopes were generated in a similar manner as the relative eGFR
slopes described above, without log transformation before the
LMM analysis.

Statistical Analysis
Cohort entry (baseline) was defined as the date of the second
CKD-confirmatory eGFR measurement. Diabetes was defined
by the use of any antidiabetic medications or presence of at least
two outpatient International Classification of Diseases codes for
diabetes (ICD9 250.*) on separate dates within 365 days before
baseline. Hypertension was defined by the presence of a hy-
pertension code, prescription of an antihypertensive drug, or
having two systolic BPmeasurements.140 mmHg and/or two
diastolic BP measurements.90 mm Hg. Body mass index was
estimated using the closest weight to the baseline and height
mode, as weight in kilograms divided by height in meters
squared. Urine albumin-to-creatinine ratio closest to baseline
was assessed in mg/g and calculated as urinary albumin (mg/L)/
urinary creatinine (mg/dl)3100. Microalbuminuria was de-
fined as urine albumin-to-creatinine ratio .30 mg/g.

GWAS analyses were performed in PLINK version 2a using
linear regression of the inverse normally transformed BLUPs
of eGFR random slopes as the dependent variable and geno-
types (allelic dosage) as predictors, under an additive genetic
model. Covariates included age at baseline, sex, and the first
ten principal components of ancestry. To retain the interpre-
tation of the genetic effect estimates in the original scale of
eGFR slopes (before the inverse-normal transformation), we
multiplied the genetic effect estimates and standard errors by
the standard deviation of the untransformed BLUPs of eGFR
random slopes.

Analyses were stratified by ethnicity and diabetes status at
baseline. Genomic control parameters were estimated for each
cohort and appropriate genomic control correction was ap-
plied to input statistics before performing meta-analysis to
correct for residual cryptic relatedness or population stratifi-
cation. Fixed-effect variance-weighted meta-analysis of anal-
yses in Black and White participants and participants with
diabetes and nondiabetic participants was conducted within
each cohort, and study-specific estimates and standard errors
were combined using METAL.23 Variants with imputation
quality ,0.4 were excluded from all analyses. An effective
minor allele count more than 30 was used to filter out variants,
which was calculated as 23MAF(1-MAF)3Sample Size per
phenotype3info score. A total of 11,619,996 autosomal ge-
netic variants were included in the cross-ancestry diabetic
strata meta-analysis, and a total of 11,652,122 autosomal
variants were included in the cross-ancestry nondiabetic strata
analysis. Quantile-quantile plots, Manhattan plots, and regional
association plots were produced using R, LocusZoom,24 and the
functional annotation and mapping software tool FUMA, re-
spectively.25 Proportion of variance explained (PVE) was

JASN 00: 1–13, 2023 Genome-Wide Association Study of CKD, Robinson-Cohen et al. 3
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estimated using the formula PVE5t2/(n221t2), where t5b/
standard error of the mean. Linkage disequilibrium score re-
gression was used to estimate the single nucleotide polymor-
phism (SNP)-based heritability of eGFR slope among White
participants with diabetes and White nondiabetic participants.

Conditional analyses were performed using Genome-wide
Complex Traits Analysis to test whether multiple independent
risk alleles existed at any of the genome-wide significant loci,
using an approximate linkage disequilibrium structure from
an external reference sample, forward stepwise selection pro-
cedure, and summary-level statistics from the transethnic
meta-analysis. The reference samples were constructed from
5000 randomly selected BioVU participants of European an-
cestry and 5000 randomly selected BioVU participants of
African ancestry. We set the collinearity restriction to 0.90
and defined genome-wide significance as P , 531028. We
defined loci as 500 kb up and down the lead variants found in
the Genome-wide Complex Traits Analysis-COJO analysis.

For primary replication, we selected 12 candidate genetic
variants previously reported to be associated with kidney
function decline from a recently published report.26 We ad-
ditionally examined associations from the genome-wide sig-
nificant variants from our analyses within the summary
statistics from Gorski et al.26 for independent replication of
our findings. Statistical significance for replication analyses
was set at Bonferroni-corrected a50.05/1250.0036. To eval-
uate the overall correlation between the ability of longitudinal
and cross-sectional data to identify eGFR associations, we
compared the magnitude of the b coefficients and statistical
significance of all tested genetic variants with P , 0.01 be-
tween our analyses and those from a recently published meta-
analysis of cross-sectional creatinine-based eGFR from the
Chronic Kidney Diseases Genetics (n5765,348) Consortium
and the UK Biobank (n5436,581).11,27

We also performed a haplotype association analysis among
non-Hispanic Black participants, to test the effect of known
risk alleles in APOL1 on the relative slope of eGFR. We defined
the APOL1 haplotype as the combination of G1 and G2
haplotypes, where G1 consists of missense mutations at
rs73885319 and rs60919145 and G2 consists of rs71785313.
BioVU used a proxy genetic variant, rs12106505, for G2
because rs71785313 was not genotyped or imputed in the
BioVU cohort. Black participants with two G1 alleles or one
G1 and one G2 alleles were classified as APOL1 high risk and
those with only one G1 or G2 allele or no G1 or G2 alleles were
defined as APOL1 low risk.

RESULTS

Among participants with CKD and diabetes in the MVP and
BioVU, mean (SD) eGFR at baseline was 52 (67) ml/min per
1.73 m2 and 49 (617) ml/min per 1.73 m2, respectively,
and median (interquartile range [IQR]) relative kidney
function decline was 21.3 (24.2, 0.9)%/yr and 22.38

(210.8, 13.9)%/yr, respectively (Table 1). Overall median
(IQR) follow-up time among participants with diabetes was
6.5 years (4.2, 10.5). Among those with CKD without diabetes
in the MVP and BioVU, mean (SD) eGFR at baseline was 52
(68) ml/min per 1.73 m2 and 51.4 (618) ml/min per 1.73 m2,
respectively, and median (IQR) relative kidney function
decline was 20.40 (22.1, 1.1)%/yr and 20.74 (26.40,
14.41)%/yr, respectively (Table 1). Median (IQR) follow-up
time among participants without diabetes was 7.9 years (4.5,
11.2). Participants with faster longitudinal decline in eGFR
were more likely to be older, have diabetes, and have
microalbuminuria.

Cross-Ancestry Overall GWAS Results
The overall meta-analysis of Black and White individuals with
and without diabetes identified variants in three independent
regions, which exceeded the threshold of genome-wide
significance for associationwith eGFRdecline (Figure 1, Table 2,
Supplemental Figure 1A, Supplemental Table 2, Supplemental
Table 3). The strongest association was with rs77924615, in-
tronic in the UMOD/PDILT region (P 5 4.9310227; Table 2,
Supplemental Figure 2, Supplemental Table 1). Conditional
analysis of variants within the UMOD/PDILT region (with
adjustment for the sentinel variant) did not reveal any addi-
tional independent genome-wide significant loci within the
gene region. After adjustment for variation at rs77924615, the
next most significant locus within the UMOD/PDILT region
was rs36060036 (P 5 1.0431024). The rs77924615 variant
showed similar magnitudes of effect among Black partic-
ipants (20.20% faster eGFR decline per additional G
allele), but was not statistically significantly associated
with eGFR decline, either overall or within subgroups
with diabetes (Table 2 and Supplemental Figure 3). Overall
correlation between longitudinal and cross-sectional data
eGFR associations was r50.39 (Supplemental Figure 4).

We additionally identified an intronic variant in BICC1
(rs11592748), which was significantly associated with eGFR
slope (Figure 1, Supplemental Figure 5). Every additional A
allele at the locus was associated with a 0.13% slower slope in
eGFR (P 5 5.631029). Variation at the third genome-wide
significant polymorphism, intronic within the APOL1/MYH9
region (rs16996674) and present only among Black partici-
pants, was associated with a 0.57% faster eGFR slope
(P 5 2.131028) (Figure 1, Supplemental Figure 6).

Conditional analyses of the BICC1 and APOL1 regions did
not identify any secondary association signals, indicating no
additional independently associated SNPs after conditioning
on the region’s lead SNP. In aggregate, the loci (rs77924615,
rs11592748 and rs16996674) explained 0.20% of the variance
in eGFR slope, and associations replicated at P , 0.003 in the
analysis by Gorski et al. (Supplemental Table 4).26 The amount
of variance in relative eGFR slope explained by the joint effect
of all genetic variants (SNP heritability, h2 SNP) was 2.4%
among participants without diabetes and 3.0% among those
with diabetes.
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Table 1. Baseline characteristics by relative slope tertile and diabetes

Participant
Characteristic

Million Veteran Program (n5109,570) BioVU (n57,300)

Participants with
Diabetes (n544,782)

Participants without
Diabetes (n564,788)

Participants with
Diabetes (n51,642)

Participants without
Diabetes (n55,658)

Tertile of relative
eGFR decline, %/yr

, 23.0 23.0 to 0.1 .0.1 , 21.4 21.4 to 0.5 .0.5 , 27.3 (27.3, 11.5) .1.5 , 23.9 23.9, 2.0 .2.0

N 14,928 14,927 14,927 21,596 21,596 21,596 555 533 554 1,886 1,886 1,886
Age, yr, mean (SD) 67 (9) 68 (8) 67 (8) 69 (10) 69 (9) 67 (10) 65 (12) 66 (11) 66 (11) 64 (17) 63 (17) 59 (22)
Female sex, n (%) 477 (3) 538 (4) 716 (5) 828 (4) 1,184 (5) 1,527 (7) 271 (49) 278 (52) 259 (47) 935 (50) 1,025 (54) 959 (51)
Non-Hispanic Black

race, n (%)
3,712 (25) 2,273 (15) 2,735 (18) 3,404 (16) 2,264 (10) 3,055 (14) 89 (16) 68 (19) 83 (15) 254 (14) 151 (8) 231 (12)

eGFR, ml/min per
1.73 m2; mean (SD)

51 (8) 52 (7) 52 (7) 50 (8) 53 (6) 52 (7) 48 (19) 54 (16) 46 (17) 51 (19) 56 (16) 47 (17)

Follow-up time, yr;
median (IQR)

6 (4–10) 8 (5–12) 6 (4–10) 9 (5–12) 9 (5–12) 7 (4–11) 2 (1–6) 5 (3–7) 2 (1–4) 2 (1–5) 6 (4–9) 2 (1–5)

Systolic BP, mm Hg;
mean (SD)

135 (19) 131 (17) 129 (17) 134 (18) 131 (16) 129 (17) 136 (23) 134 (20) 132 (22) 133 (23) 131 (46) 129 (21)

Body mass index,
kg/m2; mean (SD)

32 (6) 32 (6) 33 (6) 29 (5) 29 (5) 30 (5) 32 (7) 32 (7) 33 (7) 29 (7) 28 (7) 28 (7)

Microalbuminuria; n (%) 3,917 (54) 2,372 (31) 2,067 (26) 715 (36) 334 (17) 382 (18) 130 (54) 124 (35) 86 (35) 216 (41) 142 (21) 136 (28)

IQR, interquartile range.
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GWAS Stratified by Diabetes
Cross-ancestry meta-analysis of participants with diabetes
(n546,424) uncovered 27 variants from one gene region,
UMOD/PDILT, associated with decline in kidney func-
tion at genome-wide significance (Figure 2, Supplemental
Figure 7). The genetic variant with the strongest independent
association, rs77924615, is intronic in PDILT; every additional
minor allele of G was associated with a 0.45%/yr faster decline in
eGFR (P5 2.24310213; Table 2, Supplemental Table 5). Among
White participants with diabetes, rs77924615 was also the stron-
gest independent association (P 5 1.54310213; Table 2,
Supplemental Table 6). This variant was not associated with
decline in kidney function among Black participants with di-
abetes (P 5 0.81; Table 2). Among Black participants with
diabetes, the top independently associated locus was at
rs11624911, upstream of HEATR4, for which every additional
copy of the A allele was associated with a 2.94%/yr slower decline
in eGFR (P5 1.3031028; Supplemental Figure 8, Supplemental
Table 7). Results were similar for eGFR slope characterized on
the absolute scale in ml/min per 1.73 m2 per year (Supplemental
Table 8, Supplemental Table 9, Supplemental Table 10).

Among participants without diabetes, the UMOD/PDILT
region again housed the top independent variant, rs36060036,
associated with a 0.27%/yr faster decline in eGFR per copy
of the T allele, in cross-ancestry analysis (P 5 1.90310217;
Figure 3, Table 2, Supplemental Figure 9, Supplemental
Table 11). In addition, each copy of the minor allele of
rs11592748, intronic in BICC1, was associated with a
0.14%/yr slower decline in eGFR in the cross-ancestry analysis
of individuals without diabetes (P 5 6.7331029; Table 2,

Supplemental Figure 9, Supplemental Table 11). Among
non-Hispanic White participants without diabetes, the top
independent variant was also rs36060036, intronic in
UMOD, where every minor allele was associated with a
0.27%/yr slower decline in eGFR (P 5 2.4310217; Table 2,
Supplemental Table 12). No variants reached genome-wide
significance among Black participants without diabetes
(Supplemental Table 13). Results were similar for eGFR
slope characterized on the absolute scale in ml/min per
1.73 m2 per year (Supplemental Table 14, Supplemental
Table 15, Supplemental Table 16).

Candidate Genetic Variant Analysis
We next evaluated genetic variants with previously reported
associations with decline in kidney function. All previously
reported UMOD/PDILT lead variants were significantly asso-
ciated with eGFR slope in our cohorts (Table 3). In addition,
we replicated previously reported findings at PRKAG2, FGF5,
and C15ORF54 in cross-ancestry analyses of individuals with
and without diabetes (Supplemental Figures 11–13).

APOL1 Risk Variants
The presence of two high-risk APOL1 variants was associated
with a 1.3%/yr faster decline in eGFR among non-Hispanic Black
participants without diabetes, relative to those with no high-risk
variants (P5 2310211) (Supplemental Figure 14, Supplemental
Table 17). Among non-Hispanic Black participants with diabetes,
the presence of two high-risk APOL1 variants was associated
with a 1.2%/yr faster decline in eGFR (P 5 5.631024)
(Supplemental Figure 14, Supplemental Table 18).

Figure 1. Manhattan plot of the strength of association of genetic variants with eGFR decline (%/yr) in cross-ancestry analyses
among individuals with CKD. The y axis represents 2log10 P-values for a linear mixed model of genetic variant dosage on repeated
log-transformed eGFR measurements, adjusted for age, sex, and first ten principal components of ancestry, stratified by diabetes at
baseline and ethnicity, and then meta-analyzed for overall cross-ancestry results. The x axis indicates the chromosomal position of each
SNP. A dotted red line marks the P 5 131028 threshold.

6 JASN JASN 00: 1–13, 2023

CLINICAL EPIDEMIOLOGY www.jasn.org

D
ow

nloaded from
 http://journals.lw

w
.com

/jasn by V
0z9F

O
5lassoF

sY
1T

U
fIN

y7R
H

4B
R

pU
F

iaxl/obnN
C

dzB
3T

LU
K

H
Lw

aduyK
vIaV

kaP
K

G
agv3O

klS
pG

N
U

Z
Lb+

T
LN

vD
dC

zZ
O

/dU
nyvQ

G
X

ieC
dJT

cF
vO

Q
M

N
2O

r9tydm
V

zB
Y

Y
U

E
9Q

+
W

uaL+
V

U
nX

5pU
hyLS

w
gw

2
Y

G
U

T
H

G
B

hH
T

fw
H

A
yvH

E
E

P
e9K

fG
aH

A
W

hX
nW

cjhR
F

Jb on 08/03/2023

http://links.lww.com/JSN/E464
http://links.lww.com/JSN/E464
http://links.lww.com/JSN/E450
http://links.lww.com/JSN/E451
http://links.lww.com/JSN/E464
http://links.lww.com/JSN/E452
http://links.lww.com/JSN/E452
http://links.lww.com/JSN/E453
http://links.lww.com/JSN/E453
http://links.lww.com/JSN/E454
http://links.lww.com/JSN/E455
http://links.lww.com/JSN/E464
http://links.lww.com/JSN/E456
http://links.lww.com/JSN/E456
http://links.lww.com/JSN/E464
http://links.lww.com/JSN/E456
http://links.lww.com/JSN/E457
http://links.lww.com/JSN/E458
http://links.lww.com/JSN/E459
http://links.lww.com/JSN/E460
http://links.lww.com/JSN/E460
http://links.lww.com/JSN/E461
http://links.lww.com/JSN/E464
http://links.lww.com/JSN/E464
http://links.lww.com/JSN/E464
http://links.lww.com/JSN/E462
http://links.lww.com/JSN/E462
http://links.lww.com/JSN/E464
http://links.lww.com/JSN/E463


Table 2. Associations of independent genetic variants with relative slope of eGFR

Variant Characteristics Cross-Ancestry Analysis White Participants Black Participants

Identifier
Nearest
Gene

Chr Position EA OA EAF b SEM P EAF b SEM P EAF b SEM P

Overall
rs77924615 UMOD-PDILT 16 20392332 G A 0.80 20.30 0.03 4.9310227 0.78 20.30 0.03 7.2310227 0.81 20.20 0.20 0.32
rs11592748 BICC1 10 60284915 A G 0.57 0.13 0.02 5.631029 0.55 0.13 0.02 2.431028 0.24 0.21 0.10 0.07
rs16996674 APOL1/MYH9 22 36726652 T C 0.26 20.57 0.10 2.131028 0.00 — — — 0.26 20.57 0.10 2.131028

Participants with diabetes
rs77924615 UMOD-PDILT 16 20392332 G A 0.80 20.45 0.06 2.2310213 0.80 20.46 0.06 1.5310213 0.94 20.10 0.40 0.81
rs11624911 HEATR4 14 74026568 A C 0.18 0.02 0.06 0.75 0.20 20.02 0.06 0.69 0.03 0.29 0.05 1.331028

Participants without diabetes
rs36060036 UMOD-PDILT 16 20361950 T C 0.16 0.27 0.03 1.9310217 0.16 0.27 0.03 2.4310218 0.07 0.32 0.21 0.12
rs11592748 BICC1 10 60284915 A G 0.57 0.14 0.02 6.731029 0.56 0.14 0.03 3.031028 0.78 0.25 0.13 0.06

b from a linear mixed model of genetic variant dosage on repeated log-transformed eGFR measurements, adjusted for age, sex, and first ten principal components of ancestry, stratified by ethnicity and diabetes,
and thenmeta-analyzed for overall cross-ancestry results. EA, effect allele; OA, other allele; EAF, effect allele frequency; b, regression estimate, difference in%decline/yr per additional copy of the effect allele; SEM,
standard error of the mean.
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DISCUSSION

We undertook a large-scale GWAS meta-analysis of longitudinal
change in eGFR among individuals with established CKD of
African and European ancestry, stratified by diabetes status. Our
data identified two loci associated with CKD progression and

confirmed associations described with eGFR decline forUMOD/
PDILTand APOL1 across the spectrum of eGFR, including those
starting from a normal-range eGFR. In addition, we replicated
previous findings in PRKAG2, FGF5, and C15ORF54.

The UMOD/PDILT region was the only one significantly
associated at genome-wide significance with eGFR decline

Figure 2. Manhattan plot of the strength of association of genetic variants with eGFR decline (%/yr) in cross-ancestry analyses
among individuals with CKD and without diabetes. The y axis represents 2log10 P-values for a linear mixed model of genetic variant
dosage on repeated log-transformed eGFR measurements among individuals without diabetes, adjusted for age, sex, and first ten
principal components of ancestry, stratified by ethnicity, and then meta-analyzed for overall cross-ancestry results. The x axis indicates
the chromosomal position of each SNP. A dotted red line marks the P 5 131028 threshold.

Figure 3. Manhattan plot of the strength of association of genetic variants with eGFR decline (%/yr) in cross-ancestry analyses
among individuals with CKD and with diabetes. The y axis represents 2log10 P-values for a linear mixed model of genetic variant
dosage on repeated log-transformed eGFR measurements among individuals with diabetes, adjusted for age, sex, and first ten
principal components of ancestry, stratified by ethnicity, and then meta-analyzed for overall cross-ancestry results. The x axis indicates
the chromosomal position of each SNP. A dotted red line marks the P 5 131028 threshold.

8 JASN JASN 00: 1–13, 2023

CLINICAL EPIDEMIOLOGY www.jasn.org

D
ow

nloaded from
 http://journals.lw

w
.com

/jasn by V
0z9F

O
5lassoF

sY
1T

U
fIN

y7R
H

4B
R

pU
F

iaxl/obnN
C

dzB
3T

LU
K

H
Lw

aduyK
vIaV

kaP
K

G
agv3O

klS
pG

N
U

Z
Lb+

T
LN

vD
dC

zZ
O

/dU
nyvQ

G
X

ieC
dJT

cF
vO

Q
M

N
2O

r9tydm
V

zB
Y

Y
U

E
9Q

+
W

uaL+
V

U
nX

5pU
hyLS

w
gw

2
Y

G
U

T
H

G
B

hH
T

fw
H

A
yvH

E
E

P
e9K

fG
aH

A
W

hX
nW

cjhR
F

Jb on 08/03/2023



among diabetic participants with CKD in cross-ancestry anal-
yses. The top variant in the region, rs77924615, residing in
PDILT, has been previously identified as strongly associated
with several kidney phenotypes. It was recently reported as the
strongest variant associated with cross-sectional eGFR
and $25% decline in creatinine-based eGFR among individ-
uals from the general population without CKD.11 In analyses
of kidney function from over a million individuals, the variant
was associated with 19% lower odds of CKD (odds ratio; 95%
confidence interval, 0.80 to 0.83).11 In addition, several lines of
evidence support rs77924615 as a causal regulatory variant for
UMOD, including associations with UMOD gene expression
in tubular cells28,29 and uromodulin protein levels in urine.5

Furthermore, it has been recently shown that there is a dif-
ferential effect of UMOD on eGFR that it is much larger in
individuals with diabetes.30 Although this is not fully under-
stood, it has been postulated that UMOD in the context of
glucosuria has a large effect in the tubule-glomerular feedback
and in hyperfiltration. Among individuals of African ancestry
with diabetes and CKD, rs11624911, upstream ofHEATR4, was
associated with large differences in eGFR decline. This gene
region has previously been reported to be associated with cross-
sectional eGFR among individuals without diabetes10 and the
variant rs11626972 in linkage disequilibrium with rs11624911
with urinary metabolite levels (X-13671) in CKD.31

We identified two gene regions associated with eGFR de-
cline among individuals with nondiabetic CKD. The UMOD/
PDILT region again was identified as the strongest signal in this
population. In addition, the minor allele at the rs11592748
locus within the BICC1 gene region was associated with slower
annual decline in eGFR. BICC1 is highly abundant in the
proximal tubule in mice and in humans, is an RNA-binding
protein, and is considered a key player in post-transcriptional
gene regulation.29 Variants within the gene region have been
associated with adult polycystic kidney disease and other cystic

diseases of the kidney both in humans and animal models.32,33

In addition, Kraus et al. found two heterozygous loss-of-
function mutations that lead to renal dysplasia in children.34

As expected, BICC1 has also been associated with other
markers of kidney functions, such as blood urea nitrogen,5

or related kidney traits, such as serum urate levels.35–38

The largest GWAS of longitudinal change in eGFR, among
343,339 individuals from 62 studies with eGFR assessed twice
longitudinally, identified 12 variants in 11 loci significantly
associated with annual eGFR decline.26 Of these 12 variants,
seven were associated with relative annualized eGFR decline in
our cross-ancestry analyses, at a nominal P-value. The failure
to replicate the remainder of previously reported associations
between genetic variants and CKD progression is consistent
with findings from attempted replications in other complex
diseases.39 Some of the previous reports of association may
have given false-positive results. However, more likely expla-
nations for the discordance in findings on replication include
differences among samples because of ancestral heterogeneity,
disease heterogeneity, longer disease duration at initial exam-
ination, and phenotype definition and ascertainment.

Strengths of this study include the analysis of a large sample
size with relatively long follow-up and excellent participant
retention. The MVP cohort includes an ancestrally diverse
population that is particularly susceptible to CKD because of a
higher prevalence of diabetes and hypertension, making it an
ideal group in which to identify genetic risk of CKD progres-
sion.40 Our study also has some important limitations. Al-
though electronic health records provide a rich source of
clinical data, the acquired creatinine data could be an inac-
curate reflection of the entirety of the CKD spectrum. Out-
patient testing of serum creatinine can be triggered by acute
illnesses or monitoring of chronic diseases, which introduces
potential bias. Missing eGFR values were introduced when
participants were censored because of ESKD. The variable

Table 3. Association of candidate variants with eGFR decline (%/yr)

Variant Characteristics
Previously Reported Effect
Estimate (Gorski et al.)

Cross-Ancestry Estimate from
Current Meta-Analysis

Identifier Nearest Gene Chr Position EA OA EAF ba P EAF bb SEM P

rs34882080 UMOD-PDILT 16 20361441 A G 0.82 0.092 3.3310262 0.80 20.27 0.03 7.3310224

rs77924615 UMOD-PDILT 16 20392332 G A 0.80 0.099 3.8310269 0.78 20.30 0.03 4.9310227

rs10254101 PRKAG2 7 151415536 T C 0.28 0.037 1.8310214 0.29 20.10 0.02 8.231026

rs1028455 SPATA7 14 88829975 T A 0.66 0.024 3.431028 0.65 20.01 0.02 0.545
rs1458038 FGF5 4 81164723 C T 0.69 0.028 6.9310210 0.70 20.09 0.02 4.131025

rs4930319 OVOL1 11 65555458 C G 0.33 0.028 5.3310210 0.35 20.03 0.02 0.098
rs434215 TPPP 5 699046 A G 0.28 0.032 7.231029 0.30 20.07 0.02 4.831023

rs28857283 C15ORF54 15 39224711 G A 0.66 0.030 1.3310211 0.63 20.07 0.02 7.531024

rs13095391 ACVR2B 3 38447232 A C 0.50 0.025 4.031028 0.53 20.03 0.02 0.181
rs9998485 SHROOM3 4 77362445 A G 0.47 0.027 9.831029 0.50 20.05 0.02 0.014
rs1047891 CPS1 2 211540507 A C 0.29 0.029 1.231029 0.33 20.03 0.02 0.209
rs2453533 GATM 15 45641225 A C 0.42 0.029 1.7310211 0.40 20.02 0.02 0.412

Because of the differing phenotype definitions between the two studies, a positive regression b from the analysis by Gorski et al. indicates a faster eGFR decline,
whereas in our analyses a negative b indicates a faster eGFR decline. EA, effect allele; OA, other allele; EAF, effect allele frequency; b, regression estimate,
difference in % decline/yr per additional copy of the effect allele; SEM, standard error of the mean.
aDifference in 213eGFR decline, ml/min per 1.72 m2 per year, per copy of the effect allele, per Gorski et al. PMID 35716955.
bDifference in the relative annual eGFR decline, %/yr, per copy of the effect allele.
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censoring and record length could have biased our study
results, with healthier individuals contributing more data to
the analysis. To help mitigate this bias, one could implement a
joint analysis of longitudinal (eGFR) and survival (time to
kidney failure or transplant) and develop weighting schemes
on the basis of record lengths to avoid this type of selection
bias. Such sophisticated statistical methods are computationally
demanding and not currently available for GWASs. The number
of participants in subgroups of African ancestry and diabetes
was relatively small, limiting our power to detect subgroup-
specific significant genome-wide associations. In addition, the
findings of this study cannot be generalized to include people of
other ethnic groups, such as those of Hispanic/Latino or Asian
ancestry. A further important limitation, inherent to the MVP
data set, is the large predominance of male participants
(.95%). While women are included in this analysis, potential
interactions between sex, phenotype, and genotype could not be
addressed. Finally, because of statistical considerations, the ge-
netic variants examined in our study were limited to those
located on the autosomes. We may have missed important
genetic associations with CKD progression that are located on
the sex chromosomes.

Few new therapies have been developed to prevent or treat
CKD progression over the past two decades, underscoring the
need to identify and understand the mechanisms involved, and
GWASs can potentially provide novel biological insights into
disease pathophysiology. Our findings suggest that there is
some, but not complete, overlap between the genetic architec-
ture of CKD risk and CKD progression. It is possible that in the
context of CKD, acquired changes in the metabolic milieu have
larger relative roles in disease progression compared with ge-
netic determinants or that genetic susceptibility to CKD pro-
gression has risk factors with smaller effect sizes. Nonetheless,
GWASs using longitudinal data enabled the discovery of novel
genetic variants that may play an important role in disease
progression. Future work to understand the pathophysiology of
CKD progression could be directed toward functional charac-
terization of our findings, polygenic risk scores for risk strat-
ification, and beyond GWASs toward an examination of
gene-by-gene and gene-by-environment joint effects.
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Supplemental Figure 1. Quantile-Quantile plot of associations of single

nucleotide polymorphisms with relative slope of eGFR, among (A) cross-
ancestry analyses, (B) White participants, and (C) Black participants.
Supplemental Figure 2. Regional interrogation of the UMOD/PDILT locus,

cross-ancestry analysis.
Supplemental Figure 3. Regional interrogation of the UMOD/PDILT locus

among Black participants.
Supplemental Figure 4. Comparison between longitudinal and cross-sectional

eGFR data.
Supplemental Figure 5. Regional interrogation of the BICC1 locus, cross-

ancestry analysis. Plot shows 2log10(P-value) on the left y axis and genomic
location (in base pairs) on the x axis.
Supplemental Figure 6. Regional interrogation of the APOL1 locus among

Black participants. Plot shows2log10(P-value) on the left y axis and genomic
location (in base pairs) on the x axis.
Supplemental Figure 7. Regional interrogation of the UMOD/PDILT locus,

cross-ancestry analysis among individuals with diabetes.
Supplemental Figure 8. Regional interrogation of the HEATR4 locus among

Black individuals with diabetes.
Supplemental Figure 9. Regional interrogation of the UMOD/PDILT locus

from transethnic analyses among individuals without diabetes.
Supplemental Figure 10. Regional interrogation of the BICC1 locus from

cross-ancestry analyses among individuals without diabetes.
Supplemental Figure 11. Regional interrogation of the PRKAG2 locus from

cross-ancestry analyses. Plot shows 2log10(P-value) on the left y axis and
genomic location (in base pairs) on the x axis.
Supplemental Figure 12. Regional interrogation of the FGF5 locus from

cross-ancestry analyses.
Supplemental Figure 13. Regional interrogation of the C15ORF54 locus

from cross-ancestry analyses.

Supplemental Figure 14. Violin plots of distribution of relative eGFR byAPOL1
inheritance model among Black participants without (A) and with (B) diabetes.

Supplemental Figure 15. Manhattan plot of the strength of association of
genetic variants with eGFR decline (%/yr) among White individuals with CKD.

Supplemental Figure 16. Manhattan plot of the strength of association of
genetic variants with eGFR decline (%/yr) among Black individuals with CKD.

Supplemental Table 1. Associations of single nucleotide polymorphisms
with relative slope of eGFR, cross-ancestry analyses (P , 531028).

Supplemental Table 2. Associations of single nucleotide polymorphisms
with relative slope of eGFR, among White individuals (P , 531026).

Supplemental Table 3. Associations of single nucleotide polymorphisms
with relative slope of eGFR, among Black individuals (P , 531026).

Supplemental Table 4. Associations of independent genetic variants with
relative slope of eGFR in summary statistics by Gorski et al. (PMID 35716955).

Supplemental Table 5. Associations of single nucleotide polymorphisms
with relative slope of eGFR, among individuals with diabetes, cross-ancestry
analyses (P , 531026).

Supplemental Table 6. Associations of single nucleotide polymorphisms
with relative slope of eGFR, among White individuals with diabe-
tes (P , 531026).

Supplemental Table 7. Associations of single nucleotide polymorphisms
with relative slope of eGFR, among Black individuals with diabe-
tes (P , 531026).

Supplemental Table 8. Associations of single nucleotide polymorphisms
with absolute slope of eGFR, among individuals with diabetes, cross-ancestry
analyses (P , 531026).

Supplemental Table 9. Associations of single nucleotide polymorphisms with
absolute slope of eGFR, among White individuals with diabetes (P, 531026).

Supplemental Table 10. Associations of single nucleotide polymorphisms
with absolute slope of eGFR, among Black individuals with diabe-
tes (P ,531026).

Supplemental Table 11. Associations of single nucleotide polymorphisms
with relative slope of eGFR, among individuals without diabetes, cross-
ancestry analyses (P , 531026).

Supplemental Table 12. Associations of single nucleotide polymorphisms
with relative slope of eGFR, among White individuals without diabe-
tes (P , 531026).

Supplemental Table 13. Associations of single nucleotide polymorphisms with
relative slope of eGFR, among Black individuals without diabetes (P ,531026).

Supplemental Table 14. Associations of single nucleotide polymorphisms
with absolute slope of eGFR, among individuals without diabetes, cross-
ancestry analyses (P , 531026).

Supplemental Table 15. Associations of single nucleotide polymorphisms
with absolute slope of eGFR, among White individuals without diabe-
tes (P , 531026).

Supplemental Table 16. Associations of single nucleotide polymorphisms
with absolute slope of eGFR, among Black individuals without diabe-
tes (P , 531026).

Supplemental Table 17. Association of APOL1 high-risk variants with eGFR
slope among Black individuals without diabetes at baseline.

Supplemental Table 18. Association of APOL1 high-risk variants with eGFR
slope among Black individuals with diabetes at baseline.
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