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Abstract: Composite materials can displayexhibit the impressive mechanical properties characteristics of high damping and high stiffness simultaneously, which cannot be achieved attained by employing the traditional conventional single material configurations. HereinAlong these lines, a novel material architecture is presented in this work in order to fabricate composite structures with enhanced mechanical characteristics. More specifically, entangled metallic wire materials is were used as the active matrix, whereas polyurethane is was used employed as the reinforcement elements. As a result, and a high-damping and, high-stiffness wound metal wire-polyurethane interpenetrating phase composite material was prepared with a wire-polyurethane interpenetrating phase via by enforcing the vacuum infiltration method. On top of that, Tthe mechanical properties (loss factor, energy consumption, and average stiffness) of the proposed composite structure were characterized by applying various dynamic tests, and while its fatigue characteristics were verified by the changes in the micro-interface structure, and as well as the macro-damage factor. The effects impact of the density, the preloading spacing, the loading amplitude, and the exciting frequency on the mechanical properties of the composites were also thoroughly analyzed in detail. The Our results show indicate that the mechanical properties of the composites were significantly greater enhanced than those of the pure materials due to the introduction of interface friction. AlsoMoreover, the average stiffness of the composites was about 10 times that the respective value of the entangled metallic wire material. Interestingly, Aa rise in the loading period leads to a certain failure between the composite interfaces, which reduces the stiffness properties property but enhances the damping and energy dissipation properties. Finally, the a comprehensive dynamic mechanical model of the composites was established, and while it the accuracy of the model was experimentally verified. The proposed composites proposed in this paper work have possess higher damping features, i.e. stiffness characteristics, and maintain better fatigue characteristics, which can broaden the application range of the composites. In addition, and alsowe provide a solid theoretical and experimental basis for the research and applications in the field of metal matrix composites.	Comment by Author: This expression is vague. Please elaborate a little bit. 	Comment by Author: What type of tests were executed? A brief description is required here. 	Comment by Author: What does this expression imply? Do the authors mean the interfaces between the various employed materials?	Comment by Author: This expression is vague. Please elaborate. 
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0. Introduction
The Eentangled metallic wire material (EMWM) is a porous damping material structure that is generally madecomposed of a series of coiled metal wires with various sections embedded and hooked in order to achieve a spatial network structure[1-7]. EMWM has attracted great attention as due to its superior structural (high degree of porosity, large working surface area, sound -absorption, sealing, and damping), as well as and non-structural characteristics (anti-corrosion and elasticity). For that reason, and it has gradually become an excellent substitute candidate for ordinary rubber products [8-14]. Additionally, Scholars have conducted extensive research has been conducted on the preparation and energy consumption mechanism of EMWM. More specifically, Bai et al.[15, 16] studied investigated various winding and laying methods, which provides a reference for the mechanized and large-scale production of EMWM-based configurations. Ren et al. [17] used employed the ANSYS software in order to achieve a virtual preparation representation of the metal rubber and addressed the complex problem of the EMWM process simulation, which has a strong guiding significance inis of great importance for the practical preparation fabrication of EMWM. Furthermore, Ao et al. [18, 19] explored the energy mechanism of the EMWM and concluded that the dry friction between the micro-element springs inside within the EMWM is the primary reason for its improved damping and energy dissipation characteristics. In another interesting work reported by Courtois et al,[20] the authors observed explored the complex wire-to-wire contact in EMWM by applying the X-ray tomography technique, and whereas they connected the evolution of the microstructure with the macroscopic mechanical properties of the EMWM. Ma et al. [10] studied the quasi-static mechanical experiments properties of the nickel-based super-alloy EMWM of with different densities, and while the authors provided its a three-dimensional reconstruction was performedby using CT scanning technology. In addition, application the incorporation of metal rubber elements, such as rotor bearing [21, 22], building structure [9, 23], ship vibration reduction [24-26] has been also extensively investigated.	Comment by Author: Please define this acronym. 
Although EMWM has exhibits excellent stiffness and strength characteristics, severe problems arise when it is used but forin the a special service environment. More specifically, as far as applications with high damping performance requirements applicationsare concerned, their low damping performance makes does not permit the achievement ofit unable to achieve a satisfactory vibration reduction effect. For that reason, in order toTo obtain higher elevated stiffness characteristics, the density of the EMWM configuration needs to be increased, which further decreasessince it strongly affects the damping property and limits thus the potential applications. By considering that aA single damping material is unable to meet the above-mentioned stringent comprehensive requirements, hence, the damping composite materials have gradually emerged as a quite popular research topic [27, 28]. At present, the composites materials with high damping and stiffness characteristics are primarily aluminum foam-based matrix composites. Liu et al. [29] used reported the method of percolation in order to fill the reinforced PU into open-cell aluminum foam to for formulatinge aluminum foam composites material. Due to the viscoelasticity of the PU-based materials and the friction between the aluminum foam skeleton and PU, the composites have possess significantly higher damping properties. In addition, the matrix aluminum foam can provide better enhanced load-bearing properties. Bao et al. [30] studied also the mechanical properties of the foamed aluminum/polyurethane composites under enforcing intermittent and repeated cyclic compression processes, including the self-centered deformation capacity, as well as the stiffness and the reversible energy dissipation capacity. Alavi et al. [31] investigated the effects influence of foam filling of honeycomb panels on their plastic behavior, as well as on their and mechanical properties. Also, the effects impact of various experimental parameters such asincluding the cell size, the cell walls thickness and the thickness of the panel thickness on the mean crushing strength, energy absorption capacity and wavelength of the folds were also investigated. In addition, Zhang et al. [32] recently presented a method technique of for the three-dimensional reconstruction of the Materialise's Interactive Medical Image Control System (MIMICS) with an adjacent mask based on the Digital Imaging and Communications in Medicine (DICOM) data protocol for the spherical open-cell aluminum foam-polyurethane composites. The acquired experimental results show indicate that the modeling method is effective for the quasi-static compression test of the aluminum foam-polyurethane composites. The main applications of composites are shown schematically illustrated in Fig. 1.	Comment by Author: Please report here some applications.	Comment by Author: Please define this acronym. 	Comment by Author: This sentence is too complex. Please try to provide a simple and clear interpretation of the reported results. 	Comment by Author: It is not clear why this method is effective. Further elaboration is required here. 

Fig. 1. The Various applications of the composite materials: (a) Aluminum foam-polyurethane, (b) Foam-ceramic, and (c) Metal rubber-magnesium composite
In addition, scholars have exploredseveral other polymer fillers have been explored by the scientific community, such as the silicone rubber [33-35], the poxy resin [36-38], the polystyrene [39-41], etc. However, the observed comprehensive mechanical properties of the silicone rubber are poor, whereas and the epoxy resin is prone to the stress concentration effect after the curing process [42]. On the other hand, Ppolyurethane has exhibits the advantages of enhanced tear resistance, and wear resistance, high elasticity, and good damping performance [43]. Besides PU have possesses outstanding bonding properties, which can be leveraged and can be processed into the liquid phase before the curing procedure. Such advantages make render PU as an ideal material for the preparation fabrication of novel porous composites material configurations [44, 45]. 	Comment by Author: How exactly these bonding properties are used in the liquid phase? 
Along these lines, Iinspired by the concept of the porous reinforced composites material, an EMWM-PU composite with excellent energy absorbing properties and load-carrying capabilitiesy simultaneously is proposed in this studywork. Furthermore, the compressive mechanical properties, as well as and the hysteresis behavior of the EMWM-PU composite are thoroughly investigated. FirstlyInitially, the EMWM-PU composites were prepared via by employing the vacuum infiltration filling process, where with a spatial network structure with pore characteristics was used as the host matrix and a two-component polyurethane as the reinforcement element. Then, the effects impact of both the density of the EMWM structure and the key experimental parameters on the energy consumption and stiffness of composites have been discussedis analyzed by associating the energy dissipation form of the composites with the contact states of the helix wires and the interfacial friction using experiments. Subsequently, the acquired SEM results show reveal that the composites had possess good fatigue resistance, which is of great importance for the enhanced mechanical performance of our prototype. Also, the damage factor of the composites was determined after enforcing 200000 consecutive periodic fatigue tests. Finally, a nonlinear functional constitutive dynamic model of the EMWM-PU composite was established in order to predict assess the influence of the various experimental parameters on the dynamic properties of the composites. As a novel material with high damping and great stiffness, the EMWM-PU composite can be applied for various applications where an enhanced impact, a reduction of the vibration reduction, and load-bearing characteristics are required. On top of that, our work paves the wayThis work has great significance for the design and of novel applications of where robust composite materials can be incorporated.	Comment by Author: The novelty of the current work should be clearly stressed. Are the energy absorbing properties and the load-carrying capabilities quite important characteristics? If yes, it should be underlined. How are these values compared with the literature and how they have been improved?	Comment by Author: Why a two-component configuration was selected? Is this approach novel? If yes, it should be highlighted. 	Comment by Author: Please define this acronym. 	Comment by Author: What is the state-of-the-art value?	Comment by Author: What do the authors imply by this word?	Comment by Author: What type of impact is implied here?
[bookmark: _Toc69218204][bookmark: _Toc66555864][bookmark: _Toc66363997]1 Preparation of the composite materials 
[bookmark: _Toc66363984][bookmark: _Toc66555851][bookmark: _Toc69218188]1.1 Fabrication technologies of the entangled metallic wire materials
The wires inside within the EMWM configuration are intertwined in order to form a complex spatial network structure. More specifically, Tthe fabrication procedure of the EMWM is summarized in the following four steps: (i) Initially, Tthe mental wire was encircled into a tight helical coil by using a special winding device (as it is illustrated in Fig. 2). In general, the wire diameter was 0.10–0.30 mm, and whereas the larger wire diameter had possesses a higher mechanical strength. Herein, austenitic stainless steel of 304 (06Cr19Ni10) with a diameter of 0.3 mm was selected as the raw material, which is a typical and commonly used material for the fabrication of the EMWM. The detailed performance parameters of the selected materials are presented in Table 1. As far as theThe diameter of the coil (d1) is concerned, it was close to 5–15 times the wire diameter.	Comment by Author: Why does such an effect take place?

Fig. 2. Process of the winding helical coil (a) conveying the wire structure, and (b) entangling the helical spiral wire.
(ii) Subsequently, Tthe initial helical spiral wire was stretched to a spring-like structure with an equal pitch by using a numerical control blank entangle device (Fig.3a~c). The pitch of the spiral coil was approximately the same as the diameter of the spiral coil (P=D) in order to ensure an effective meshing between the spiral coils and thus improve the total stability of the structure.

Fig. 3. The fFabrication process procedure of the EMWM (a) entangle equipment, (b) tensioning the wire into a suitable pitch, (c) entangling the coiled wires (d) compression forming, and (f) the specimens of the EMWM. 
(iii) A compressive forming process was applied enforced to the rough sample in a customized mold by using a hydraulic press and in order to obtain the shaped product was obtained (as shown it is illustrated in Fig. 3d). Furthermore, in order Tto ensure acquire the forming shape accuracy and structure consistency, herein, thea proper holding time of 60 s at the maximum forming load stage was selected for ensuringed the stability of the plastic deformation of the material. Then, the EMWM structure with a certain design shape was obtained (Fig. 3f).	Comment by Author: Have the authors examined the impact of other holding times?
(ix) NotablyWe have to underline that an, ultrasonic cleaning process should be used in order to remove slight impurities contaminants such as steel scurf and lubricate oil and ensuree that there are no impurities on the surface of the steel wire in the subsequent composites fabrication steps. In other wordsprocess, so that the two-phase interface should remains intact.
Table 1. Performance parameters of the 06Cr19Ni10 material.
	Material
	Tensile strength/MPa
	Yield strength/MPa
	Young's modulus/GPa
	Density ( g/cm3)

	06Cr19Ni10
	680
	340
	199
	7.93


Herein, four kinds of EMWM structures with different densities were prepared (1.4 g/cm3, 1.6 g/cm3, 1.8 g/cm3, and 2.0 g/cm3). Moreover, the EMWM samples of each density were prepared with lengths of 68 mm, 88 mm, and 112 mm for application in the subsequent pipeline coatings as per the actual structural size of the pipelines. Every three pieces of the materials of with different lengths were superimposed together as with the upper and lower parts of the pipeline coating. The selected forming parameters of the EMWM materials that were employed in this work are listed in Table. 2.	Comment by Author: This sentence is hard to follow. Please revise. 
Table 2. Preparation parameters of EMWM
[bookmark: _Toc66363990][bookmark: _Toc66555857][bookmark: _Toc69218194]1.2 Preparation of the EMWM-PU composite
[bookmark: _Toc66363992][bookmark: _Toc66555859]Owing By considering to the porous characteristics of the EMWM configuration, the application of the traditional extrusion method will destroy the its three-dimensional porous structure of EMWM. Therefore, a vacuum infiltration method was used in this study, and whereas the preparation process is shown disclosed in Fig. 4. The PU is a two-component material comprising of component A and  component B. In order toTo maintain the an enhanced material quality, the PU was obtained by mixing the component A and with component B in the mass ratio of 1:1. All of the components were purchased from the same corporation (Shenzhen Dazhou Chemical Ltd. China). Table 3 lists highlights the mechanical properties of the PU at room temperature. 	Comment by Author: It is not clear why such an effect will take place. Please provide some arguments. 

Fig. 4. Preparation process of the EMWM-PU-based composite.
[bookmark: _Ref57661110]Table 3. Performance parameters of the Polyurethane.
	Material 
	Shore hardness /A
	Density /(g/cm3)
	Tensile strength/MPa
	Elongation/ %

	Polyurethane
	65
	1.58
	60
	200



Fig. 5 presents displays the SEM image of the as-prepared composite materials. As shownit can be ascertained, the interface is in a good bonding state of at the interface between the wires and the polyurethane was attained,in the composites indicating that the vacuum infiltration composites process has exhibits certain feasibility and can ensure that the PU is properly filled into the pores of the EMWM. As per it is divulged Fig. 5, there were still a certain number of extrusion contact states between wires in the composites materials can be observed. Therefore, when the EMWM-PU is subjected to external forces, the extrusion friction between the wires played is anticipated to play a certain crucial role in the damping and energy dissipation characteristics. However, a small amount of detachment between the wire and the PU still existed takes place withinin the composites.	Comment by Author: How exactly a good bonding state is defined? This expression should be quantified and compared with the literature, in order to highlight the novelty of the current work. 	Comment by Author: This expression should be quantified. Please provide the surface density of these defects. 	Comment by Author: Is this effect desirable or not? Please elaborate. 	Comment by Author: Please add a reference here. 	Comment by Author: Please describe the type of detachment. 

Fig. 5. SEM image of the EMWM-PU composite.
Since EMWM and PU are the two components of the composites, so the mass ratio of the EMWM to the EMWM-PU can be used to for the characterizatione of the composites. The employed calculation method is as described as follows:

		(1)
where m1 and m2 are the masses of the EMWM and PU respectively. Table 4 shows provides the mass ratio of the prepared EMWM-PU-based composite.
Table 4. Mass ratio of the EMWM-PU-based composite.
2 Experimental 
2.1 Mechanical system for the dynamic testing process
The A dynamic test of for the composites coating structure was designed in order to explore the damping energy dissipation and stiffness characteristics of the EMWM-PU composite by using a dynamic and static universal material testing machine equipment (SDS-200). The employed test system and the respective tooling are illustrated in Fig. 6. It is interesting to notice that Tthere is a design gap of 5 mm between the upper and the lower cladding rings. Additionally, and the pretension of the composites specimen in the EMWM-PU cladding structure can be adjusted by adjusting tuning the distance of the upper and lower cladding rings by locking the bolts. Before performing the test, the required preload distance can be set according to the specific requirements, while maintaining the consistency of with the other test conditions can be maintained. Notably, the horizontal degree of the test fixture must should be ensured and the upper chuck of the static and dynamic testing machine must be strictly centered to for eliminatinge the influence of the axial force. Moreover, the test was initially run for 500 cycles at each frequency in order to make stabilize the specimen stabilized and measure acquire the reliable data afterwards. The detailed test conditions for the mechanical properties of the materials are listed in Table. 5.	Comment by Author: This expression is vague. Please elaborate. 

Fig. 6. Depiction of the Ttest system and the test tooling.
Table 5. Test conditions for the mechanical properties of the materials under consideration. 
[bookmark: _Toc39255517][bookmark: _Toc66364000][bookmark: _Toc66555867][bookmark: _Toc69218207]2.2 Parameter identification


The EMWM-PU-based composite material exhibits nonlinear hysteresis characteristics that are directly associated with the force-displacement curve and the energy dissipation under enforcing dynamic loading conditions. We have to underline that Tthe hysteresis loop area represents the energy dissipation capacity of the material. Herein, a sinusoidal displacement excitation method was used, and whereas the force signal was collected by the force sensor. The maximum elastic potential energy , as well as the and energy consumption  within a period, are illustrated in Fig. 7.	Comment by Author: Please provide arguments for this selection. 

Fig. 7. Restoring force-displacement curve of the EMWM-PU-based composite.
The sinusoidal displacement was applied to the EMWM-PU composite by using a dynamic and static testing machine. The displacement excitation is given asby the following equation:

	 	(2)



where  is the amplitude of the displacement amplitude, is the loading period, and is the initial loading phase.

The area of the measured hysteresis loops is calculated as followsby using the following expression:


	  	(3)



where the number of the sampling points is in each loading vibration period，is the maximum loading frequency, and while the sampling frequency is set as 5000 Hz during the execution of the dynamic test.

As good symmetry was obtained in the hysteresis loop, whereas the maximum elastic potential energy of the EMWM-PU-based composite in a cycle was calculated by the following equation:	Comment by Author: Please add a reference here. 

	 	(4)



Herewhere,is the dynamic average stiffness，while and are the maximum and minimum values of the restoring force collected in the sampling system, respectively.
Finally, Tthe loss factor of material was calculated using Eqs (3) and (4).

		(5)
[bookmark: _Toc66364002][bookmark: _Toc66555869][bookmark: _Toc69218209]3 Results and discussion
3.1 Principle of energy consumption of the EMWM-PU-based composite

Fig. 8. Internal friction of the EMWM-PU-based composite.
Before analyzing the results of the dynamic test, It it is necessary to understand the energy consumption form of the EMWM-PU-based composite before the dynamic test. As shown it is depicted in Fig. 8, there are primarily three kinds of energy consumption phenomena in that take place within the composites materials:; (i) the friction between the wires in the continuum EMWM, (ii) the interface friction between wires and PU, and (iii) the friction energy consumption between the molecular chains in the reinforced PU. On top of that, Tthere are also four relative states between the wires in the EMWM structure, namely (a) non-contact, (b) slip, (c) stick, and (d) cross. For the EMWM-PU composite, the reinforcing PU element is filled into the internal space pores of the EMWM. Hence, there is no non-contact state in the EMWM-PU composite, but still, there are the states of slip, stick, and cross in the compositesconfiguration. As perAccording to the reports literature [46, 47], there are few non-contact states of the EMWM, and while the contact states of its internal wires are mainly in slipping contact and in extrusion adhesive contact. Thus, there is still a large amount of friction between the wires in the composites. When the external compression of the composites increases, the extrusion friction between the wires in contact also rises. SimultaneouslyAt the same time, the interfacial friction between the host matrix EMWM and the reinforced PU also varies accordingly. Therefore, both the damping and energy dissipation characteristics of the composites also change. Interestingly, Tthe contact friction behavior between the wires themselves and between wires and the PU can also dissipate the external vibration energy by converting the mechanical energy into thermal energy.; Tthus, reducing the energy consumption of vibration is reduced. Moreover, Wwhen the polymer chains in the PU materials are subjected to external forces, the phenomena of motion and extrusion occur between the molecular chains, which couldan also lead to a certain amount ofcontribute to  energy loss. At the same time, in during the process of the preparation of the composites, there are inevitably a certain number of pores in the reinforcement PU, as well as and at the interface between the wires and the PU will be inevitable formed, which can also absorb the external energy under load conditions.	Comment by Author: How exactly does this process take place?	Comment by Author: Please add a reference here. 	Comment by Author: Please provide an approximate number here. 
[bookmark: _Toc66364003][bookmark: _Toc66555870][bookmark: _Toc69218210]3.2 Dynamic properties of the EMWM-PU-based composite
In order to To evaluate the reliability of the EMWM-PU-based composites and assess their capability of being used as high damping materials applied in hysteretic dampers, it is quite important to know understand how the density[48-50], the vibration amplitude[51, 52], the preload distance[53] and the frequency[54, 55] affect the damping capacity of the EMWM-PU-based composites with different corresponding density of EMWM. Because Additionally, since the AF–PU composites are composed of both EMWM and PU, the former is associated with the density (porosity), and the amplitude, the preload distance, and the frequency that are the main factors affecting the damping capacity of the EMWM and the PU.	Comment by Author: In order to obtain high-damping materials low or high density is required?
3.2.1 Effect Impact of density of the EMWM on the dynamic properties of the sample
As Except the continuum of the composites, the complexity of the and disordered spatial network structure inside within the EMWM decisively affects the mechanical properties of the materials. Along these lines, In in this section, the influence of the EMWM's density (porosity) on the energy dissipation characteristics of the composites materials was systematically studied, and whereas the associated hysteresis loops are presented divulged in Fig. 9. 	Comment by Author: This expression is vague. Please elaborate. 
More specifically, as can be ascertained from As shown in Fig. 9, that the hysteresis loops of both EMWM and EMWM-PU composites increased as the density of the material rosebecame bigger, revealing signifying the an enhancement in the energy consumption of the material. At the same time, the figure extracted graph illustratesshows that the restoring force of the material has been also increased, i.e. the average stiffness of the material increased enhanced with the rise inas the density increased. Furthermore, the acquired hysteresis loop area and restoring force of the EMWM-PU were significantly larger than that of the pure EMWM and PU under the same density of EMWM. This result outcome clearly demonstrates that the prepared EMWM-PU had exhibits better energy dissipation and stiffness characteristics. Moreover, in order toTo quantitatively study the energy consumption and the stiffness characteristics of the different materials, the loss factor, energy consumption, and average stiffness of the materials under consideration were calculated by using formula (3)–(5) and the changinge trend pattern that is shown disclosed in Fig. 10.

Fig. 9. Hysteresis loops of the samples under with different EMWM density (The mass ratios of the EMWM-PU were 51.15%, 54.54%, 58.44%, and 60.70%, amplitude: 2.5 mm, preload: 1.0 mm, and frequency: 2 Hz).
Interestingly, Tthe loss factor of the EMWM decreased with the rise in density, while the energy consumption and the average stiffness increased (see Fig. 10). Consequently, Tthe increase in the EMWM density led to the rise in the contact points between wires. Hence,; hence, the energy consumption of the EMWM increased. However, the restoring force required for the EMWM compression to a certain amplitude is also rose enhanced with the increase in of the density. This phenomenon made induced a maximum elastic potential energy growth rate of the EMWM greater than that of the energy consumption. Thus,; thus, the loss factor decreased with the increase in density.	Comment by Author: Is there any experimental evidence to support this conjecture?

Fig. 10. Effect Impact of the density of the EMWM on the dynamic properties (a) loss factor, (b) energy consumption and dynamic average stiffness.
We have to underline that theThe loss factor, energy consumption, and average stiffness of the EMWM-PU-based composite were significantly higher than those of both pure EMWM and PU. The main reason for this phenomenon effect is that the loss factor of the EMWM-PU-based composite consisted consists of three parts (see Fig. 8 and Fig.11), namely the friction damping between the continuum wires, the polymer damping inside within the PU, and the interfacial friction damping between the wires and the PU. With the rise inAs the density of the EMWM increases, both the contact interface between the wires and the PU and the friction between the wires in the composites material increasebecome bigger. Therefore, the loss factor, energy consumption, and average stiffness of the composite material are increaseenhanced. However, with the continuous rise in the density of the EMWM in the composites, the loss factor between the wires decreases (as shown it is depicted in Fig.10a) until the reduction of the loss factor between the wires is greater than the interfacial friction energy consumption between the wires and the polyurethane. As a consequence, the loss factor of the EMWM-PU composite configuration increased first, then remained relatively stable, and finally, displayed a decreasing trend, while the energy consumption and the average stiffness continued to enhance remarkably.	Comment by Author: Please report the employed range. 

Fig. 11. Friction form between wires and PU in composites 
3.2.2 Effect Influence of the amplitude on the dynamic properties of the sample
In this section, we have investigated the mechanical properties of the various material configurations (EMWM-PU1.6, EMWM 1.6, and PU) with the applied amplitudes at a fixed cycling frequency of 2 Hz and got derived the hysteresis loops that are presented as shown in Fig. 12. The restoring forces of all the three damping materials displayed an increasing trend, and whereas the relationship between the displacement and the load was nonlinear. Moreover, the restoring force and the hysteresis loop of the EMWM-PU composite materials were significantly greater than those of both EMWM and PU, signifying that the EMWM-PU composite have possesses better energy dissipation characteristics and stiffness characteristics under the same amplitude.	Comment by Author: What does this non-linearity imply?

Fig. 12. Hysteresis loops of the samples under the enforcement of different amplitudes (density of EMWM:1.6 g/cm3, preload:1.0 mm, frequency: 2 Hz): (a) EMWM-PU, (b) EMWM, and (c) PU.
Fig. 13 presents illustrates the variation of the mechanical properties of the different materials with as a function of the amplitude. As per the figurecan be observed, with the rise inby increasing the loading amplitude, the energy consumption of the EMWM continuously increasedenhanced, while the loss factor decreased sharply. The main underlying reason for the this phenomenon effect is that the slip mechanism of the internal wires of the EMWM damping specimen became more difficult, and since the dry friction increased with the rise in amplitude. Thus; thus, the an elevated energy consumption was amplifiedtook place. However, the increasing trend pattern of the material's maximum elastic potential energy was less smaller than the respective increasing trend of the energy consumption. Hence; hence, the EMWM loss factor decreased gradually. It is interesting to notice that PU is a viscoelastic polymer that is composed of long-chain molecules with simple chain segments. As a result, when it isWhen subjected to an external force, the distortion of the internal molecular chain of the PU lags delays behind the change of the external load, forming thus a phase difference and generating vibrational energy consumption. Therefore, the energy consumption and the average stiffness of the PU increased simultaneously with the rise in the amplitude.	Comment by Author: Please add a reference here in order to support this assumption. 	Comment by Author: Can the author comment on the time scale of these effects?

Fig. 13. Effect Impact of the amplitude on the dynamic properties, namely (a) loss factor, (b) energy consumption and dynamic average stiffness.
For As far as the EMWM-PU-based composite is concerned, the friction between the wires increased with rise inas the amplitude became bigger, and whereas the interfacial friction between the wires and the PU was also amplified. Thus, the loss factor and the energy consumption increased sharply. However, with the continuous increase in the amplitude, the loss factor of both EMWM and PU in the composites decreased, and while the increase enhancement in the interfacial friction damping could no longer offset the damping reduction of both EMWM and PU. As a result,; hence, the loss factor decreased. Meanwhile, as it is illustrated in Fig. 13a, the EMWM had possesses a higher loss factor at small loading displacement. More specifically, asAs the loading displacement increased, the loss factor of the EMWM decreased sharply from 0.331 to 0.185, which is a reduction of 44%. On top of that,; while the loss factor of the EMWM composites remained above 0.26, which remained at a high level. As shown it is divulged in Fig. 10 (b), when the loading amplitude increased from 1 mm to 3.5 mm, the average stiffness of the EMWM-PU-based composite decreased slightly. With By enforcing a further the increase in the amplitude, the energy consumption amplified sharply from 2.70 kN·mm to 26.50 kN·mm, which is an increase of 9.8 times. The above phenomenon effect indicates that the prepared EMWM-PU composite material has exhibits great energy consumption and stiffness characteristics under the application of different loading amplitudes. At the same time, it is noted that the prepared proposed EMWM-PU-based composites structures have variable stiffness characteristics similar to EMWM, and while they exhibit have obvious linear elastic stage, soft characteristic deformation stage, and exponential hardening stage under the enforcement of different loading displacement[56].	Comment by Author: What is the state-of-the-art value?
3.2.3 Effect Impact of the preload distance on the dynamic properties of the sample
In this section, the influence of the preload distance on the dynamic properties of the sample were was thoroughly studied and the EMWM-PU1.6 material configuration (mass ratio: 54.54%) was selected. The extracted hysteresis loop is shown revealed in Fig. 14. The change of the preload distance signifies the changemodification of the pre-compression between the wires and between the wires and the PU within the EMWM-PU-based composite material, which has a great impact on the damping energy consumption and stiffness of the composite material. Additionally, Tthe hysteresis area of the three damping materials increased with the reduction of the pretension distance, indicating that the absolute energy dissipation capacity of the material increasedhas been enhanced. The required restoring force also increased as the pre-tightening distance decreased, i.e.,which indicates a rise in the average stiffness of the materials.	Comment by Author: Why does such an effect take place?

Fig. 14. Hysteresis loops of samples under the application of different preload distance (density of EMWM: 1.6 g/cm3, amplitude: 2.5 mm, frequency: 2 Hz) (a) EMWM-PU, (b) EMWM, and (c) PU.
Fig. 15 presents reveals the decrease in the loss factor, energy consumption, and dynamic stiffness, and whereas the decreasing trend of both EMWM-PU and PU are prominent. Moreover, Tthe increase in the pre-tightening distance refers is equivalent to the decrease in the pre-compression between the molecules inside the PU. Therefore, the loss factor, energy consumption, and average stiffness of the PU decreased declined with the rise in the preload distance. Similarly, the manifestation of a larger pretension distance signifies a smaller pre-compression distribution between the wire and the polyurethane within the EMWM-PU composite. Resulting in theAs a result,  smaller interface friction at the same frequency and loading amplitude is observed. Furthermore, the dry friction (slip, stick, and cross) between the wires in the matrix material also decreases. ThusThus, the loss factor, energy consumption, and average stiffness of the EMWM-PU composite were reduced under the application of the external load. Meanwhile, it as can be seen ascertained from the Fig. 15, that the damping energy consumption and stiffness characteristics of the EMWM-PU-based composite materials are obviously higher than those of both EMWM and PU under the application of different preload spacing.	Comment by Author: Please add a reference here. 

Fig. 15. Effect Impact of the preload distance on the dynamic properties, namely (a) loss factor, (b) energy consumption and dynamic average stiffness.
3.2.4 Effect Influence of the excitation frequency on the dynamic properties of the sample
In order to explore the stability of the EMWM-PU composites under the enforcement of different excitation frequencies, the specimens were cycled at different frequencies in the range of 1~6 Hz, whereas and the variation trend of the mechanical properties of the different materials with as a function of the frequency is presented in Fig. 16.	Comment by Author: Please report the number of cycles. 

Fig. 16. Hysteresis loops of the samples under the application of different frequency values (density of EMWM: 1.6 g/cm3, amplitude: 2.5 mm, and preload: 1.0 mm): (a) EMWM-PU, (b) EMWM, and (c) PU.
As shown it is disclosed in Fig. 16, the loss factors of the different materials did not change significantly under the application of different excitation frequencies. This effect is attributeddue to the rubber material has that exhibits good stability in a the low-frequency range at room temperature[57]. As far asFor the EMWM material configurations are concerned, the friction velocity between the wires increased with the rise inas the excitation frequency enhanced, i.e.,imposing thus an elevated the amount of deformation of on the spiral coil increased. Hence, the loss factor was increased but the observed increasing trend pattern was not significant. As shown it is illustrated in Fig.17, with the rise in of the excitation frequency, the energy dissipation of the EMWM-PU compound almost remained unchanged, but while the average stiffness increased slightly. The main reason for the phenomena effect is that the PU was filled into the pores of EMWM. Thus; thus, the composite consists of a relatively stable porous interpenetrating network structure. Moreover, Uunder external excitation, the slip of the metal wire is obviously limited, which improves the internal stability of the material. Therefore, the loss factor of the EMWM-PU-based composite material did not change significantly. From this result, we can draw also the conclusion that It also means the composites have excellent stability in the low-frequency band.	Comment by Author: What is the underlying mechanism for the slipping of the metal wire?

Fig. 17. Effect Influence of the excitation frequency on the dynamic properties.
[bookmark: _Toc66364005][bookmark: _Toc66555872][bookmark: _Toc69218212]3.3 Fatigue characteristics of the EMWM-PU-based composite
The implementation of enhanced Ffatigue characteristics are is the prerequisite for the stable use of the materials with improved mechanical performance. More specifically, Wwhen the composites are subjected to external load conditions, the friction, extrusion, and slip mechanisms occur between the internal wires. At the same time, the friction and wear effects continues to occur take place at the interface between the continuous EMWM and the reinforced polyurethane. With the extension of the working cycle of the damping material, the degree of wear between the internal metal wires, as well as and between the metal wires and the polyurethane material gradually increases, which has a certain profound impact on the elastic deformation, stiffness, and damping energy dissipation capacity characteristics of the composites. Therefore, in this section, the EMWM-PU 1.6-based composites material with a mass ratio of 54.54% was were selected to for exploringe the fatigue characteristics. Additionally, Tthe hysteresis loops of different materials under the application of 200000 consecutive cycles are shown illustrated in Fig. 18.	Comment by Author: Do these three mechanisms take place simultaneously?

Fig. 18. Hysteresis loops of the samples with as a function of the vibration cycle (density of EMWM: 1.6 g/cm3, amplitude: 2.0 mm, preload: 1.0 mm, and frequency: 4 Hz): (a) EMWM-PU, (b) EMWM, and (c) PU.
As shown it is presented in Fig. 18, the restoring force required by the three materials decreased declined with the increase in the loading cycle. Furthermore, by increasing theWith the rise in loading period, the hysteresis loop gradually converged inward and tended to be flattened. This result outcome indicates that with the increase enhancement of thein number of fatigue load cycles leads to an accumulation of, the internal damage of the EMWM-PU compoundbegan to accumulate. As a result, and the damping energy dissipation capacity decreased, but it could still maintain a good damping energy dissipation performance. AlsoIn addition, with the rise in the vibration cycles, the hysteresis loop rotated counterclockwise, and the bearing capacity increased elevated within a small change range, which indicates that the EMWM-PU composite maintained a good bearing capacity in the long-term fatigue life test. Fig. 19 and Table 6 display the trend of the dynamic characteristics of materials with the loading cycle.	Comment by Author: Please quantify this expression. How good is the damping performance?

Fig. 19. Dynamic characteristics of the samples with as a function with the vibration cycle: (a) loss factor, (b) energy consumption, and (c) dynamic average stiffness.
	Table 6. Energy consumption and stiffness characteristics of the samples with as a function of the vibration cycle.
	
	Energy consumption of EMWM (kN·mm)
	Energy consumption of EMWM-PU(kN·mm)
	Stiffness of EMWM (kN/mm)
	Stiffness of EMWM-PU (kN/mm)

	Pre-test
	1.151
	3.011
	0.354
	9.759

	After test
	0.841
	2.462
	0.288
	8.280

	Variation
	26.961%
	18.240%
	18.698%
	15.156%





As shown it is illustrated in Fig. 19, the energy dissipation and the stiffness characteristics of the three materials decrease with the increaseby enhancing in the vibration period. The damping characteristic of the EMWM compound is primarily due originates from to friction energy consumption between the wires. After a certain period, the contact friction distribution between the wires gradually changes from the running-in period to the stable period; asperiod. As a result, the characteristics of energy dissipation and stiffness tend to become stable. However, compared with both the PU and EMWM-PU composite, the period ofthe EMWM configuration requires a longer period in order to entering the stable phase is longer (140000 times as shown it is divulged in Fig. 19a). More specifically, Aat the initial stage of the fatigue loading (as shown it is illustrated in Fig. 19a for 40000 times), the state between the wire and the polyurethane phase in the EMWM-PU-based composite was still bonded, and whereas the interface was relatively stable. With theBy elevating increase inthe loading cycle, the internal structure of the EMWM-PU composite began to become unstable, and while the interface between the metal wire and the polyurethane was damaged, which led to partial debonding (as it is illustrated in Fig. 20). At this stage, the contact friction between the wires, as well as and the interface friction between the wires and polyurethane increases. Thereby, the decreasing trend of energy consumption and stiffness slows down, while the loss factor increases to a certain extent. Such a phenomenon is due ascribed to the damping enhancement caused by the fatigue damage[58]. As per can be ascertained from Fig. 20, the host matrix and the reinforcement element were not fully separated in the composites material after the enforcement of the cyclic fatigue loading (Fig. 20b and c). As indicatedInterestingly, after 200000 cycles, there were was still a large number of bonding states between the wires and the polyurethane within the composites, while and the two-phase interface of the composites was not destroyed completely. Besides, the macroscopic size of the EMWM-PU-based composite material was not changed significantly, which also shows divulges to a certain extent that the as-prepared composite material had possesses good stability. Hence, it can be concluded that the EMWM-PU-based composite have exhibits good stability to a certain extent.	Comment by Author: To what extent does this partial debonding take place?	Comment by Author: This expression is vague. Please revise. 

Fig. 20. SEM of the EMWM-PU composite after the application of the fatigue loading cycle.



By Cconsidering the residual stiffness decay characteristics that have been proposed in for the study of the composites materials[59], the stiffness damage factor , and the energy damage factor  were consequently introduced in order to characterize the degree of the fatigue damage of the materials under investigation. The expression of stiffness damage factor  can be expressed derived from the following equationas:	Comment by Author: Please add a reference here. 

	 	(6)



where  is the material stiffness damage factor,  is the initial average stiffness of the test specimen and  is the average stiffness of the specimen after the application of n cyclic loads.

		(7)



where is the material energy dissipation damage factor,  is the initial energy consumption of the specimen, and  is the energy consumption of the specimen after the enforcement of n cyclic loads. The employed boundary condition of the damage factor is:

	 	(8)
As shown it is depicted in Fig.21, with the accumulation of fatigue damage of the materials imposes an increased, the damage factor increased continuously. More specifically, PU reached the stable stage after the application of 30 000 cycles of loading, while the EMWM-PU-based composite basically reached theattained a stable state after the enforcement of 40 000 cycles. Interestingly, the EMWM-based compound required needed about 140000 times in order to enter the stable period, which is 100000 cycles slower than that of the EMWM-PU-based composite. This result outcome is mainly due ascribed to the disordered and complex spatial network structure inside within the EMWM. Therefore, with the increaseby increasing the in loading cycle, the contact form between the internal wires becomes gradually stable. When subjected to external loads, the unstable state between the metal wire and the polyurethane in the EMWM-PU composite begins to transform, and whereas the transitions from the running-in period to the stable period take place in a relatively short time. Thus, the EMWM-PU-based composite enter the stable phase faster. Furthermore, as per can be observed from Fig. 21, the extracted order of damage factors is:is EMWM > EMWM-PU > PU. Therefore, Tthe maximum damage factor of the EMWM-PU configuration was about 65% of the EMWM, indicating that the EMWM-PU composite have possesses better fatigue resistance.	Comment by Author: Please add a reference here. 

Fig. 21. Damage factor of the samples with as a function of the vibration cycle: (a) energy damage factor and (b) stiffness damage factor.
4 Model establishment
The main purpose of thisThe goal of this section is to establish develop a nonlinear functional constitutive dynamic model of EMWM-PU-based composite for predicting assessing the influence of the various experimental parameters on the dynamic properties of the composites. As per theAccording to the above-mentioned results of the dynamic test process, the restoring force hysteresis loop of the EMWM-PU-based composite can be decomposed into a nonlinear elastic restoring force curve and nonlinear viscous damping force curve (see Fig. 22).	Comment by Author: What do the authors imply by this expression?	Comment by Author: What is the direction of these forces?

Fig. 22. Exact decomposition of the hysteresis loop.

Bai et al.[60-62] concluded that the primary linear and tertiary nonlinear stiffness play a decisive role in the elastic restoring force distribution. Therefore, the nonlinear elastic restoring force can be expressed as follows:

		  (9)


where, and are the primary linear and tertiary nonlinear stiffness coefficients respectively, and X is the deformation of EMWM-PU composite.
As it is illustrated in Fig. 22, the nonlinear damping force is exhibits the shape of a nonlinear closed curve. In addition, Tthe damping component factor was used to for describinge more complex nonlinear damping force and it. It can be expressed asby the following equation:

		(10)



In the formula,  and  are stand for the damping coefficient and damping component factor respectively, and while  is the symbolic function.

Therefore, the nonlinear dynamic model of EMWM-PU-based composite can be expressed as follows:;		    (11)
The acquired dynamic experimental results demonstrate that the damping and stiffness characteristics of EMWM-PU-based composite were mainly affected by the amplitude and density, and whereas the frequency had little a negligible impact on the dense materials. In order to further To describe the relationship connection between the hysteresis loop and the dynamic parameters, the elastic restoring force can be expressed as a functional relationship between the amplitude and density. As a result, i.e., equation (11) can be modified as follows:	Comment by Author: Surface or bulk density?

		(12)
where A is the loaded amplitude and ρ is the density of the matrix EMWM-based in the composite.

[bookmark: _Toc1484][bookmark: _Toc66364012][bookmark: _Toc66555879][bookmark: _Toc73357208]4.1 Identification of the nonlinear stiffness coefficient
The test data of the composites with different densities of EMWM and different amplitudes were selected for fitting purposes in the study (preload: 1 mm and frequency: 1 Hz). Compared with the polynomial and the trigonometric function fitting, the power function fitting method has possesses the advantages of fewer unknowns variables and a simpler fitting structure. Therefore, the first-order linear stiffness and third-order nonlinear stiffness were fitted by using the power functions that are shown in equations (13) and (14), and while the respective fitting results are shown divulged in Fig. 23.

		(13)

		(14)
where K1 and K3 are the first-order linear stiffness coefficient and the third-order nonlinear stiffness coefficients of the composite, respectively.

Fig. 23. Space surface of the nonlinear stiffness coefficient (a) K1, (a) K3
As per it is illustrated in Fig. 23, the stiffness coefficient gradually decreased with the increase inby enhancing the amplitude, indicating that the EMWM-PU composite presents soft characteristics [10]. Moreover, Tthe first-order linear stiffness change trend pattern was more prominent than the third-order nonlinear stiffness. Meanwhile, the variation range of the stiffness coefficient decreased gradually with the rise inas the amplitude elevated, while the stiffness coefficient was enhanced with the increase in the density. The fitting results of the stiffness coefficients are listed in Table 7.	Comment by Author: What do the authors imply here?
Table 7. Results of the stiffness coefficient.

4.2 Identification of the damping coefficient and the damping component factor
According to the nonlinear functional constitutive relationshipdistribution, the nonlinear damping force is equal to the actual collected total restoring force minus the nonlinear elastic restoring force, i.e.:	Comment by Author: How the actual force is defined?

		(14)
The variation relationship of the nonlinear damping force with the density and the amplitude is quite complex. Additionally, Tthe power series could not fit the variation law of the damping force accurately. For that reason, Tthe polynomial fitting can effectively solve the problem of the fitting accuracy and achieve the best fitting effect. The space surface of the fitted damping coefficient and the damping component factor is are shown displayed in Fig. 24.



Fig. 24. Space surface of the damping coefficient and damping component factor (a), (b). 
As per it is revealed in Fig. 24, the variation trend of the damping component factor is more complex than that of the damping coefficient. After performing multiple fittings, it was found that the damping coefficient can be well fitted by equation (15), while the damping component factor can be fitted by equation (16) in order to better predict the damping performance of the composite materials. The acquired fitting results are listed in Tables 8 and 9.

		(15)

		(16)
Table 8. Results of the damping coefficient.

Table 9. Results of the damping component factor.
[bookmark: _Toc19662][bookmark: _Toc66364014][bookmark: _Toc66555881][bookmark: _Toc73357210]The constitutive relationship model of the nonlinear functional function of the EMWM-PU-based composite material can be obtained by substituting the identified relational equations (13)–(16) into equation (12).
[bookmark: _Toc3907][bookmark: _Toc66364015][bookmark: _Toc66555882][bookmark: _Toc73357211]4.3 Model verification
As perAccording to the above-mentioned parameter identification, the hysteresis loop of the recovery force for the EMWM-PU-based composite can be re-constructed. In order Tto verify the accuracy of the nonlinear functional constitutive model, the comparison of the experimentally recorded hysteresis curve the estimated curves were fitted by the developed proposed model and experimentally measured results was performed. Fig. 14 presents the comparison results of the hysteresis curve that are associated with the restoring force and displacement under the application of different amplitudes and densitiesy of MR.	Comment by Author: More details regarding the solving process of the model should be provided. 	Comment by Author: Please define this acronym. 
As it is illustrated in Fig. 25a–f, the damping coefficient and damping component factor reflect the damping energy consumption of the EMWM-PU-based composite. On top of that, the extractedIts variation with amplitude and metal rubber density is in high consistencydirect line with the measured data. Hence, the nonlinear universal function constitutive model that was established in this study can accurately describe the variation of the displacement-force hysteresis loop of the EMWM-PU-based composite.

[bookmark: _Toc66364006][bookmark: _Toc66555873][bookmark: _Toc69218213]5 Conclusions
In this paperwork, a novel entangled metallic wire materials-polyurethane (EMWM-PU) interpenetrating composite were was prepared by injecting PU into the EMWM in order to investigate, with the aim of investigating the mechanical property performance of the composites. The A nonlinear universal function constitutive model of the EMWM-PU-based composite were was also established. From our data, we can draw the following The main conclusions are as follows:
(1) The effects impact of the density of the EMWM compound, loading amplitude, preload distances, and excitation frequency on the dynamic mechanical properties of the composites were thoroughly analyzed. Due to the introduction of interfacial friction between the PU and the wires, and there are still three forms of dry friction (slip, stick, and cross) between wires can be identified, the whereas the prepared composites have exhibit higher damping and stiffness characteristics.
(2) Based on the analysis of the fatigue characteristics of the composites, it can be seen ascertained from the changes of the macroscopic mechanical properties and microstructure that the proposed composites have possess excellent fatigue resistance. The composites will have apresent a certain interface failure, while a reduction of and reduce the stiffness with the continuous loading cycles was also observed. Nevertheless, but this interface failure can improve the energy dissipation characteristics of the composites to a certain extent.	Comment by Author: This expression is vague. Please revise. 
(3) The dynamic hysteresis loop of EMWM-PU-based composites was accurately decomposed into the elastic restoring force curve and the nonlinear viscous damping force. The nonlinear functional constitutive dynamic model of the composites is established by using the least square method, and whereas a good agreement between the experimental and the numerical results were in good agreementwas achieved.
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