
Is the Beijing Olympic swimming centre unstable?

The swimming centre built for the Beijing Olympics is an extra -
ordinarily beautiful sight, especially lit up at night, when it looks
like a transparent box full of bubbles. Its designers, Arup, were
keen to capture the spirit of the aquatic sports played inside but
wanted also to give the building a natural, organic look.

They began by looking at shapes that can tile a wall, like squares
or equilateral triangles or hexagons, but decided that these were
all too regular and didn’t capture the organic quality they were
after. They explored other ways in which nature packs things
together, like crystals or cell structures in plant tissue. In all these
structures there are examples of the sort of shapes that Archi -
medes discovered made such good footballs, but Arup were
particularly drawn to the shapes made by lots of bubbles packed
together to make foam.

Considering that it took until 1884 to prove that the sphere is
the most efficient shape for a single bubble, it may not come as a
surprise that sticking more than one bubble together to make
foam leads to some tough questions that are still vexing math -
ematicians today. If you have two bubbles that contain the same
volume of air, what shape do they make when they join together?
The rule is always that bubbles are lazy and look for shapes with
the least energy. Energy is proportional to surface area, so they
try to make a shape that has the smallest surface area
of soap film. Since two joined bubbles share a
boundary, they can make a shape with smaller
surface area than just two bubbles touching.

If you blow bubbles, and two bubbles
of the same volume fuse together, then
the combination looks like this:
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figure 2.09
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The two partial spheres will meet at an angle of 120° and be
separated by a flat wall. This is certainly a stable state – if it wasn’t,
nature wouldn’t let the bubbles stay as they are. But the question
is whether there might be another shape that has even less surface
area, and therefore less energy, which would make it even more
efficient. It might require putting some energy into the bubbles
to take them out of their current stable state, but perhaps there is
an even lower energy state that two bubbles could assume. For
example, perhaps the two fused bubbles could be
bettered by some weird configuration with less
energy where one bubble takes the shape
of a bagel and wraps itself round the other
bubble, squeez ing it into the shape of a
monkey nut (Figure 2.10).

The first proof that the fused bubbles
couldn’t be bettered was announced in 1995.
Although mathematicians don’t really like
asking for help from a computer, because that
doesn’t appeal to their sense of elegance and beauty, they needed
one to check through the extensive numerical calculations that
were involved in their proof.

Five years later, a pencil-and-paper proof of the double bubble
conjecture was announced. It actually proved a more general
conjecture: if the bubbles do not enclose the same
volume, but one is smaller than the other, then
the bubbles fuse together so that the wall
between the bubbles is no longer flat but
bends into the big bubble. The wall is part
of a third sphere and meets the two
spherical bubbles in such a way that
the three soap films have angles of 120°
between them (Figure 2.11 and 2.12).

In fact, this 120° property turns out to be
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a general rule for the way soap bubbles
fuse together. It was first discovered
by Belgian scientist Joseph Plateau,
who was born in 1801. While he
was doing research into the effect
of light on the eye, he stared at the Sun
for half a minute, and by the age of 40 he
was blind. Then, with the help of relatives and
colleagues, he switched to investi gating the shape
of bubbles.

Plateau began by dipping wire frames into
bubble mixture and examining the different
shapes that appeared. For example, when you
dip a wire frame in the shape of a cube into
the mixture, you get 13 walls which meet
at a square in the middle (Figure 2.13).

Except that it isn’t quite a square – the
edges bulge out. As Plateau explored the
various shapes that appeared in different
wire frames, he began to formulate a set of
rules for how bubbles join together.

The first rule was that soap films always meet in threes at an
angle of 120°. The edge formed by these three walls is called a
Plateau border in his honour. The second rule was about the way
these borders can meet. Plateau borders meet in fours at an
angle of about 109.47° (cos−1−⅓, to be precise). If you
take a tetra hedron and draw lines from the four
vertices to the centre, you get the configuration of
the four Plateau borders in foam (Figure 2.14).
So the edges in the bulging square at the 
centre of the cube wire frame actually
meet at 109.47°.
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Any bubble that didn’t satisfy Plateau’s rules was believed to be
unstable and would therefore collapse to a stable configuration
that did satisfy these rules. It was not until 1976 that Jean Taylor
finally proved that the shape of bubbles in foam had to satisfy the
rules laid down by Plateau. Her work tells us how the bubbles
connect together, but what about the actual shapes of the bubbles
in foam? Because bubbles are lazy, the way to the answer is to find
the shapes that enclose a given amount of air in each bubble in
the foam while minimizing the surface area of soap film.

Honey bees have already worked out the answer to the problem
in two dimensions. The reason they construct their hives using
hexagons is that this uses the least amount of wax to enclose a
fixed amount of honey in each cell. Yet again, it was only a very
recent breakthrough that confirmed the honeycomb theorem:
there is no other two-dimensional structure that can beat the
hexagonal honeycomb for efficiency.

Once we step up to three-dimensional structures, though,
things become less clear. In 1887 the famous British physicist
Lord Kelvin suggested that one of
Archimedes’ footballs was the key to
minimizing the surface area of the
bubbles. He believed that while the
hexagon was the building block of
the efficient beehive, the truncated
octahedron – a shape made by cutting
the six corners off a standard octahedron
– was the key to constructing foam:

The rules that Plateau developed for how bubbles in foam must
meet show that the edges and faces are not actually flat, but curve.
For example, the edges of a square meet at 90°, but by the second
of Plateau’s rules that isn’t permitted. Instead, the edges of the
square bulge out as they do in the cube wire frame, so that the two
soap films meet at the requisite 109.47°.
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