Introduction
Integro-differential equations appeared very naturally in various applications (for example, see [9, 10, 17, 18, 25]), which explains the interest in the theory related to these equations (for example, see [2, 3]) such systems are found in models for many mechanical systems.
Consider the non-linear system of integro-differential equations:

Where
 is n-dimensional vector
are constant  matrices
 is a symmetric positive-definite matrix
Let's define the matrices  and  as 


 Where  are symmetric and  are skew symmetric matrices. We will use terminology commonly found in mechanics to classify the forces acting in the system:
(a) Potential force - 
(b) Dissipative force - 
(c) Gyroscopic force - 
(d) Bounded damping forces - 
(e) Non-linear force - 
If the non-linear force  is absent, the stability and oscillation of the system (1) are well studied. Lyapunov's direct method has been successfully employed to investigate the stability of ODE systems when the linear approximation is non-critical.
As for the non-linear force , we have the following result:
Theorem
	Let the system

Where
 
 are vector-polynomials of degree in .
Be non-resonant, i.e. For any integer-valued vector 
.
The zero solution of (0.1a) is Birkhoff stable (stable in any finite nonlinear approximation)
If only potential and non-linear forces present in (1) it is reducible to 

Where
 
 

The spectrum of linear approximation has n pairs of pure imaginary eigenvalues. Such a system is used substantially in the theory of nonlinear oscillations, and it achieves critical stability. 
In this paper we want to investigate the stability of an integro-differential system with non-linear force  when the entire spectrum or part of its linear approximation is on the imaginary axis.
First, we need to reduce the integro-differential system to the corresponding ODE system. This can be found in the first part of this article. The idea of reducing to a system of ordinary differential equations when studying stability was presented in [5]. In the second part of the article, we will present the method and give definitions related to the method for reducing nonlinear systems to the simplest form. This method will be called normalization. After this method has been applied to a system, the system will be said to be a system reduced to normal form or simply "n.f."
In part 3 of the article, we will find the stability/instability condition for the zero solution of a system reduced to normal form.
Then, in part 4, we will show how the integral addend can be used as a way to control stability, which means that if the nonlinear oscillator has an unstable solution, then it is possible to choose coefficients for the integral addend that will make the solution stable or vice versa.
Part 1 - Reduction method
The idea and development of the reduction method for the intergo-differential equation were described in works by Domoshnitsky and Goltser [5, 6]. 
We will present how a system of integro-differential equations can be reduced to a system of ODEs.
Let us consider the system of integro-differential equation:

Let us assume that
  
Then the system (1.1) can be written in the form 

If the kernel  is a square-integrable function, then in a Hilbert space  it can be represented in the form:

Where
 are  matrices continuous on . Additionally, we assume that  are invertible matrices. We can write  in the following form

And we will assume that

We will write

 Where  in the form (1.4)
Let us introduce a new variable

Where
, 
Then the system (6) can be reduced to the ODE system


Where
               	
The question is, under what conditions it is possible to obtain a matrix  with constant coefficients? We will find the conditions that are sufficient and necessary to transform the matrix  to a matrix with constant coefficients.
Let  be the fundamental system of solutions and let us assum we can write  in the following form 

Where
 – Lyapunov matrix
 – constant matrix
We substitute (1.5) into the system

 and get





Theorem
	The system of equations 

can be reduced to a system with constant coefficients 


if

This condition is necessary and sufficient if we use Erugin's results on reducible systems.
[Erugin's] Theorem
The linear differential system

is reducible if and only if some fundamental matrix  can be represented in the form of a Lyapunov matrix  multiplied by the exponential of the product of the independent variable  and the constant matrix , i.e.

Now let us consider a few cases: 
(a)  is a Cauchy function, so we write

thus  is Cauchy functional equation:

Because  is a Cauchy function, it has the following properties

Where
 is the order of the linear differential operator , which depends on the structure of .
Thus, from system (1.1), we derived the following 2n-dimensional system of ODEs:

What to do if  is not a Cauchy function? For this, let's consider the following case
(b) As we know from Leontief [], a rather broad class of functions can be expanded in the form of a general Dirichlet series. Let the functions  have the following representation:	Comment by Target Comment: I'm not sure if I understood the intended meaning here, so my changes may not be correct. Additionally, is there a citation number missing here?

Let us consider systems whose kernel is the difference.
Assume that  is an analytical function and can be written as

Then  can be expanded to a series (1.6) of exponents (see Leontief)

From (1.6), we learn
(i) There is the possibility of a countable system of ODEs.
(ii) Each exponent is a Cauchy function of some ODE.
(iii) The equations are different, depending on whether  is real or complex.	Comment by Target Comment: I couldn't understand the original intended meaning of the source, so I'm not sure if my edits are correct.
There is another way to decompose : for example, as a Fourier series of the following form

We can substitute

and obtain the desired decomposition.
(c) The periodic case.
Let us assume that  is a periodic matrix with period . From the equation

Using Floquet theory, we conclude that in this case the kernel  contains the matrix

Where  has period  with respect to .
Then, using Floquet's theorem as a special case of the theorem on the system's reducibility, the matrix can be reduced to a system with constant coefficients.

In this work, we want to use a kernel that has a periodic representation.
Example
As a first example, let us consider the application of the reduction method to an analysis of a non-linear oscillator with a non-linear force represented as an integral. 
Let's consider system (1), where , , 
So the system will look like this

 And it is easy to see that the operator  has the form

 and is a second-order operator.
After applying the reduction method, the system looks this


Part 2 - Normal Form
Let us briefly present the idea of reducing the system to normal form. For this, we will use terminology that can be found in Bibikov
 Consider two formal systems of ordinary differential equations

and

Where
	 are formal power series
Definition
We say that systems (2.1) and (2.2) are formally equivalent if there exists a change of variables 

Where
is a formal power series, which reduces (2.1) to (2.2)
Let  be a vector whose coordinates are eigenvalues of matrix .
Theorem
	If 
 
	Then system (2.1) is formally equivalent to any system (2.2) and  is uniquely defined in (2.3).
We seek the simplest form of such a system. It is convenient to assume that  is in Jordan canonical form. This can be achieved through linear–singular changes of variables.
	Accordingly, we consider the system:

Definition
	When considering system (2.5), we say that coefficients of any power series corresponding to a pair  that satisfies

are resonant and the corresponding term is called a resonant term. But if

is true, then we say that the coefficient and corresponding term are non-resonant. Equation (2.6) is called a resonance equation.
Definition
	When all non-resonant terms are equal to zero, the system (2.5) is said to be in normal form (NF).
As an example of finding the normal form, consider a system of nonlinear oscillators where, for example, the first oscillator is perturbed by a force represented by the integral:

Using the reduction method described above, we obtain the following system of equations

Let's make the following replacement 








Then system (2.8) can be written in matrix form as follows:

Where
 
  	
Let's perform the change of variables  to bring matrix  to diagonal form

We substitute this change into (2.9) and obtain

We multiply the last equation on the left by  and get

After introducing the new notation, we obtain

where
 
is a new non-linearity 
We make the substitution 

After the substitution, we want to get

Substituting (2.11) into (2.10), we obtain

We use the expression (2.12)

After simplifying the last expression, we get

Where
 
is obtained after substituting a series into a series. Equation (2.13) is called a homological equation.
Now we need to investigate when equation (2.13) has a solution for .
Let us consider the  equation and the equation for finding the coefficients of the terms of the -th-order form


And we get


 The last condition will help us find all the resonance values of vector . Our result here can be expressed in the following theorem.
Theorem
	The system of equations 

Using the substitution

leads to this form

Where 
   has only resonant terms that can be found using the formula


Example of normal form
We use condition (2.8) in a system with two pairs of imaginary eigenvalues in order to find the resonance terms that remain after the normalization method 
 



Then the first nonlinear term will be  and 
 



Then the first nonlinear term will be  and 

As we saw above, if there is no internal resonance, then the second-order terms do not affect the structure of the normal form, so we can choose them to be equal to zero. Then the nonlinearities can be chosen as follows


Let's start the normalization after reducing the integro-differential equation to a system of ODEs. So we'll consider the following system of equations

We make the change of variables (2.15)

And we get the following ODE system

The last system can be written as follows


Using more concise notation, the last system can be written as follows

The eigenvalues of matrix  will be


After transforming the linear part of the system (2.16) to diagonal form using linear transform , , where the transform matrix  and its inverse transform  are:




We substitute this change into (2.16) and obtain

We multiply the last equation on the left by  and get

After introducing the new notation, we obtain

where
 
 is a new nonlinearity obtained after substituting a series into a series
Let's make a substitution that is close to the identity

After the substitution, we want to get

The coefficients, which need to be found in normal form, will be:


We will write out only the final result for the coefficients of the normal form





The normal form up to the third order has the following structure

Theorem
	After normalization, the following system of equations 

 is reducible to


and the coefficients of the normal form are found in the equality (2.17)

Part 3 - Analysis of the stability of the zero solution of the equation ( )	Comment by Target Comment: Empty parentheses?
The system (2.18) was considered in works by Lyapunov, Malkin, Veretennikov, Molchanov, and Goltser. We use some of the results obtained in these works to analyze the stability of the zero solution of this system.
Let us consider the following system


We make the substitution


And get




Equating the real and imaginary parts, we get





Alternatively, we can write




The following theorem can provide an answer regarding the stability of the solution to the latter system
Theorem [Goltser]
(a) To achieve the asymptotic stability of the  solution of the system

	regardless of the terms , it is necessary and sufficient for  and one the following two conditions to be satisfied :



(b) If the  solution for the system ( ) is asymptotically stable, regardless of the terms , then for the system ( ) there exists a Lyapunov function , , with a sign-definite derivative because of the system ( ).	Comment by Target Comment: Empty parentheses?
 Applying the last theorem to our example, we obtain


Or



For the zero solution to be A-stable, the following conditions must be met

or

Analyzing the conditions (), we obtain


Theorem
	For the zero solution of the system

to be A-stable, the following inequalities must hold



Comment
The last inequality gives the condition for the coefficient  so that the solution to the equation with an integral addend is stable, but this means that  and if this is true, the solution of the equation without the integral addend will be stable

Part 4 - using integral addend as a way to control the stability of a non-linear oscillator.
Let the following equation be given

such that  and the zero solution are unstable.
Using an integral addend in the following form

we want to achieve the stability of the zero solution of the new equation

After using the reduction principle, we obtain the following system of equations

Let's make a change of coordinates and get the following system of equations


The structure of the normal form will be the same, and as before, we will write out only the resulting coefficients of the normal form.


Where





We make a change of coordinates and get the following system


Using the theorem (), we need to verify the following inequalities	Comment by Target Comment: Something seems to be missing here (in the empty parentheses).



For convenience, we introduce new notation

Then we get



The last inequality can be replaced by the following inequality

In each inequality, we find an expression for 



Let us assume that

Then we can write

Or





Therefore, if we choose  such that the last inequality () holds, then we can choose  so that inequality () is also satisfied.	Comment by Target Comment: Empty parentheses again here.
Theorem
	The zero solution to the equation  

will be A-stable if the following conditions are met
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