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Abstract 
This report describes a neural network algorithm for a snap-shot app to detect DVD covers and classify 

them. The working of an algorithm is based on Siamese Neural Network (SNN) architecture. Siamese 

Neural Network is based on two identical standard convolution neural networks, with their output linked 

to a loss function. It makes use of image pairs rather than taking one input image in the form of large data 

volume and training a neural network on it as it occurs in the classification problem. The idea behind 

using Siamese Neural Network is to extract feature vector as an output from the neural network for the 

input DVD covers image pair and labeled as similar or dissimilar. We evaluated the similarity and 

dissimilarity for detecting the DVD covers using binary cross-entropy loss function and contrastive loss 

function. Give a single training data instance, a DVD cover image of a movie, Siamese Neural Network is 

the best choice in this case. 

 

Introduction 
Researchers and scientists have a history of mathematically comparing two lists of elements with the 

same data types and have designed and developed different coefficients and similarity rates for different 

contexts. In 1993, this concept was introduced as an artificial neural network algorithm for fingerprint 

recognition and estimated the output as the probability that the two fingerprint images belong to the same 

finger [1]. Then the same algorithm was implemented in 1994 for machine learning by introducing 

Siamese neural networks. The computational system compared two samples of a handwritten signature 

and detect if they have made by the same person. In addition, it learned to distinguish the correct and 

false signature, which proved to be important for designing and developing a signature forgery detector 

[2]. An android mobile application was developed using the same Siamese neural network to detect 

forgeries. The camera of the android cell phone takes an image of a signature, and then the Siamese 

neural network algorithm in the app analyzes the input image by comparing it with the other signatures 

used during training [3]. Since then, the Siamese neural network has been employed in various fields to 

detect and classify problems and has implemented several neural network architectures [4].  

In reference to the android app for signature image analysis, our experiment was to develop an algorithm 

for a photo app where you take a picture of a DVD, and the app tells you all the information about it. This 

problem is related to object detection, object localization, and object recognition. We used the Stanford 

Mobile Visual Search Database as our training data, and testing data comprised of images, each 

containing one DVD in a non-frontal viewpoint [5]. Using it for our project, the goal is to generate a 

neural network well-trained on just one sample per class, and that can be used to predict movies by feed-

in only one snapshot of the DVD cover. The output should be to find out the movie that the DVD cover 

belongs to.  

The data set of our project is all given by Stanford mobile Visual Search Database, under the 

DVD_COVER folder, which contains five folders of different category images. There is one reference 

folder that is used as training data. It contains 100 DVD covers for 100 movies, which means each movie 

only has one image. Furthermore, the main folder contains four photo folders; each folder is picture taken 

by the device of the folder name. These are used as testing data.  

Standard classification has always been the first approach for object detection, where input is fed into the 

neural network and the output class probabilities. Furthermore, this requires a large volume of data. A 

nice example is using classification to predict cats and dogs by training a model on cat and dogs pictures 

dataset [6]. But this model doesn’t work on a dataset of few samples, and many times data is minimum. 

Siamese Neural Network is popular to mitigate the less training data problem. Siamese Neural Network 

learns to differentiate between two inputs instead of classifying them. It determines if the two inputs are 

different or similar, and the input can be anything. The advantages are less training data, less memory 

required, less computational cost, and time-consuming. Moreover, we don't need to worry about the 

number of classes. 



A Siamese Neural Network consists of two identical neural networks with the exact same weights (Fig. 1). 

The parameters are shared between the two neural networks, meaning weights are updated in one, then 

the weights in the other neural network are updated. By using these two identical networks, we can 

compare and differentiate the two DVD cover images. Our architecture requires an input image pair. 

Therefore, we take a pair of DVD cover images, and each DVD cover image in the image pair is fed to one 

of these networks. The output of the left side of the neural network and the output of the right side of the 

neural network is compared through a loss function through distance metric, the binary and contrastive 

loss function in our model.  

 

Fig. 1: Representation of the structure of Siamese Neural Network Model. Each input image is processed 

in the neural network, the value of the loss function is a measure of similarity between the input image 

pair, the final output is different (dissimilar) / similar 

In the context of programming, Siamese neural network is implemented using one standard convolution 

neural network architecture. Because the weights are constrained to be identical for both networks, one 

neural network model is used, and two images are feed into it in succession. In our code, we took an input 

image of a DVD cover and found out the encodings of that image. Then, we take the same network without 

performing any updates on weights or biases and input an image of a different DVD cover and again 

predict its encodings. We then compare these two encodings to check whether there is a similarity 

between the two DVD cover images. These two encodings act as a latent feature representation of the 

images. Images with the same DVD cover have similar features and using this, we compared, estimated, 

and presented if the two images have the same DVD cover or not. 

Here are the steps for training and testing of Siamese Neural Network 

• Load training data 

• Construct Siamese Neural Network  

• Train the network by passing the first image of the image pair through the network 

• Train the network by passing the second image of the image pair through the network 

• Calculate the loss using the output from 1 and 2 

• Back propagate the loss to calculate gradients 

• Update the weights using optimizer – Adam  



• Load the testing image from testing data 

• Detect and localize target from the image 

• Feed target to trained Siamese Neural Network 

• Predict the target class with a similarity score according to the loss function 

 

Methodology 
The first hurdle we faced while preprocessing the testing data was that there were some bad photos in it, 

as depicted in Fig. 2. The assumption of the testing data for our project is that the image needs to be taken 

having a top-down viewing; the image must show the whole image of the DVD poster, not taken by side 

viewing or missing edges. Therefore, some bad images are excluded from testing data.  

 

Fig. 2: Bad photos of DVD cover in the testing samples 

Image Preprocessing consists of two parts – one is for the training dataset, that is reference, and the other 

is for testing data. The work we did for training data is mainly data expansion.  Whereas for testing data, 

we have managed object detection and localization using some mathematical techniques and used 

rotation and resizing. The reason to have data expansion on training data is that we need more training 

data because the reference folder contains only one image for each class, presented in Fig. 3. Another 

issue is that photos may be taken from different angles, so we also introduced rotation when expanding 

the training dataset. We rotated the image in eight different angles, resized the rotated image to the same 

size, and generate copies of images for each movie class, as presented in Fig. 4.  

 

Fig. 3: Sample of training image in the reference folder 

 

Fig 4. Rotation applied to the training image in the reference folder 

Another problem we faced was finding the DVD poster in the photo; the image contains many objects, and 

it was taken from different angles. During the research phase, we have read a list of pre-trained object 

detection algorithms, and among them, we tried implementing YOLOv3, and it worked poorly with our 

dataset [8]. There is no DVD cover label in most of database, so object detection algorithms prefer to 

detect something other than the DVD cover, as depicted in Fig. 5, by detecting cast in the DVD cover 



highlighted yellow bounding box. Besides this, the training data only has 100 images of the DVD poster, 

which is nearly impossible to retrain the detection model.  

 

Fig. 5: The result of YOLOv3 on the dataset 

Another method for DVD cover detection with a bounding box is to build a simple shape detection method 

from scratch as it can be easily modified with features of specific targets. For our project, we have a DVD 

cover, all DVD covers are rectangular in top-down viewing, and the target occupies the biggest area of the 

image. The way to build this shape detection method is shown in Fig. 6. First, it begins implementing a 

canny edge-detection function on a grayscale image, converted from an RGB image [7]. The canny edge-

detection will calculate the image intensity gradient and extract edges in the image where it finds a large 

gradient. Then, it collects all closed contour shapes in binary edge image, resorts all contour by area from 

large to small, and finally finds the contour has a rectangular-like shape (Fig. 6).  

 

Fig. 6: Canny edge-detection function for a DVD cover detection, left side is the grey-scaled image, next to 

it is edges extracted on it; the right side is contour as a rectangle shape 

In the end, we found the image, but it is not in the shape we want it to be. Therefore, our next step was to 

use rotation and resize the image as the photo may be taken from a different angle, and also, the size of 

the object needs to be reconstructed to match the input size for our model. Using the 4-point transform 

method, it transfers the rectangle-like shape into a standard rectangle in a normal, top-down view image 

and resizes the image to correct size and orientation (Fig. 7) [8]. 

 

Fig. 7: 4-point transform method to resize and orientation of the image; left is the original testing image, 

and the right side is its top-down view 



Binary Siamese Network 
The implementation of binary cross-entropy loss was straightforward [9] and was performed by Enze Cui. 

As its output is binary, and so was the Siamese network. However, it has a problem that it does not 

respond level of confidence during the prediction; therefore, the model which implementing this loss 

function cannot rank the possible class for photos. We managed to evaluate the model by passing many 

testing images and calculating the accuracy at the end of each epoch. In the end, the model with an 

accuracy of 78.12% (Fig. 8). The loss function calculated the Euclidean difference of features extracted 

from two input DVD cover images and then used the sigmoid function to give the result as 0 or 1. 

 

Fig. 8: Binary Testing Plot 

Contrastive Siamese Network 
We firstly tried binary cross-entropy loss, and we yield some good results. Nevertheless, we wanted to 

know how well the network evaluates and distinguishes between the two images; this was performed. This 

wasn’t done efficiently with binary cross-entropy because the output of binary entropy loss was either one 

of two, 0, or 1. We then implemented the contrastive loss function, and it was fit to solve this problem. 

The network was trained for 50 epochs, using Adam and a learning rate of 0.0005 (Fig. 9). The Euclidean 

distance directly corresponds to the dissimilarity between the image pair output of the Siamese network. 

Through this measure of similarity of input DVD covers, the algorithm gives out the output by minimizing 

the distance between similar DVDs and maximizing the difference between dissimilar ones [6]. 

 

Fig. 9: Loss value over time of Contrastive Siamese Neural Network 

 



Division of Labor 

Tasks Subtasks Individual in charge 

Proposal Research and writing Group 

Preprocessing the Data Analyze training and testing data Group 

Research approach and algorithms 

Implement and test 

Creating Siamese Network 
and Training It with 
Binary Loss Function 

Research approach and algorithm Enze Cui 

Coding 

Implement and test 

Creating Siamese Network 
and Training It with 
Contrastive Loss Function 

Research approach and algorithm Juwairiah Zia 

Coding 

Implement and test 

Report Writing Writing and editing Group 

 

Results and Discussion 
In our class project on deep learning with a convolution neural network, we implemented a Siamese 

Neural Network to detect and differentiate between pairs of DVD cover for a snap-shot app. We selected 

the Siamese network as it is useful where there is less training data, one training per class of a particular 

movie in our case. We trained the Siamese neural network from scratch with binary cross-entropy 

function and then with contrastive loss function, which we would recommend.  

With binary entropy loss function, the output was either 1 that is the same class or 0, not the same class. 

In contrast, the testing result of the Siamese neural network with contrastive loss shows dissimilarity 

between the image pair, which corresponds to Euclidean distance (Fig. 10). The higher the value of 

distance, the higher the dissimilarity. 

 

Fig. 10: On the left, the score is higher: the DVD covers are dissimilar; on the right side, the score is low: 

the DVD covers are similar 

Another loss function, known as the triplet loss function, can also be implemented in this application. As 

mentioned before, this problem can also be solved using other neural network architectures such as 

ResNet, VGG13, VGG50, and GoogLeNet. This can be done with transfer learning by extracting feature 

vectors and then train any other machine learning model on top of these feature vectors to recognize the 



DVD covers. Another method is fine-turning the neural network by removing its fully connected layer and 

replacing it with a new fully-connected layer, and making it learn to predict movies in DVD classes [10].  
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