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1 Introduction

1.1 Automatic Speech Recognition

ASR involves the process of transcribing an audio into the corresponding text. ASR plays
a key role in the field of industrial robotics, medical assistance, defense and aviation and
voice assistants. The famous paradigms for establishing the automatic speech recogni-
tion systems are the Conventional Hidden Markov Model Based systems and all
neural end-to-end speech recognition systems. The performance of an ASR system
is evaluated using the word error rate(WER) which is the levenshtein distance between
the recognition output and the actual transcription, divided by the number of words in
the transcription.

1.2 Language Modelling

A language model estimates the probability p(wN1 ) of a sequence of tokens or words wN1 =
w1, ..., wN . The language model has its own vocabulary which is a set of token classes on
which the model’s output distribution is normalized. The probability p(wN1 ) is factorized
by the chain rule of probability as below.

p(wN1 ) =

N∏
n=1

p(wn|wn−1
0 ) where w0 is the start symbol of the sequence (1)

Language modelling refers to the problem of predicting the next token or word wn
given the predecessor tokens wn−1

0 and it involves finding the conditional probabilities
p(wn|wn−1

0 ). There are two ways in which we try to estimate the probability of the
next token given the previous tokens : n-gram count based language models and the
neural network based language models. The evaluation measure for a language model
is perplexity[10]. It is defined as the inverse geometric average of the conditional probab-
ilities for each word given its predecessor context, according to the language model. The
perplexity of the sequence p(wn1 ) for a language model p(.|.) is computed as

Perplexity =
1

N

√
(
∏N
n=1 p(wn|w

n−1
0 )

(2)

2 Overview of Automatic Speech Recognition Systems

2.1 Conventional Hidden Markov Based Automatic Speech Recognition

We represent the input signal by a sequence of acoustic feature vectors xT1 and the task
of Automatic speech recognition system is to find the most probable word sequence wN1
corresponding to the input audio speech. The conventional automatic speech recognition
system is based on the following Bayes Decision rule.

xT1 → ŵN1 (xT1 ) = argmax
w1...wN

{
p(wN1 |xT1 )

}
with p(wN1 |xT1 ) =

p(xT1 |wN1 ) · p(wN1 )

p(xT1 )
. (3)

We can decompose the above equation as below.
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xT1 → ŵN1 (xT1 ) = argmax
w1...wN

{
p(wN1 ).p(xT1 |wN1 )

}
. (4)

This decomposition has been done using the Bayes Rule Equation in (3). We have
omitted the denominator as our acoustic feature vector is fixed. The above decomposition
dissociates the language model p(wN1 ), which is trained using the text only data, from
acoustic model p(xT1 |wN1 ) for which a generative model based on Gaussian Mixture Models
was available in the statistical modelling. The equation (4) naturally introduces a language
model into speech processing system. The decomposition in (4) is also referred to as noisy-
channel decomposition.

Features are extracted from the audio signal. Feature Extraction involves the process
of taking the raw time speech signal and transforming it into acoustic feature vectors
p(wN1 ) via the signal processing pipeline such as MFCC [6]. The acoustic model, which
is p(xT1 |wN1 ), is based on Hidden Markov Model whose hidden states allows to model the
variability in speaking rate of the speaker, and it do so by introducing the concept of
alignment between the acoustic feature vector p(xT1 ) and the word sequence wN1 . This is
also referred to as stochasticmodelling for speech processing.

2.2 End to End Speech Recognition with Encoder-Decoder systems

In the end to end models we use a single neural network to parametrize p(wN1 |xT1 ) in (3)
without decomposition in (4) which involve directly mapping the frame-level input audio
features to the output word sequence. These encoder-decoder sequence models jointly
learn the acoustic model, pronunciation model and the language model in a single neural
network thus giving it the name end-to-end models. The emergence of these methods for
speech recognition came out from the success of sequence to sequence methods in Machine
Translation. The models can be trained to output character-based sub-word units which
are called graphemes, byte-pair encodings (BPE) or word pieces without using a hand-
crafted pronunciation lexicon.

2.3 Connectionist Temporal Classification

CTC is a training criteria designed for sequence labelling problems like automatic speech
recognition where the alignment between the input and the output labels are unknown.
It works by adding an extra blank symbol to the target vocabulary and maximize the
probabilities of all possible alignments. In case of the cross-entropy loss, the input signal
needs to be segmented into words or sub-words, while using the CTC loss it suffices
to provide one label sequence for the input sequence and the network learns both the
alignment and the labelling. CTC loss is calculated by summing over the probability of
possible alignments of input to target. For a given pair of input and output it is calculated
as

p(wN1 |xT1 ) =
∑
yT1 :aS1

T∏
t=1

pt(yt | xT1 ) (5)

yT1 is the alignment sequence with blanks and aS1 are the true labels without any blanks.
CTC assumes the output to be independent of each other and often produce outputs that
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Figure 1: RNN-T Model
[12]

are wrong like ”I eight food” instead of ”I ate food”. Getting good results with CTC
requires a secondary language model.

2.4 Recurrent Neural Network Transducer (RNN-T)

Recurrent Neural Network Transducers were designed to overcome the shortcomings of
CTC model which required an external language model to perform well. The RNN-
T model consists of an encoder, the decoder also called predictor and a joiner or joint
network. The encoder converts the acoustic features xT1 into high level representation henc1:T .
The decoder also produces a high level representation hpreu by consuming previous non-
blank target yu−1

1 where u is the output label index. The joint network is a feed forward
network which combines the encoder network output henc1:T and the decoder network output
and generates a joint matrix ht,u which is used in the softmax output where t denotes the
time index.

The encoder network can be uni-directional RNN-LSTM, bi-directional RNN-LSTM,
transformer or conformer. If it is uni-directional RNN-LSTM then RNN-T works in the
streaming mode and if it is bi-directional RNN-LSTM then RNN-T works in non-streaming
mode. When encoder is a uni-directional RNN-LSTM the encoder output is given as

henct = LSTM(xt, h
enc
t−1) (6)

When the encoder is a bi-directional RNN-LSTM then the output of encoder is given
as

henct = [LSTM(xt, h
enc
t−1), LSTM(xt, h

enc
t+1)] (7)

When we implement the prediction network or predictor with a RNN-LSTM the output
is
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hpreu = LSTM(yu−1
1 , hpreu−1) (8)

LSTM-RNN in encoder can be replaced with Transformer to construct Transformer
Transducer [20] and Conformer Transducer [7].

2.5 Attention-based Encoder-Decoder

Attention based models have been successfully applied in the field of Automatic Speech
Recognition. Their success in Neural Machine Translation motivated the researchers to
apply them in speech recognition. In speech recognition, attention based models consist
of an encoder which encodes the input acoustic speech into a high level representation
and an attention based decoder which predicts the next output symbol conditioned on
the sequence of previous predictions. The skip-connections are used which allow the
information and gradients to flow effectively in the neural network.

2.6 RNN-AED

RNN-AED also consists of an encoder and the decoder network. The encoder of RNN-
AED is same as RNN-T model as in equation (6) and (7). Now the decoder is attention
enhanced as indicated in the below equation.

hdecu = LSTM(cu, yu−1, h
dec
u−1) (9)

Where cu is the context vector obtained by the weighted combination of the encoder
output. cu is expected to have the acoustic information which is used to emit the next
token. It is calculated with the help of attention mechanism as in [3, 4].

2.7 Transformer-AED

Transformer based models [11] can handle the long-term dependencies more effectively as
the attention mechanism can see all context directly. They are good at capturing content-
based global interactions. They do not process the signal sequentially, instead they rely on
self-attention to learn the temporal correlations among the sequential signals. One of the
big benefits of transformers is that it is simpler to parallelize the computations which can
reduce the time to train neural networks on large scale datasets. The encoder is composed
of a stack of Transformer blocks. A transformer block consists of multi-head self-attention
layer and a feed forward layer. The input of a transformer block is linearly transformed
to Q, K and V. The output of Multi-head self-attention layer is

Multihead(Q,K, V ) = [H1, ...,Hdhead ]W
head (10)

whereHi = softmax(
QiK

T
i√

dk
) ∗ Vi (11)

Qi = QWQi ,Ki = KWKi (12)

Vi = VW Vi (13)
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Here dhead is the number of attention heads and dk is the dimension for the feature
vector for each head. The output is then fed to the feed-forward network. The trans-
former decoder also has a layer which performs multi-head attention over the output of
the encoder.

3 What is language model integration and why we need it?

The role of a language model in speech processing is to estimate the likelihood of a word
sequence w1, ..., wN to form a valid sentence. Language models can be n-gram/probabilistic
language models or neural language models. As we have seen above that encoder-decoder
models do not make use of Bayes theorem in (4) which would result in separate language
model and acoustic model. Therefore, the encoder-decoder model do not need language
model by construction. The decoder part of encoder-decoder model already disposes some
internal language model. If we want to use a separate language model with a encoder-
decoder model then this is referred to as external language model. Such external language
models can be trained with huge amount of unstructured text data out there without
requiring labelled audio signal data with human transcriptions. Integrating an external
language model with sequence-to-sequence model helps improve the fluency of generated
text. The decoder acts as a internal language model and is trained using transcribed audio
data and may not be sufficiently exposed to rare words and phrases thus requiring a need
for a external language model.

4 External Language Model Integration

4.1 Shallow Fusion

The idea of shallow fusion was first introduced in context of Machine Translation in [8]
and then it was applied for Automatic Speech Recognition systems. In shallow fusion,
the external language model is incorporated by the log-linear interpolation of the scores
from the sequence to sequence model and the language model at the inference time. Both
the sequence to sequence model and the language model are trained independently and
then their scores are interpolated at the probability level. The mathematical form of the
shallow fusion is given as below.

ŷ = argmax
wN1

(logpASR(wN1 |xT1 ) + λlogpLM (wN1 )) (14)

where λ is a tunable parameter to define the importance of the external language
model. It is usually tuned on the development set. pLM (wN1 ) is the language model
probability assigned to the word sequence wN1 . logpASR(wN1 |xT1 ) is calculated from the
sequence to sequence model and pLM (wN1 ) is calculated from the language model. xT1 is
an input acoustic sequence and ŷ is the predicted label sequence selected among all wN1 .

4.2 Deep Fusion

The idea of Deep Fusion was also first introduced in context of machine translation in [8].
It showed improvement over the shallow fusion. It fuses the hidden states of sequence to
sequence decoder and a neural language model with a gating mechanism, after the two



4.3 Cold Fusion 11

models are trained independently. In deep fusion, the parameters of the gating part are
fine-tuned after parameters of both the sequence to sequence model and language model
are frozen. It is also referred to as fine-tuning fusion in some literature. The mathematical
equations for the deep fusion are as follows.

gt = sigmoid(Ugs
LM
t + b), (15)

ĥt
att

= [hattt ; gts
LM
t ], (16)

yt = softmax(W
′
oĥt

att
) (17)

Here gt is the gate output which is parametrized by Ug which controls the importance
of the contribution of the hidden state of the language model LM sLMt . The concatenated

hidden state output ĥt
att

is then used to predict the target label using the softmax function.
The final step in deep fusion is to fine-tune the combining parameters Ug and W

′
o using a

small dataset.

4.3 Cold Fusion

Deep Fusion has some limitations which Cold fusion overcomes. The task specific sequence
to sequence model in deep fusion is trained independently from the language model. The
residual language model which is trained in the decoder part of the sequence to sequence
model is biased towards the training corpus. For example, if we train a sequence to
sequence model on the legal documents and then later on fuse a language model which
is trained on medical documents then the decoder has a tendency to follow the linguistic
structure found in legal documents. Cold fusion encourages the decoder part of sequence
to sequence model to use the external language model during training [1]. This also helps
in faster convergence and better generalization and enables the transfer to a new domain.
In cold fusion the sequence to sequence model is trained from scratch together with a
pre-trained language model. Now the parameters of the language model are kept frozen
and parameters of sequence to sequence models are not. This is in contrast to Deep Fusion
where the parameters of both the sequence to sequence and the language models are kept
frozen.

The authors in [1] employ in the following architecture. The author uses both the
sequence to sequence hidden state st and the language model hidden state sLMt as inputs to
the gate computation. The author employs in fine-grained gating mechanism as introduced
in [9]. At the last the authors replace the language model hidden state with the language
model probability. Then they present the following working of the cold fusion.

hLMt = DNN(lLMt ), (18)

gt = sigmoid(W [st;h
LM
t ] + b), (19)

sCFt = [st; gt � hLMt ] (20)

rCFt = DNN(sCFt ) (21)

P̂ (yt|x, y<t) = softmax(rCFt ) (22)

Here lLMt is the logit output of the language model, st is the state of the task specific
model and sCFt is the final fused state which is used to generate the output. DNN can
be a deep neural network with any number of layers. The authors found out that single
affine layer and ReLU activation prior to softmax activation was helpful.
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4.4 Component Fusion

The idea of component fusion was proposed by the authors in [17]. It also incorporates an
externally trained language model into an attention based sequence to sequence model.
The authors equip the attention-based system with an additional Language model com-
ponent which can be replaced by an externally trained neural network based language
model at inference. The external language model is trained on training transcriptions
instead of external text corpus. The whole purpose of doing so is to reduce the mismatch
between the external language model and decoder. External language model converges
faster and also gives better performance due to this training. The authors let the language
model to impact the training of the sequence to sequence model at an early stage by con-
catenating the gated language model output with the output of the decoder hdec instead
of the attentional output.

hdect = [hdect ; gth
LM
t ] (23)

4.5 Density Ratio Method

Density Fusion Method was proposed by authors in [13]. Density ratio method can be
seen as an extension of shallow fusion method. It offers a theoretical grounding in Bayes
Rule. This method is an application of Bayes Rule to end-to-end systems and separate
language models. The authors denote the source domain by ψ and the target domain
by τ . It makes the following assumptions. The source domain ψ has some true joint
distribution Pψ(wN1 , x

T
1 ) over text and audio. The target domain τ has some other true

joint distribution Pτ (wN1 , x
T
1 ). A source domain end-to-end model for example RNN-T

captures Pψ(wN1 |xT1 ) reasonably well. The Language models which are separately trained
(e.g RNNLM) capture Pψ(wN1 ) and Pτ (wN1 ) reasonably well. Pψ(xT1 |wN1 ) is roughly equal
to Pτ (xT1 |wN1 ) i.e the two domains are acoustically consistent. The target domain posterior
Pτ (wN1 |xT1 ) is unknown. Density Ratio Method then expresses a hybrid scaled acoustic
likelihood for the source domain.

pψ(xT1 |wN1 ) = pψ(xT1 )
Pψ(wN1 |xT1 )

Pψ(wN1 )
(24)

Also for the target domain.

pτ (xT1 |wN1 ) = pτ (xT1 )
Pτ (wN1 |xT1 )

Pτ (wN1 )
(25)

Based on the above stated assumptions the authors calculate the target domain pos-
terior as.

P̂τ (wN1 |xT1 ) = k(X)
Pτ (wN1 )

Pψ(wN1 )
Pψ(wN1 |xT1 ) (26)

Here k(X) =
pφ(x

T
1 )

pτ (xT1 )
shared by all hypotheses wN1 , and the ratio

Pτ (wN1 )

Pψ(w
N
1 )

which is the

probability mass ratio gives the Density Ratio method it’s name. The author shows of
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application of Density Ratio Method to RNN-Transducers. (26) can be implemented via
an RNN-Transducer ”pseudo-posterior” when si+1 is a non-blank symbol.

P̂τ (si+1|xT1 , ti, s1:i) =
Pτ (si+1|si:1)
Pψ(si+1|si:1)

Pψ(si+1|xT1 , ti, si:1) (27)

The authors used the scaling factors λψ and λτ on the language model scores and a
non-blank reward β are used in the final decoding score.

Score(si+1|xT1 , ti, s1:i) = logPψ(si+1|xT1 , ti, s1:i) + λτ logPτ (si+1|s1:i) (28)

−λτ logPψ(si+1|s1:i) + β (29)

4.6 Language Model fusion in MWER training

The authors in [15] proposed a method for language model fusion in MWER training of
an E2E model to discard the need for LM weights tuning during inference. MWER stands
for minimum word error rate and MWER training aims to mitigate the mismatch between
the training criteria and the evaluation metric of a speech recognition model. MWER
minimizes the expected word error. With the help of MWER training, the E2E model is
further fine-tuned to directly minimize the expected number of word errors on the training
corpus. The authors proposed MWER with shallow fusion(MWER-SF) and MWER with
ILME (MWER-ILME). MWER-ILME involves the internal language model estimation
with minimum word error rate training. We will be looking into ILME (Internal Language
Model Estimation) in more detail in the internal language model integration methods.

In [16] the authors perform shallow fusion during MWER training to generate N-best
hypotheses Y 1, ..., Y N of xT1 . Linear combination of E2E model and the LM probabilities
helps in calculating the posterior of each hypothesis. In contrast to this calculation, the
authors in the current paper obtained the hypotheses posterior by the interpolation of
log-probabilities of E2E model and the external LM. The MWER-SF loss is given by the
authors as below.

LSFMWER = ΣN
n=1P̄ (wN1 |xT1 ; θSE2E , θ

T
LM )R(wN1 , Y

∗) (30)

Here P̄ (wN1 |xT1 ; θSE2E , θ
T
LM ) is the re-normalized shallow fusion probability over N-best

hypotheses. R(wN1 , Y
∗) is the number of word errors compared to the reference Y ∗.

In the same way the authors perform ILME based fusion in MWER training. It differs
from the simple MWER training in the way that authors apply ILME-based fusion to
generate N-best hypotheses of training utterances and the authors compute hypotheses
posteriors using probabilities of E2E model, internal language model and the external
language model. The MWER-ILME loss function is given as

LILME
MWER = ΣN

n=1P̄ (wN1 |xT1 ; θTE2E)R(wN1 , Y
∗) (31)

MWER-ILME training is minimizing the expected number of word errors over the
N-best hypotheses generated by the target domain E2E model θTE2E . MWER-ILME helps
adapt the E2E model towards a fixed external LM along with internal LM weight λs and
external language model weight λT .
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4.7 Result And Analysis

4.7.1 Cold Fusion

The author used two datasets as the source domain and the target domain datasets. The
source domain dataset was search queries (411,000 utterances/650 hours of audio) and the
target domain dataset was movie scripts (345,000 utterances /676 hours of audio). The
author then trained different language models out of these datasets, whose results came
out to be as below. Here Full refer to the mixture of the source and target dataset.

Table 1: RNN Language Models with Cold Fusion

Model Domain Word Count Perplexity Source Perplexity Target

GRU (3x512) Source 5.73M 2.6790 4.463

GRU (3x512) Target 5.46M 3.717 2.794

GRU (3x1024) Full 25.16M 2.491 2.325

The neural network architecture consisted of an encoder and a decoder. The soft-
attention mechanism was applied as in [2]. The encoder consisted of 6 BLSTM (Bi-
directional LSTM) layers each having a dimensions of 480. The authors also added max-
pooling layers with a stride of 2 along the time dimension after the first 2 BLSTM layers
and added residual connections for each of the BLSTM layers to speed up the training
process. The decoder employed in hybrid attention as in [5] and consisted of a single
layer of a 960 dimensional gated recurrent unit (GRU). The author trained the entire
system with Adam optimizer with a batch size of 64. The learning rates were tuned
separately for each model using random search. The authors used a fixed beam size of
128 for each of the experiments. The authors used schedule sampling with a sampling
rate of 0.2 which was fixed during the whole training. Schedule sampling helped reduce
the effect of exposure bias due to the differences in training and inference mechanisms.
WER stands for word error rate in the below table and it is a metric to measure the
performance of the automatic speech recognition. It is calculated by dividing the number
of errors(substitutions + insertions + deletions) by the total number of words spoken.

Table 2: Cold fusion Results

Model
Train

Domain
Test on Source

WER(%)
Test on target

WER(%)

Baseline Attention Model Source 14.68 43.52

Baseline Attention Model Target 17.61

Baseline + Deep fusion Source 13.92 37.45

Baseline +
Cold fusion Source 13.88 30.71

4.7.2 Component Fusion

The authors evaluated the component fusion for two scenarios, out-of-domain and in-
domain. For the out-of-domain the authors collected two datasets the monolingual man-
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darin and the english dataset which serve as the source dataset and the Mandarin-English
code-switching dataset which serve as the target dataset. RNNLM was trained on a con-
siderable larger amount of external in-domain and was incorporated into the attention
based model. The authors used the public datasets AISHELL-1 and AISHELL-2 for the
purpose. The authors used the encoder with 6BLSTM layers each having 1024 LSTM
units. The decoder consisted of 2 LSTM layers each having 1024 LSTM units. The au-
thors used the ADAM optimizer with default parameters and default learning rate was
set to 0.001. The authors also employed in dropout with probability of 0.2. The external
language model consisted of a character-based 3 layer GRU model each having 1024 GRU
units and the training procedure was same as above attention model training procedure.
The authors got the below results for language modelling using the code-switching test
set.

Table 3: LM trained on code-switching dataset for Component Fusion

Model Perplexity

Source 63.02

Target 13.12

source + target 12.46

These neural network language models were built on character level. The authors
performed the domain adaptation using the proposed component fusion method. The
source Neural Network LM is trained on speech transcriptions and is frozen when attention
model is being trained. The author replaces the source NN LM with target NN LM during
decoding. The results of using the component fusion for out-of-domain datasets is given
below and it can be seen that it presented a better performance. The authors also explored
the performance of concatenating the gated LM with the hidden state of the encoder hdec.
This allowed the Language model to impact the training of the attention model in an
earlier stage. It can be seen in the table below that both component and cold fusion with
hdec achieves a better performance. In the below table CER stands for character error
rate and now it is calculated at the character level instead of word level like WER.

Table 4: Component Fusion Results

Model CER(%)

baseline
+ Shallow Fusion 25.01

Cold Fusion (hatt) 25.37

Cold Fusion (hdec)
+ Shallow fusion 20.40

Component Fusion (hdec)
+ Shallow Fusion 17.53
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4.7.3 Density Ratio Method

The author trains a end-to-end model such as RNN-T on given source domain training set
ψ (paired audio/transcript data). A language model is trained on text transcripts from
the same training set ψ. The author then trains a second language model on the target
domain τ . When decoding on the target domain, modify the RNN-T output by the ratio
of the target/training RNN-LMs as defined in (28).

120M segemented utterances from youtube videos with with associated transcripts
were used for source domain baseline RNN-T. Transcripts from the same 120M utterance
youtube training set were used for source-domain normalizing RNN-LM. For the target
domain RNNLM, 21M text-only utterance-level transcripts from anonymized, manually
transcribed audio data, representative of data from a voice search service was used. For the
target-domain RNN-T fine-tuning, 10K, 100K, 1M and 21M utterance level pairs taken
from anonymized, transcribed voice search data was used. The datasets to choose the
optimal scaling factors and evaluate the final model consisted of source domain evaluation
set (youtube videos) and target domain evaluation and development sets (Voice search).

The RNN-T consisted 6 LSTM layers encoder which is bidirectional. The decoder
consisted of 1 LSTM layer. Acoustic features consisted of 768 dimensional feature vectors
obtained from 3 stacked 256-dimensional logmel feature vectors. Output classes consisted
of 10000 sub-word morph units and total number of parameters for the network were
340M. RNNLMs for both the source and target domains were set to match the RNN-T
decoder size and structure. RNN-T and RNNLMs were independently trained on 128-core
tensor processing unit and an effective batch size of 4096. All models were trained using
the ADAM optimization. The models were trained and different combination of scaling
factors λψ and λτ were tried out. The results of the experiments are summarized in the
table and it can be seen that density ratio method is beating the shallow fusion.

Table 5: Density Ratio Results

Model WER(%) λ β

Baseline (no-fine tuning) 17.5 - -0.3

21000h fine-tuning 7.8 - 0.1

Shallow fusion 7.7 0.1 0.3

Density Ratio (λS = λT ) 7.4 0.1 0.0

4.7.4 Language Model Fusion with MWER training

The authors trained a streaming transformer-transducer (T-T) models to minimize the
transducer, MWER, MWER-SF and MWER-ILME losses. The evaluation was done on
multi-domain test data. The generalizability of MWER-SF and MWER-ILME training
is checked by evaluating with an out-of-domain LM on an out-of-domain test set. The
authors considered two language models multi-domain language models and the librispeech
language models. The authors first train a uni-directional long-short term memory LM on
2 billion words of anonymized text data. The authors train another language model with
9.4M word transcript of the 960h training speech and the 813M-word text in Libri-speech
corpus.
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The authors first train an transformer-transducer with 30K hour data. The baseline
T-T is then fine-tuned with the same data to minimize MWER, MWER-SF and MWER-
ILME losses using ADAM optimizer with a constant learning rate of 10−5. The authors did
multi-domain and the out-of-domain evaluations. The multi-domain evaluations was done
using call, meeting, search, keyboard, email and common voice datasets. The perform-
ance of E2E models was evaluated by fusing the language models trained on Libri-speech
dataset.

Table 6: MWER training with SF results

Test subset T-T WER(%) MWER WER(%) MWER-SF WER(%)

Call 8.70 8.37 7.70

Meeting 16.34 16.07 17.54

Search 12.56 12.35 12.13

Keyboard 7.95 7.56 7.60

Email 19.16 17.67 16.94

Common 12.43 11.75 11.34
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5 Internal Language Model Integration

As discussed above, the decoder part of the encoder-decoder model already disposes off
some language model which is referred to as Internal Language Model. In this section we
will be looking into some internal language model integration methods and how they have
helped in improving the performance of the end-to-end Automatic Speech Recognition
systems.

5.1 Hybrid Autoregressive Transducer (HAT)

The idea of HAT was proposed by authors in [18]. The HAT model provides a way
to measure the quality of internal language model that can be used to decide whether
inference with an external language model is beneficial or not. HAT is a time-synchronous
encoder-decoder model which couples the powerful probabilistic capability of sequence to
sequence models with an inference algorithm which preserves the modularity and external
lexicon and LM integration. The author also presents a finite history version of HAT.

It is a type of time-synchronous encoder-decoder model which distinguishes itself from
the other time-synchronous models by formulating the local posterior probability differ-
ently and by providing a measure of its internal language model quality and offering a
mathematically justified inference algorithm for an external language model.

The RNN-T lattice definition is used for HAT model. HAT model differentiates
between the horizontal and vertical edges in the lattice to calculate the local conditional
posterior. For edge k corresponding to position (t, u), the posterior probability to take
a horizontal edge and emitting 〈b〉 is modelled by a Bernoulli Distribution bt,u, which
is the function of the entire past history of labels and features. The posterior distribu-
tion Pt,u(yu+1|xT1 , y0:u), defined over labels in V, helps modelling the vertical move. The
alignment posterior is formulated as

{
bt,u, ỹk = 〈b〉
(1− bt,u)Pt,u(yu+1|xT1 , y0:u), ỹk = yu+1

(32)

The input feature sequence xT1 is fed to a stack of RNN layers to output T encoded
vectors f1(X) = f11:T . The label sequence is also fed to a stack of RNN layers to output
g1(Y ) = g11:U . The formula of conditional bernoulli distribution bt,u is calculated as below.

bt,u = sigmoid(w · (f1t + g1u) + b) (33)

There are two functions. f2(X) = f21:T encodes input features xT1 and the function
g2(Y ) = g21:U encodes label embeddings. At each time position (t,u), the joint score is
calculated over all yεV

St,u(y|xT1 , y0:u) = J(f2t + g2u) (34)

Here J(�) is any function that maps f2t + g2u to |V | dimensional score vector. The
label posterior distribution is derived as below.

Pt,u(yu+1|X, y0:u) =
exp(St,u(yu+1|xT1 , y0:u))∑
yεV exp(St,u(y|xT1 , y0:u))

(35)
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The alignment path posterior of HAT model is calculated as below.

P (Ỹ |xT1 ) =

T+U−1∏
k=1

P (Ỹk|xT1 , Ỹ1:k−1) (36)

The HAT model produces a local and sequence level internal LM scores. The sequence
level internal language model score is given as below.

logPILM (Y ) = ΣU−1
u=0 logP (yu+1|y0:u) (37)

The HAT model inference search for ỹ∗ that maximizes.

λ1logP (wN1 |xT1 )− λ2logPILM (B(wN1 )) + logPLM (wN1 ) (38)

Here B is a function that maps permitted alignment paths to the corresponding label
sequences.

5.2 Internal Language Model Estimation

The authors in [19] proposed the idea of Internal Language model estimation ILME which
facilitates the more effective integration of an external language with all existing end-to-
end models with no additional model training including the RNN-T and the attention
based models. With the help of ILME, the internal language model scores of E2E model
are estimated and subtracted from the log-linear interpolation between the scores of the
E2E model and the external LM. The internal LM scores are estimated as the output of an
E2E model when eliminating its acoustic component. ILME has shown the improvements
over the shallow fusion method. It has also shown improvements over the density ratio
method, despite having less parameters.

Density ratio method assumes that the posterior of a source domain end-to-end model
is decomposable into individual acoustic model and language model with separate para-
meters like a hybrid system. The source domain End-to-end model is factorized as follows
using the Bayes theorem.

P (Y |X; θSE2E) =
P (X|Y ; θSE2E)P (Y ; θSE2E)

P (X; θSE2E)
(39)

Here all factors are conditioned on the same set of E2E parameters θSE2E and P (Y ; θSE2E)
is the internal LM of the E2E model. Given constant acoustic conditions i.e P (X|Y ; θSE2E)
= P (X|Y ; θTAM ), the target domain end-to-end posterior is calculated as follows.

P (Y |X; θTE2E) = P (Y |X; θSE2E)
P (Y ; θTLM )

P (Y ; θSE2E)

P (X; θSE2E)

P (X; θTE2E)
(40)

During inference, the log probability of the internal language model is subtracted from
log-linear combination between the scores of the E2E and external language models as
follows.
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Ŷ = argmax
Y

[logP (Y |X; θSE2E) + λT logP (Y ; θTLM )− λI logP (Y ; θSE2E)] (41)

Here λI is the internal language model weight. This LM integration method is re-
ferred to as Internal Language model estimation (ILME). This differs from the density
ratio method in the way that it subtracts the log probability of an E2E internal LM
parametrized by θSE2E rather than that of a source domain LM separately-trained with
the training transcript of the E2E model. The key step of the ILME is to estimate the
internal language model below defined as the token sequence probability distribution an
E2E model implicitly learns from the audio-transcript training pairs.

P (Y ; θSE2E) =
U∏
u=1

P (yu|Y0:u−1; θ
S
E2E) (42)

=
U∏
u=1

∏
X

P (yu|X,Y0:u−1; θ
S
E2E)P (X|Y0:u−1; θ

S
E2E) (43)

The summation over the entire acoustical space in above equation is intractable in
practice. To address this, Proposition 1 in appendix A of [18] was proposed and proved
to approximate the internal LM of a HAT model by eliminating the effect of encoder
activations. The authors named this proposition as Joint Softmax Approximation (JSA).
The authors apply JSA to estimate the internal language models of the pre-existing most
popular end-to-end models.

5.3 Internal Language model Training

The authors in [14] present the above method. This method is meant to improve the
Internal Language model estimation. ILMT minimizes an additional LM loss by updating
only the E2E model components that affect internal LM estimation. This method en-
courages the E2E model to form a standalone LM inside its existing components, without
sacrificing the ASR accuracy. ILMT with ILME-based inference helps in improving the
results. The accuracy of internal LM estimation is not guaranteed if the E2E model is not
structured in a way that strictly satisfies the conditions of Proposition 1 in [18] [Appendix
A].

The authors jointly minimize an internal language model loss together with a standard
E2E loss during ILMT. The internal LM loss of an RNN-T model is obtained by summing
up the negative log probabilities of the internal language model over the training corpus
as follows.

L(θpred, θjoint) = −ΣY εDΣU
u=1logP (yu|Y0:u−1; θpred, θjoint) (44)

For RNN-T, the ILMT loss is constructed as a weighted sum of the RNN-T loss and
the ILM loss below.

LILMT (θRNN−T ) = LRNN−T (θRNN−T ) + αLILM (θpred, θjoint) (45)
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Here α is the weight of the internal language model loss. Minimizing the RNN-T ILMT
loss, we maximize the internal LM probability of the E2E training transcripts by updating
only the prediction and the joint networks. The internal LM loss of AED is formulated as
a summation of negative log probabilities of the internal LM over training corpus.

LILM (θdec) = −ΣY εDΣU+1
u=1 logP (yu|Y0:u−1; θdec) (46)

For AED, the ILMT loss is computed as a weighted sum of the AED loss and the ILM
loss below.

LILMT (θAED) = LAED(θAED) + αLILM (θdec) (47)

5.4 Result And Analysis

5.4.1 Hybrid Autoregressive Transducer

The dataset consisted of training set, development set and the test set. The training
consisted of 40M utterances, development set consisted of 8K utterances and test set
consisted of 25 hours. All the datasets were anonymized and representative of Google
Traffic Queries. All models (baselines and HAT) were trained to predict 42 phonemes
and are decoded with a lexicon and a n-gram language model that cover a 4M words
vocabulary.

The author presented three time synchronous baselines. The encoder consisted of 5
layers of LSTM with 2048 cells per layer. For the models which consisted of a decoder
network has 2 layers of LSTM with 256 cells per layer. The authors observe that for
the inference algorithm in (38) the values λ1 ∈ (2.0, 3.0) and λ2 = 0.1 lead to the best
performance. The HAT model outperforms the baseline RNNT model by 1.4% absolute
WER.

Table 7: WER for the baseline and the HAT model

Model WER(del/ins/sub)

CTC 8.9(1.8/1.6/5.5)

RNN-T 8.0(1.1/1.5/5.4)

HAT 6.6(0.8/1.5/4.3)

5.4.2 Internal Language Model Estimation

The authors evaluated the models for both cross-domain and intra-domain scenario. The
testing was done for both RNN-T and the AED model. The authors trained a RNN-T and
an AED model with 30k hours of anonymized and transcribed data from microsoft services.
Both RNN-T and AED models employed in LSTM model in their different components.
The results of the out-of-domain and the in-domain experiments for both the RNN-T and
AED models came out to be as below.
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Table 8: Out of Domain Results for ILME

E2E Model Methods Params λT µ WER Dev WER Test

RNN-T BS 76M - - 20.03 20.23

RNN-T SF 134M 0.07 0.00 18.37 18.88

RNN-T DR 191M 0.20 0.12 16.14 18.07

RNN-T ILME 134M 0.24 0.12 15.48 17.01

AED BS 97M - - 18.10 22.04

AED SF 155M 0.10 0.00 12.84 13.39

AED DR 212M 0.12 0.02 12.22 12.86

AED ILME 155M 0.13 0.10 11.72 12.31

Table 9: Intra Domain Results for ILME

E2E Model Methods Params λT µ WER

RNN-T BS 76M - - 16.16

RNN-T SF 134M 0.03 0.00 15.77

RNN-T DR 191M 0.21 0.19 15.64

RNN-T ILME 134M 0.26 0.20 14.70

AED BS 97M - - 14.08

AED SF 155M 0.09 0.00 12.96

AED DR 212M 0.09 0.05 12.89

AED ILME 155M 0.13 0.08 12.36
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5.4.3 Internal Language Model training

The procedure of ILMT with ILME-based inference for the LM integration with an E2E
model is the following. Train an E2E model with the source domain audio transcript pairs
to minimize the ILMT loss for AED or RNN-T. Train an external LM with with the target
domain-only text data. Integrate the ILMT E2E model in first step with the LM trained
in second step using the ILME based inference.

The dataset used for ILMT E2E training is the 30k hour of anonymized and transcribed
data collected from Microsoft services. The encoder and prediction networks are both
uni-directional LSTMs with 6 and 2 hidden layers respectively and 1024 hidden units in
each layer. The joint network has 4000 dimensional output units. The RNN-T has 76M
parameters. For AED, the encoder is a bi-directional LSTM with 6 hidden layers and 780
hidden units in each layer. The decoder is a uni-directional LSTM with 2 hidden layers
each with 1280 hidden units. The decoder has 4000-dimensional output units. The authors
perform both the cross-domain and the intra-domain(Dictation test set and conversation
test set) evaluations. For the cross-domain, authors used Librispeech clean test set by
integrating an LSTM-LM trained with librispeech text. The overall results with RNN-T
and AED models are listed in the below tables.

Table 10: RNN-T Results(ILMT)

Train
loss

Evaluation
Method

Model
Params

Librispeech Dev
WER

Librispeech Test
WER

LRNN−T No LM 76M 9.27 8.97

LRNN−T Shallow Fusion 134M 7.44 7.53

LRNN−T Density Ratio 191M 6.80 6.74

LRNN−T ILME 134M 6.41 6.36

LILMT No LM 76M 8.58 8.37

LILMT Shallow Fusion 134M 6.60 6.47

LILMT Density Ratio 191M 5.86 5.61

LILMT ILME 134M 5.57 5.30
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Table 11: AED Results(ILMT)

Train
loss

Evaluation
Method

Model
Params

Librispeech Dev
WER

Librispeech Test
WER

LAED No LM 97M 8.56 8.61

LAED Shallow Fusion 155M 5.00 5.33

LAED Density Ratio 212M 4.74 5.09

LAED ILME 155M 4.42 4.87

LILMT No LM 97M 7.31 7.47

LILMT Shallow Fusion 155M 6.54 6.61

LILMT Density Ratio 212M 4.28 4.85

LILMT ILME 155M 3.30 3.65

It can seen from the above tables that all LM integration methods consistently achieve
lower WERs with ILMT than with standard E2E training. Among all methods ILMT
with ILME-based inference gives the best results.
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