
Understanding Gradient Clipping

-

Introduction

By the end of this article you’ll know:
- What is Gradient Clipping and how does it occur?
- Types of Clipping techniques
- How to implement it in Tensorflow and Pytorch
- Additional research for you to read

Gradient Clipping solves one of the biggest problems that we have while calculating
gradients in Backpropagation for a Neural Network.

You see, in a backward pass, we calculate gradients of all weights and biases in order
to converge our cost function. These gradients, and the way they are calculated, are
the secret behind the success of Artificial Neural Networks in every domain.

https://deepai.org/machine-learning-glossary-and-terms/gradient-clipping


But every good thing comes with some sort of caveat. Gradients tend to encapsulate
information they collect from the data, which also includes long-range dependencies in
large text or multidimensional data. So, while calculating complex data, things can go
south really quickly, and you’ll blow your next million-dollar model in the process.

Luckily, you can solve it before it occurs (with gradient clipping) - let's first look at the
problem in-depth.

Common problems with backpropagation

The Backpropagation algorithm is the heart of all modern-day Machine Learning
applications, and it’s ingrained more deeply than you think.

Backpropagation calculates the gradients of the cost function w.r.t - the weights and
biases in the network. It tells you about all the changes you need to make to your
weights to minimize the cost function (it’s actually -1*∇ to see the steepest decrease,
and +∇ would give you the steepest increase in the cost function).

Pretty cool, because now you get to adjust all the weights and biases according to the
training data you have. Neat math, all good.

Vanishing gradients

What about deeper networks, like Deep Recurrent Networks?

The translation of the effect of a change in cost function(C) to the weight in an initial
layer, or the norm of the gradient, becomes so small due to increased model complexity
with more hidden units, that it becomes zero after a certain point. This is what we call
Vanishing Gradients.

This hampers the learning of the model. The weights can no longer contribute to the
reduction in cost function(C), and go unchanged affecting the network in the Forward
Pass, eventually stalling the model.

Exploding gradients

On the other hand, the Exploding gradients problem refers to a large increase in the
norm of the gradient during training. Such events are caused by an explosion of
long-term components, which can grow exponentially more than short-term ones.

This results in an unstable network that at best cannot learn from the training data,
making the gradient descent step impossible to execute.

https://discuss.pytorch.org/t/proper-way-to-do-gradient-clipping/191/16
https://discuss.pytorch.org/t/proper-way-to-do-gradient-clipping/191/16


arXiv:1211.5063 [cs.LG]: The objective function for highly nonlinear deep neural networks or for
recurrent neural networks often contains sharp nonlinearities in parameter space resulting

from the multiplication of several parameters. These nonlinearities give rise to very
high derivatives in some places. When the parameters get close to such a cliff region, a

gradient descent update can catapult the parameters very far, possibly losing most of the
optimization work that had been done.

Deep dive into exploding gradients problem

For calculating gradients in Deep Recurrent Networks we use something called
Backpropagation through time (BPTT), where the recurrent model is represented as a
deep multi-layer one (with an unbounded number of layers), and backpropagation is

https://arxiv.org/abs/1211.5063


applied on the unrolled model. In other words, it’s backpropagation on an unrolled
RNN.

Unrolling recurrent neural networks in time by creating a copy of the model for each
time step. We denote by a<t> the hidden state of the network at time t, by x<t> the
input and ŷ<t> the output of the network at time t, and by C<t> the error obtained from
the output at time t.

Let’s work through some equations and see the root where it all starts. We will diverge
from classical BPTT equations at this point, and re-write the gradients in order to better
highlight the exploding gradients problem. These equations were obtained by writing the
gradients in a sum-of-products form.

We will also break down our flow into two parts:

● Forward Pass
● Backward Pass

Forward Pass

First, let’s check what intermediate activations of neurons at timestep <t> will look like:

Eq: 1.1

- W_rec represents the recurrent matrix that will carry the translative effect of
previous timesteps.

- W_in is the matrix that gets matmul operation by the current timestep data and b
represents bias.

An intermediate output at timestep <t> will look something like this:

Eq: 1.2

Note that here “σ” represents any activation function of your choice. Popular picks
include sigmoid, tanh, ReLU.



Using the predicted and ground-truth value, we can calculate the Cost Function of the
entire network by summing over individual Cost functions for every timestep <t>.

Eq: 1.3

Now, we have the general equations for the calculation of Cost Function. Let’s do a
backward propagation, and see how gradients get calculated.

Backward Pass

In order to acquire the gradients from all timesteps, we again do a summation of all
intermediate gradients at timestep <t>, and then the gradients are averaged over all
training examples.

Eq: 1.4

So, we have to calculate the intermediate Cost Function(C) at any timestep <t> using
the chain rule of derivatives. Let’s look at the dependency graph to identify the chain of
derivatives:



For a timestep <3>, our Cost Function will look something like:

Eq: 1.5
Note: We’ve only mentioned derivative w.r.t to W which represents all the
weights and bias matrices we’re trying to optimize.

As you can see above we get the activation a<3> which will depend on a<2>, and so on
till the first layer’s activation is not calculated. Hence the dependency will go something
like:

a<t> → a<t-1> → a<t-2> → …. → a<1>

So if we take the derivative with respect to W we can’t simply treat a<3> as constant.
We need to apply the chain rule again. Finally, our equation will look something like this:



Eq: 1.6

We sum up the contributions of each time step to the gradient.

In other words, because W is used in every step up to the output we care about, we
need to backpropagate gradients from t=3 through the network all the way to t=0.

So, in order to calculate activation for a timestep <t>, we need all the activations from
previous timesteps.

Note that ∂a<T>/∂a<k> is a chain rule in itself! For example:

Also note that because we are taking the derivative of a vector function with respect to a
vector, the result is a matrix (called the Jacobian matrix) whose elements are all the
pointwise derivatives.

We can rewrite the above gradient in Eq:1.6:

Eq: 1.8

Eq: 1.9

This represents a Jacobian Matrix whose value is calculated using Frobenius or 2-norm.
To understand this phenomenon we need to look at the form of each temporal
component, and in particular, at the matrix factors → ∂a<t>/ ∂a<k> (Eq:1.6,1.9) that take
the form of a product of (t − k) Jacobian matrices.

https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant


In the same way, a product of (t − k) real numbers can shrink to zero or explode to
infinity, so does this product of matrices (along with some direction v). Hence, we get
the condition of Exploding Gradients due to this temporal component.

How to identify and catch Exploding Gradients?

The identification of these gradient problems is hard to comprehend before the training
process is even started.

When your network is a deep recurrent one, you have to:

● constantly monitor the logs,
● record sudden jumps in the cost function

This will tell you whether these jumps are frequent and if the norm of the gradient is
increasing exponentially.

The best way to do this is by monitoring logs in a visualization dashboard.

We’ll utilize Neptune AI’s awesome visualization and dashboarding of the logs to
monitor the loss and other metrics which will help in the identification of Exploding
gradients. You can head over to a detailed blog here to set up your dashboard.

See the article: A Complete Guide to Monitoring ML Experiments Live in Neptune

How to fix exploding gradients: gradient clipping

There are a couple of techniques that focus on Exploding Gradient problems. One
common approach is L2 Regularization which applies “weight decay” in the cost
function of the network. The regularization parameter gets bigger, the weights get
smaller, effectively making them less useful, as a result making the model more linear.

However, we’ll focus on a technique that's far superior in terms of gaining results and
easiness in implementation - Gradient Clipping.

What is gradient clipping?

Gradient Clipping is a method where the error derivative is changed or clipped to a
threshold during backward propagation through the network and using the clipped
gradients to update the weights.

By rescaling the error derivative, the updates to the weights will also be rescaled,
dramatically decreasing the likelihood of an overflow or underflow.

https://neptune.ai/blog/monitoring-machine-learning-experiments-guide
https://neptune.ai/blog/monitoring-machine-learning-experiments-guide
https://towardsdatascience.com/what-is-gradient-clipping-b8e815cdfb48


Effect of gradient clipping in a recurrent network with two parameters w and b. Gradient clipping
can make gradient descent perform more reasonably in the vicinity of extremely steep cliffs.

(Left)Gradient descent without gradient clipping overshoots the bottom of this small ravine, then
receives a very large gradient from the cliff face. (Right) Gradient descent with gradient clipping

has a more moderate reaction to the cliff. While it does ascend the cliff face, the step size is
restricted so that it cannot be propelled away from the steep region near the solution. Figure

adapted from Pascanu et al. ( 2013 ).

Gradient Clipping is implemented in two variants:

● Clipping-by-value
● Clipping-by-norm

Gradient Clipping-by-value

The idea behind clipping-by-value is simple. We define a minimum clip value and a
maximum clip value.

If a gradient exceeds some threshold value, we clip that gradient to the threshold. If the
gradient is less than the lower limit then we clip that too, to the lower limit of the
threshold. The algorithm is as follows:

g ← ∂C/∂W

if ǁgǁ ≥ max_threshold or ǁgǁ ≤ min_threshold then

g ← threshold (accordingly)

end if

https://arxiv.org/pdf/1211.5063.pdf


where max_threshold and min_threshold are the boundary values and between them
lies a range of values that gradients can take. g, here is the gradient, and ǁgǁ is the
norm of g.

Gradient Clipping-by-norm

The idea behind clipping-by-norm is similar to by-value. The difference is that we clip
the gradients by multiplying the unit vector of the gradients with the threshold.
The algorithm is as follows:

g ← ∂C/∂W

if ǁgǁ ≥ threshold then

g ← threshold * g/ǁgǁ

end if

where the threshold is a hyperparameter, g is the gradient, and ǁgǁ is the norm of g.
Since g/ǁgǁ is a unit vector, after rescaling the new g will have a norm equal to the
threshold. Note that if ǁgǁ < c, then we don’t need to do anything,

Gradient clipping ensures the gradient vector g has the norm at most equal to the
threshold. This helps gradient descent to have reasonable behavior even if the loss
landscape of the model is irregular, most likely a cliff.

Gradient clipping in deep learning frameworks

Now we know why Exploding Gradients occur and how Gradient Clipping can resolve it.

We also saw two different methods by virtue of which you can apply Clipping to your
deep neural network.

Let's see an implementation of both Gradient Clipping algorithms in major
Machine Learning frameworks like Tensorflow and Pytorch. We’ll employ the
MNIST dataset which is an open-source digit classification data meant for Image
Classification.

For the first part, we’ll do some data loading and processing which is common for both
Tensorflow and Keras.

Data Loading



import tensorflow as tf

from tensorflow.keras import Model, layers

import numpy as np

import tensorflow_datasets as tfds

print(tf.__version__)

import neptune.new as neptune

run = neptune.init(project='common/tf-keras-integration',

api_token='ANONYMOUS')

We recommend you install the latest version of Tensorflow 2 which at the time of writing
this was 2.3.0, but this code will be compatible with any future version. Make sure
you’re installed with 2.3.0 or higher. In this excerpt, we’ve imported the TensorFlow
dependencies as usual, with NumPy as our matrix computation library.

from tensorflow.keras.datasets import mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()

# Convert to float32.

x_train, x_test = np.array(x_train, np.float32), np.array(x_test,

np.float32)

# Flatten images to 1-D vector of 784 features (28*28).

x_train, x_test = x_train.reshape([-1, 28, 28]), x_test.reshape([-1,

num_features])

# Normalize images value from [0, 255] to [0, 1].

x_train, x_test = x_train / 255., x_test / 255.

# Use tf.data API to shuffle and batch data.

train_data = tf.data.Dataset.from_tensor_slices((x_train, y_train))

train_data =

train_data.repeat().shuffle(5000).batch(batch_size).prefetch(1)



Now, let’s see how to implement Gradient Clipping by-value and by-norm in Tensorflow.

Tensorflow

# Create LSTM Model.

class Net(Model):

# Set layers.

def __init__(self):

super(Net, self).__init__()

# RNN (LSTM) hidden layer.

self.lstm_layer = layers.LSTM(units=num_units)

self.out = layers.Dense(num_classes)

# Set forward pass.

def __call__(self, x, is_training=False):

# LSTM layer.

x = self.lstm_layer(x)

# Output layer (num_classes).

x = self.out(x)

if not is_training:

# tf cross entropy expect logits without softmax, so only

# apply softmax when not training.

x = tf.nn.softmax(x)

return x

# Build LSTM model.

network = Net()

We’ve created a simple 2-layer network with the Input layer of LSTM(RNN based unit)
and output/logit layer as Dense. Now, let’s define other hyperparameters and metric
functions to monitor and analyze.

# Hyperparameters

num_classes = 10 # total classes (0-9 digits).

num_features = 784 # data features (img shape: 28*28).

# Training Parameters

learning_rate = 0.001

training_steps = 1000

batch_size = 32

https://neptune.ai/integrations/tensorflow


display_step = 100

# Network Parameters

# MNIST image shape is 28*28px, we will then handle 28 sequences of

28 timesteps for every sample.

num_input = 28 # number of sequences.

timesteps = 28 # timesteps.

num_units = 32 # number of neurons for the LSTM layer.

# Cross-Entropy Loss.

# Note that this will apply 'softmax' to the logits.

def cross_entropy_loss(x, y):

# Convert labels to int 64 for tf cross-entropy function.

y = tf.cast(y, tf.int64)

# Apply softmax to logits and compute cross-entropy.

loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y,

logits=x)

# Average loss across the batch.

return tf.reduce_mean(loss)

# Accuracy metric.

def accuracy(y_pred, y_true):

# Predicted class is the index of highest score in prediction

vector (i.e. argmax).

correct_prediction = tf.equal(tf.argmax(y_pred, 1),

tf.cast(y_true, tf.int64))

return tf.reduce_mean(tf.cast(correct_prediction, tf.float32),

axis=-1)

# Adam optimizer.

optimizer = tf.optimizers.Adam(learning_rate)

Note that we are using Cross-Entropy loss function with softmax at the logit layer since
this is a classification problem. Feel free to tweak the hyperparameters and play around
with it to better understand the flow.

Now, let’s define the Optimization function where we’ll calculate the gradients, loss, and
optimize our weights. Note that here we’ll apply the gradient clipping.



# Optimization process.

def run_optimization(x, y):

# Wrap computation inside a GradientTape for automatic

differentiation.

with tf.GradientTape() as tape:

# Forward pass.

pred = network(x, is_training=True)

# Compute loss.

loss = cross_entropy_loss(pred, y)

# Variables to update, i.e. trainable variables.

trainable_variables = network.trainable_variables

# Compute gradients.

gradients = tape.gradient(loss, trainable_variables)

# Clip-by-value on all trainable gradients

gradients = [(tf.clip_by_value(grad, clip_value_min=-1.0,

clip_value_max=1.0))

for grad in gradients]

# Update weights following gradients.

optimizer.apply_gradients(zip(gradients, trainable_variables))

At Line:14 we applied the Gradient Clip-by-value by iterating over all the gradients
calculated at Line:11. Tensorflow has an explicit function definition in its API to apply
Clipping. To implement Gradient Clip-by-norm just change the Line 14 with:

# clip-by-norm

gradients = [(tf.clip_by_norm(grad, clip_norm=2.0)) for grad in

gradients]

Let’s define a training loop and log metrics:

# Run training for the given number of steps.

for step, (batch_x, batch_y) in

enumerate(train_data.take(training_steps), 1):

# Run the optimization to update W and b values.



run_optimization(batch_x, batch_y)

if step % display_step == 0:

pred = lstm_net(batch_x, is_training=True)

loss = cross_entropy_loss(pred, batch_y)

acc = accuracy(pred, batch_y)

run['monitoring/logs/loss'].log(loss)

run['monitoring/logs/acc'].log(acc)

print("step: %i, loss: %f, accuracy: %f" % (step, loss, acc))

You can see the above code in action here

Keras

Keras works as a wrapper around the TensorFlow API to make things easier to
understand and implement. The Keras API lets you focus on the definition stuff and
takes care of the Gradient calculation, Backpropagation in the background. Gradient
Clipping can be as simple as passing a hyperparameter in a function. Let’s see the
specifics.

from tensorflow.keras.layers import Dense, LSTM

from tensorflow.keras.models import Sequential

from tensorflow.keras.optimizers import SGD

from tensorflow.keras.callbacks import Callback

import neptune

from neptune.new.integrations.tensorflow_keras import NeptuneCallback

import neptune.new as neptune

run = neptune.init(project='common/tf-keras-integration',

api_token='ANONYMOUS')

# define model

https://app.neptune.ai/common/tf-keras-integration/e/TFK-35994/all
https://neptune.ai/integrations/keras


# using the hparams of tensorflow

model = Sequential()

model.add(LSTM(units=num_units))

model.add(Dense(num_classes))

We’ll now declare the gradient clipping factor, and finally fit the model with Keras’
awesome “.fit” method.

# compile model

optimizer = SGD(lr=0.01, momentum=0.9, clipvalue=1.0)

model.compile(loss='binary_crossentropy', optimizer=optimizer)

# fit model

neptune_cbk = NeptuneCallback(run=run, base_namespace='metrics')

history = model.fit(train_data, epochs=5,

verbose=1,steps_per_epoch=training_steps,callbacks=[neptune_cbk])

Keras optimizers take care of additional gradient computation requests (like clipping in
the background). Developers only need to pass values on these as hyperparameters.

In order to implement Clip-by-norm just alter the hyperparameter in Line:11 to:

# Gradient Clip-by-norm

optimizer = SGD(lr=0.01, momentum=0.9, clipnorm=1.0)

The metrics in the code above are beautifully visualized here.

Pytorch

The implementation of Gradient Clipping, although algorithmically the same in both
Tensorflow and Pytorch, is different in terms of flow and syntax.

So, in this section of implementation with Pytorch, we’ll load data again, but now with
Pytorch DataLoader class, and use the pythonic syntax to calculate gradients and clip
them using the two methods we studied.

import os

import argparse

import torch

https://app.neptune.ai/common/tf-keras-integration/e/TFK-35995/all
https://neptune.ai/integrations/pytorch-lightning


import torch.nn as nn

import torch.nn.functional as F

import torch.optim as optim

import torchvision

from torch.optim.lr_scheduler import StepLR

import neptune

import neptune.new as neptune

run = neptune.init(project='common/pytorch-integration',

api_token='ANONYMOUS')

Now, let's declare some hyperparameters and DataLoader class in PyTorch.

# Hyperparameters

n_epochs = 2

batch_size_train = 64

batch_size_test = 1000

learning_rate = 0.01

momentum = 0.5

log_interval = 10

random_seed = 1

torch.backends.cudnn.enabled = False

torch.manual_seed(random_seed)

# Device configuration

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

sequence_length = 28

input_size = 28

hidden_size = 128

num_layers = 2

num_classes = 10

batch_size = 100

num_epochs = 2

learning_rate = 0.01



os.makedirs('files',exist_ok=True)

train_loader = torch.utils.data.DataLoader(

torchvision.datasets.MNIST('files/', train=True, download=True,

transform=torchvision.transforms.Compose([

torchvision.transforms.ToTensor(),

torchvision.transforms.Normalize(

(0.1307,), (0.3081,))

])),

batch_size=batch_size_train, shuffle=True)

test_loader = torch.utils.data.DataLoader(

torchvision.datasets.MNIST('files/', train=False, download=False,

transform=torchvision.transforms.Compose([

torchvision.transforms.ToTensor(),

torchvision.transforms.Normalize(

(0.1307,), (0.3081,))

])),

batch_size=batch_size_test, shuffle=True)

Model time! We'll declare the same model with LSTM as the input layer and Dense
as the logit layer.

# Recurrent neural network (many-to-one)

class Net(nn.Module):

def __init__(self, input_size, hidden_size, num_layers,

num_classes):

super(Net, self).__init__()

self.hidden_size = hidden_size

self.num_layers = num_layers

self.lstm = nn.LSTM(input_size, hidden_size, num_layers,

batch_first=True)

self.fc = nn.Linear(hidden_size, num_classes)

def forward(self, x):

# Set initial hidden and cell states

h0 = torch.zeros(self.num_layers, x.size(0),



self.hidden_size).to(device)

c0 = torch.zeros(self.num_layers, x.size(0),

self.hidden_size).to(device)

# Forward propagate LSTM

out, _ = self.lstm(x, (h0, c0)) # out: tensor of shape

(batch_size, seq_length, hidden_size)

# Decode the hidden state of the last time step

out = self.fc(out[:, -1, :])

return out

# Instantiate the model with hyperparameters

model = Net(input_size, hidden_size, num_layers,

num_classes).to(device)

# Loss and optimizer

criterion = nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

Now, we’ll define the training loop in which gradient calculation along with optimizer
steps will be defined. Here we’ll also define our clipping instruction.

# Train the model

total_step = len(train_loader)

for epoch in range(num_epochs):

for i, (images, labels) in enumerate(train_loader):

images = images.reshape(-1, sequence_length,

input_size).to(device)

labels = labels.to(device)

# Forward pass

outputs = model(images)

loss = criterion(outputs, labels)

# Backward and optimize



optimizer.zero_grad()

loss.backward()

# Gradient Norm Clipping

#nn.utils.clip_grad_norm_(model.parameters(), max_norm=2.0,

norm_type=2)

#Gradient Value Clipping

nn.utils.clip_grad_value_(model.parameters(), clip_value=1.0)

optimizer.step()

run['monitoring/logs/loss'].log(loss)

if (i+1) % 100 == 0:

print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'

.format(epoch+1, num_epochs, i+1, total_step,

loss.item()))

Since PyTorch saves the gradients in the parameter name itself (a.grad), we can pass
the model params directly to the clipping instruction. Line:17 describes how you can
apply clip-by-value using the torch’s clip_grad_value_ function.

To apply Clip-by-norm you can change this line to:

# Gradient Norm Clipping

nn.utils.clip_grad_norm_(model.parameters(), max_norm=2.0,

norm_type=2)

You can see the above metrics visualized here.
So, up to this point, you understand what clipping does and how to implement it. Now,
in this section we’ll see it in action, sort of a before-after scenario to get you to
understand the importance of it.

The framework of choice for this will be Pytorch since it has features to calculate
norms on the fly and store them in variables. Let’s start with the usual imports of
dependencies.

https://app.neptune.ai/common/pytorch-integration/e/PYTOR1-181/all


import time

from tqdm import tqdm

import numpy as np

from sklearn.datasets import make_regression

import torch

import torch.nn as nn

import torch.nn.functional as F

import torch.optim as optim

from torchvision import datasets, transforms

import neptune.new as neptune

run = neptune.init(project='common/pytorch-integration',

api_token='ANONYMOUS')

For the sake of keeping the norms to handle small, we’ll only define two Linear/Dense
layers for our neural network.

class Net(nn.Module):

def __init__(self):

super(Net, self).__init__()

self.fc1 = nn.Linear(20, 25)

self.fc2 = nn.Linear(25, 1)

self.ordered_layers = [self.fc1,

self.fc2]

def forward(self, x):

x = F.relu(self.fc1(x))

outputs = self.fc2(x)



return outputs

We created an “ordered_layers” variable in order to loop over them to extract norms.

def train_model(model,

criterion,

optimizer,

num_epochs,

with_clip=True):

since = time.time()

dataset_size = 1000

for epoch in range(num_epochs):

print('Epoch {}/{}'.format(epoch, num_epochs))

print('-' * 10)

time.sleep(0.1)

model.train() # Set model to training mode

running_loss = 0.0

batch_norm = []

# Iterate over data.

for idx,(inputs,label) in enumerate(tqdm(train_loader)):

inputs = inputs.to(device)

# zero the parameter gradients

optimizer.zero_grad()

# forward

logits = model(inputs)

loss = criterion(logits, label)

# backward

loss.backward()

#Gradient Value Clipping



if with_clip:

nn.utils.clip_grad_value_(model.parameters(),

clip_value=1.0)

# calculate gradient norms

for layer in model.ordered_layers:

norm_grad = layer.weight.grad.norm()

batch_norm.append(norm_grad.numpy())

optimizer.step()

# statistics

running_loss += loss.item() * inputs.size(0)

epoch_loss = running_loss / dataset_size

if with_clip:

run['monitoring/logs/grad_clipped'].log(np.mean(batch_norm))

else:

run['monitoring/logs/grad_nonclipped'].log(np.mean(batch_norm))

print('Train Loss: {:.4f}'.format(epoch_loss))

print()

time_elapsed = time.time() - since

print('Training complete in {:.0f}m {:.0f}s'.format(

time_elapsed // 60, time_elapsed % 60))

This is a basic training function housing the main event loop that contains gradient
calculations and optimizer steps. Here, we extract norms from the said
“ordered_layers” variable. Now, we only have to initialize the model and call this
function.

def init_weights(m):

if type(m) == nn.Linear:



torch.nn.init.xavier_uniform(m.weight)

m.bias.data.fill_(0.01)

if __name__ == "__main__":

device = torch.device("cpu")

# prepare data

X,y = make_regression(n_samples=1000, n_features=20, noise=0.1,

random_state=1)

X = torch.Tensor(X)

y = torch.Tensor(y)

dataset = torch.utils.data.TensorDataset(X,y)

train_loader =

torch.utils.data.DataLoader(dataset=dataset,batch_size=128,

shuffle=True)

model = Net().to(device)

model.apply(init_weights)

optimizer = optim.SGD(model.parameters(), lr=0.07,

momentum=0.8)

criterion = nn.MSELoss()

norms = train_model(model=model,

criterion=criterion,

optimizer=optimizer,

num_epochs=50,

with_clip=True #make it False for without

clipping

)

This will create a chart for the metrics you specified which will look something like
this:



You can see the discrepancy between norms with and without clipping. During
experiments without clipping, the norms exploded to NaN after a few epochs
whereas experiments with clipping were fairly stable and converging. You can see
the Neptune experiment here and the source code in the colab notebook here.

You’ve reached the end!

Congratulations! You’ve successfully understood the Gradient Clipping Methods, what
problem it solves, and the Exploding Gradient Problem.

Below are a few endnotes and future research things for you to follow through.

Logging is king!

Whenever you work on a big project with a large network, make sure that you are
thorough with your logging procedures.

Exploding Gradient can only be efficiently caught if you are logging and
monitoring properly.

You can use your current logging mechanisms in Tensorboard to visualize and monitor
other metrics in Neptune’s dashboard. What you have to do is simply install
neptune-client to accomplish that. Head over here to explore the documentation.

Research

● This paper explains how training speeds in Deep Networks can be enhanced
using gradient clipping.

● This paper explains the use of Gradient clipping in differentially private neural
networks.

https://app.neptune.ai/theaayushbajaj/sandbox/e/SAN-11/charts
https://drive.google.com/file/d/1CgxOprdeZhGfVAKvnIZpu1E98S7Tyr4d/view?usp=sharing
https://docs.neptune.ai/getting-started/installation/installation-neptune-tensorboard.html
https://arxiv.org/pdf/1905.11881.pdf
http://arxiv.org/pdf/2009.03106v1.pdf


That’s it for now, stay tuned for more! Adios!


