Generalized Potenciada Uniform Distribution 	Comment by Rees Storm: Recommend including a definition of “Potenciada” to avoid confusion for English-speaking readers.

Abstract
This work presentsWe introduce here a new uniform distribution model called Generalized Potenciada Uniform Distribution (GPUD), which is based on on a generalization of the usual uniform distribution, by introducing a the parameter  into the probability density function that is associated with the power of the random variable values of the random variable and, which includeses an operator called we call the Potenciada Mean here. From this new model we can derive tThe shape properties, the higher-order moments, the moment  generating function, the model that simulates the GPUD, and other important statistics are derived. This approach has made it possible to generalize the distribution of Jayakumar & Sankaran (2016) through a new distribution called GPUD(J-S). Two sets of real data related to Covid-19 and to bladder cancer were considered tested to demonstrate this proposal's potential. The maximum likelihood method was used to calculate the parameter estimators applying the maxLik package in R-language. The results show that thise new model is more flexible and appropriate useful than other competitive comparable models.	Comment by Rees Storm: Reworded for clarity and efficiency of language. Please review to ensure intended meaning is intact.	Comment by Rees Storm: Word substitution, OK?	Comment by Rees Storm: Word substitution, OK?
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1. Introduction
In the last years, several researchers have proposed different generalizations of new distribution functions of continuous random variables in order toto model , in a more broadly way, the different behaviors related to survival analysis, such as the useful life of a computer.  or system, whichDoing so also allows the study of hazard functions to describe determine the reliability of devices subject to use and deterioration. Additionally, these extended distributions provide greater flexibility to in modeling various real-life problems (Nassar et al., 2018; Sankaran and Jayakumar, 2016; Torabi et al., 2018).

This Our research described here work follows the approach given presented originally in the seminal article of Marshall and Olkin (1997), and continued among afterwards by other authors by including Alshangiti et al. (2014); Jayakumar and Sankaran (2016); and Jose and Krishna (2011), where a presentation of the results of the Marshall-Olkin extended uniform distribution was made, giving demonstrates different approaches and of it, to generates a new model family of the uniform distribution.	Comment by Rees Storm: Wording substitutions, OK?

UThe uniform distribution is closely related to the rest of the distribution functions. To see thisdemonstrate, we can take the distribution function as a random variable; we can easily see that this random variable is uniformly distributed as the , which is the basis on the inverse transform method. The uniform distribution function defined on the closed interval [0,1] is of fundamental importance for the generation of random numbers in simulation processes that allows the numerical evaluation of the behavior of statistical models (Law, 2007).

Motivated by the Ppreviously reported results, like Rondero-Guerrero et al. (2020), motivated us to and considering that statistical distributions are frequently applied to models of realreal-world phenomena in different diverse areas such as medical sciences, finance, engineering, and economics, where the analysis of risk and survival functions is included due to their relevance in modeling data from various systems. SoTherefore, we decided to continue extend with our research work and apply it to real world data, too; however, we did so , in such a way that it should be noted that our enhanced model presents a better data fit, and which that allows us to havecreates a tool that can potentially be used, for example,  by many areas, for the design of public health policies being just one example.

From Based on our approach, we propose a new family branch of the uniform distribution function family, based on a novel presentation of whatsomething new that we call the Potenciada Mean. Our generalization is based on the incorporation of a new parameter , that appears in the power of the values taken by the continuous random variable (Rondero-Guerrero et al., 2020). BesidesFurthermore, this proposal generalizes the work of Jayakumar and Sankaran (2016) and . All of which hasby allowed allowing us to generalize Jayakumar’s model, and, additionally, tohas broaden our perspective.	Comment by Rees Storm: Wording substitution, OK?	Comment by Rees Storm: Query: In this context, would the word “expand” be a better choice than “generalize”? Choosing a different word would also help to avoid confusion and repetition and draws a distinction in meaning given that frequency of the use of the term, “Generalized Potenciada Uniform Distribution” and others related, like “generalization.”

Consider and let me know how I can be of assistance.

“Generalize.” Merriam-Webster's Unabridged Dictionary, Merriam-Webster, https://unabridged.merriam-webster.com/unabridged/generalize. Accessed 20 Jul. 2021.

“Expand.” Merriam-Webster's Unabridged Dictionary, Merriam-Webster, https://unabridged.merriam-webster.com/unabridged/expand. Accessed 20 Jul. 2021.


The article is structured as follows. In Section 2, the general conditions of the new family of the Generalized Potenciada Uniform Distribution are defined and discussed. Section 3 shows some interesting properties of the , such as hazard function, survival function, moment generator function, moments, and statistics as: quantile, median, asymmetry, and kurtosis. Section 4 uses the  approach to generalize the work of Jayakumar and Sankaran (2016), allowing another family of distributions to be generated. This new family contains the parameter  as the power of the values of the random variable, which provides greater flexibility to this and other models. In this sSection 4 also discusses the expressions for estimating the parameters of the new generalization, and also presents a simulation study to determine the performance of maximum likelihood estimators for specific sample sizes. The usefulness of  in by Jayakumar and Sankaran (2016) generalization is shown in Section 5, where two real data sets are used to fit the proposed model, and we demonstrate empirically that the  is more appropriate than other competitive models, such as the Weibull, the Exponentiated Weibull (Pal et al., 2006), New Marshall-Olkin Weibull (Cui et al., 2020), and Marshall-Olkin Exponentiated (García et al., 2020).  Finally, the conclusions are presented in Section 6.

Motivados por los resultados reportados previamente, Rondero-Guerrero et al. (2020) y considerando que las distribuciones estadísticas se aplican frecuentemente para modelar fenómenos reales en diferentes áreas como ciencias médicas, finanzas, ingeniería y economía, donde se incluye el análisis de las funciones de riesgo y sobrevivencia por su relevancia en el modelado de datos de diversos sistemas. Cabe señalar que nuestro modelo presenta un mejor ajuste de datos, lo que permite contar con una herramienta que potencialmente puede usarse, por ejemplo, para el diseño de políticas públicas de salud. 	Comment by Rees Storm: Needs to be translated into English.





2. A new family of the Uniform Distribution Function 
From Based out of our this research perspective (see for instance Rondero-Guerrero et al. (2020)), we are introducinge the GPUD as a new family of distribution functions , which we call Generalized Potenciada Uniform Distribution (GPUD), for with a continuous random variable . The respective Probability Density Function (PDF), is defined in theas followsing way,	Comment by Rees Storm: Revision of sentence, OK? Check that intedned meaing has not been altered.

	
	(1)
	



The term , defined as an operator herein named Potenciada Mean is expressed as, 

	
	(2)



UIn the understanding that for the case,  , , and then we then recover the usual uniform distribution. It is easy to show that Equation (1) is a well-defined PDF w. Where the mean is .

The Distribution Function (DF) corresponding to Equation (1) is given byas,

	
	(3)
	



It should be noted that Equations (1 and 3) represent any member of a new family of probability density and distribution functions, for different values of the  parameter. These results show that there is are a large number ofmany polynomial functions satisfying the conditions of a PDF and DF respectively, that is, , which belongs to the new .  

When  y , the   takes the form,  

	; for 
	(4)



It is important to note that this last expression will be used in Section 3 when we introduce the survival function, defined as,

	.
	(5)



The corresponding graphs of  and  are shown in Figures 1 and 2, respectively, for different values of . The results in Figure 1 show that the PDF skews to the right as the value of the parameter, , increases. Graphical properties are of great importance because they allow researchers and professional users of statistical methods to see if any of these distributions fit the data set of some an application.
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Figure 1.   for  5
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Figure 2.   for 


3. General properties of the GPUD 
In this section, we examine some general properties of the GPUD are studied to show the flexibility of this new family of distributions, which will allow the development of a generalization of the model proposed by Jayakumar and Sankaran (2016) studied in section 4.

3.1. Hazard function and survival function
From Equations (1) and (3), the hazard function and survival function, respectively, can be obtained, as shown below: 

	
	(6)



In what follows, we will use the more usual common notation for the survival function . From Wwhere, 

	
	(7)



for, , , and . 

Survival analysis is a topic that has acquiredof great importance for researchers in various areasmany disciplines., in such a way thatB both the hazard and survival function deals with a non-negative continuous or discrete random variable , which is related to data from lifetime, allowing and allows the formulation of statistical models in areas such as medicine, engineering, and biology. For example, in biomedical research, survival analysis is applied to a random variable related to the time that elapses from the onset of a disease elapses from its onset until the patient's either recoversy or death dies or noting for specific key interventions along the way. 	Comment by Rees Storm: Is “deals with” referring to “Behaving in a stated way” (uses) or “having (something) as a subject matter” (pertains). Consider substituting the appropriate term or a synonym consistent with an academic tone.

When working with the hazard function, researchers are interested in the graphs' properties, as they are useful in identifying whether the distribution can model increasing or decreasing failure rates.  Figure 3 and 4 shows the shape of  and  respectively, for different k-values.

[image: ]
Figure 3.   for different values of k
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Figure 4.   for different values of k

3.2. Moment generating function
A function of great importance in the calculation of higher order moments is the moment generating function. We will see that, once again, we can obtain a compact expression of it in terms of the Potenciada Mean.

Theorem 1. The moment generating function of the PDF, is given asby,

	
	(8)



Proof: The moment generating function  is defined by,

	
	(9)



and expanding  in a Taylor series,

	
	(10)



obtaining,

	
	(11)



or in terms of the series,

	
	(12)



From this expression it is possible to obtain all the moments .

3.3. Moments
Next, we show the calculation of the higher order moments for the , that we are proposing, which allow us to determine the mean and variance, among others.

Theorem 2. The  moment of the PDF is given asby,

	
	(13)



Proof: We can write the  moment as, 

	
	(14)



from which results,

	
	



	
	(15)



therefore,

	
	(16)



It is worthwhile to noticinge the advantage of the last Equation. For the case  and  it is expressed as,

	
	(17)



Of course, for the usual uniform distribution , so that for the first moment , the mean is,  From the previous result we can proceed to calculate the corresponding variance for ,

	
	(18)



and can rewriteing the previous result,

	
	(19)



We emphasize that the higher order moments with respect to the mean, such that , necessarily involve expressions that are given in terms of the Potenciada Mean operator, which shows the its relevance of the same,and in addition, achievesing, in addition, a great economy of calculation.

For the skewness and kurtosis coefficients, we have 

	
	(20)




	
	(21)



To demonstrate the flexibility of the  properties, Table 1 shows the corresponding calculations for , , , and , for , , and different values of . The data in the table indicates that the  has a negative bias for values of . Furthermore,  is a leptokurtic family.

Table 1. Mean, variance, coefficients of skewness and kurtosis for GPUD
	
	mean
	variance
	skewness
	kurtosis

	(0, 1 , 0)
	0.5
	0.08333
	0
	-1.2

	(0, 1 , 1)
	0.66667
	0.05556
	-0.56569
	-0.6

	(0, 1 , 2)
	0.75
	0.03750
	-0.86066
	0.095

	(0, 1 , 3)
	0.8
	0.02667
	-1.04978
	0.696

	(0, 1 , 4)
	0.83333
	0.01984
	-1.18322
	1.2

	(0, 1 , 5)
	0.85714
	0.01531
	-1.28300
	1.62




3.4. Simulation, quantiles and median
Using Equation (3), the random variable  of the  can be simulated as

	
	(22)



where  is the standard uniform distribution. In addition, the qth quantile of the GPUD  is given byas,

	
	(23)



Table 2 shows the median of the GPUD distribution for different values of the parameter .

Table 2. Median of the GPUD distribution
	
	
	
	Median

	0
	1
	0
	0.5

	0
	1
	1
	0.70711

	0
	1
	2
	0.79370

	0
	1
	3
	0.84090

	0
	1
	4
	0.87055

	0
	1
	5
	0.89090




4. Generalization of Jayakumar and Sankaran (2016) distribution using the GPUD approach
After showing the characteristics of the  family, we will see below how this new approach provides greater versatility in modeling specific statistical applications and data analysis, which has allowed us to generalize the results obtained by Jayakumar and Sankaran (2016). From Tthese authors' perspectives, they introduce what they call Generalized Uniform Distribution (GUD), where the parameters  are considered. The survival function reported by the same authors is based on the truncated negative binomial distribution, which allowed generalizing the Marshall and Olkin (1997) model as shown below,

	     for  
	(24)



The theta parameter allows to give a greater amplitude and flexibility to the Marshall and Olkin (1997) model, whose survival function is given byas,

	,         
	(25)



Note that if , Equation (24) is reduced to the model (25).

Jayakumar and Sankaran (2016) consider the DF as , and to the survival function as , which come from the usual uniform distribution, and substituting in Equation (24), it is obtainedresults in,

	
	(26)



the corresponding DF is,

	
	(27)



and the PDF is given byas,

	
	(28)




4.1. GPUD approach
From Using the GPUD approach, we now it is introduced , and , for ; , where we obtain a new family of distributions with three parameters , which will be defined as . The How we developedment of our generalization is presented below, where the survival function is expressed as,

	
	(29)



for , and 

Therefore, the DF of this new  family is given byas,

	
	(30)



In turn, the corresponding PDF is given byas,

	
	(31)



Note: If  and , with , it is obtained the GUD is obtained, as given by Jayakumar and Sankaran (2016). Below are the Figures 5 and 6, for the values of , leaving the value of  fixed and considering several values of .  
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Figure 5.  for 

[image: ]
Figure 6.  for  


4.2. Hazard and survival functions of the 
The importance of ourOur generalization is important because it lies in the possibility ofmakes possible the creation ofing a wide range of different hazard functions, which can be applied to various analyseis about survival or reliability studies in diverse areas such as medicine, engineering, economics, and others. Generally, we work with a one-dimensional and continuous random variable defined in [0, ∞) unless otherwise indicated, which measures the time between events.

The hazard function given by Jayakumar and Sankaran (2016) is,

	
	(32)



in our case, considering using the , where,where , we obtain a new family of hazard functions given in terms of the parameter ,

	
	(33)



In Figure 7, the behavior of the hazard function  is shown, referred to the  for different values of . It should be noted that if we substitute the value of  in Equation (33) we obtain the same results reported by the cited authors.

[image: ]
Figure 7.  for 

NowHere, in Figure 8, the behavior of the survival  function  is shown, referringed to the  for different values of . 

	
	(34)



[image: ]
Figure 8.  for 

Our model particularly notably provides greater versatility, since in this proposal a parameter  is added, which intervenes as an exponent in the random variable's values, which as is shown in the previous graphs (7 and 8). 

4.3. Parameters’ estimation of the 	Comment by Rees Storm: Query: Please confirm the use of the word “estimation” here in the subtitle and in the sentence below. Here is a link to the dictionary entry - “Estimation.” Merriam-Webster's Unabridged Dictionary, Merriam-Webster, https://unabridged.merriam-webster.com/unabridged/estimation. Accessed 20 Jul. 2021.

A better word might be “prediction” - “Prediction.” Merriam-Webster's Unabridged Dictionary, Merriam-Webster, https://unabridged.merriam-webster.com/unabridged/prediction. Accessed 20 Jul. 2021.

Either way, please let me know how I can assist you in finding precise meaning here.
Consider the estimation of unknown parameters using the maximum likelihood method (Okasha and Kayid, 2016; Torabi et al., 2018). For a sample of the random variable , starting from Equation (31), in which an additional parameter  was introduced, which has been working on the generalizations proposed throughout this article. The log-likelihood function is given byas,

	
	(35)



which from our proposal is expressed as,

	
	(36)



Note the relevance of the parameter  in the previous expression, which comes from the generalization of the work of Jayakumar and Sankaran (2016), where only the parameters and  appear.
The corresponding maximum likelihood function is given asby,
	
	(37)



TIn order to obtain the covariance matrix  and the corresponding estimators, the partial derivatives of the log-likelihood function were calculated and are given byas,

	
	(38)



	
	(39)



	
	(40)



The maximum likelihood estimators can be obtained numerically by solving the equations, ,  , and .

On the other hand, the second derivatives of the log-likelihood function of  with respect to ,  and  are given asby,

	
	(41)




	
	(42)




	


	


(43)




	
	(44)




	
	



	
	(45)




	

	


(46)



The matrix of the maximum likelihood estimators of  for , is given asby,

	
	(47)



Therefore, the covariance matrix will be . The approximate confidence intervals  to the  for the parameters , , and  will be , , and  respectively, where , , and  are the variances of , , and  which are given represented by elements of the principal diagonal of the matrix  and  is the  upper percentile of the standard normal distribution.

4.4. Simulation, quantiles and median of the      
In this work we follow the approach given proposed by several authors to calculate the inverse function of the DF where . Which is a known simulation mechanism to generates random numbers. In this sense, It follows that to obtain the model that simulates random numbers that have a  behavior (Equation 30), the inverse function is expressed as,

	
	(48)



where  and .

For the particular case of , the result reported by Jayakumar and Sankaran (2016) is obtained,

	
	



On the other hand, it is interesting to calculate the qth quartile from the perspective of this research generalization, because it gives us information about the usual parameters of the distribution,

	
	(49)



In particular, we obtain the Median by putting  in Equation (49).

Like in Equation (48), for , in Equation (49), the result reported by Jayakumar and Sankaran (2016) is obtained,

	
	



In Table 3 we show the calculation of the medians to show one of the advantages of our model for different values of the parameters .


Table 3. Median of the  distribution     
	
	
	
	Median

	0.999
	1
	0
	0.500

	0.1
	5
	1
	0.017

	0.5
	2.9
	2
	0.465

	0.2
	3.5
	3
	0.379

	0.3
	4.5
	4
	0.516

	0.4
	6
	5
	0.605




On the other handConversely, a simulation study was conducted to verify the MLE's performance for different sample sizes and different parameter values for the . Equation (48) was used to generate a random sample of the  with parameters . The different sample sizes considered in the simulation are , and . In the simulation, we have used the maxLik package in R-language to find the parameter estimates. The process was replicated 1000 times for each sample size, and we reported the average parameter estimate and the associated mean square errors. The results are reported in Table 4. As the sample size increases, the mean bias and mean square errors decrease, indicating the consistency property of the MLE.


Table 4. Simulation results for some different values of the parameters , and .
	Parameters
	

	
	
	
	

	
	0.1824(0.0381)
	6.5601(1.1336)
	0.8977(0.0264)

	
	0.3118(0.0749)
	4.5536(1.1644)
	3.9607(0.1424)

	
	0.5727(0.1364)
	3.5358(1.8380)
	1.9710(0.0836)

	
	0.2401(0.2787)
	3.9706(1.2449)
	3.3686(0.1351)

	
	0.4813(0.3773)
	6.4273(1.5653)
	5.3987(0.3607)

	
	

	
	0.0942(0.0091)
	4.9550(0.31965)
	1.0153(0.0131)

	
	0.2894(0.0243)
	4.3186(0.5959)
	4.0191(0.0601)

	
	0.5353(0.0399)
	3.2871(0.4759)
	1.9783(0.0351)

	
	0.2237(0.0246)
	3.8212(0.3720)
	2.9831(0.0465)

	
	0.4135(0.1233)
	6.3185(0.4801)
	5.0704(0.0643)

	
	

	
	0.1059(0.0046)
	5.2748(0.1395)
	1.0024(0.0083)

	
	0.3176(0.0153)
	4.5384(0.2283)
	3.9159(0.0384)

	
	0.5077(0.0325)
	2.9661(0.4098)
	2.0083(0.0286)

	
	0.2116(0.0137)
	3.6814(0.1843)
	2.9787(0.0445)

	
	0.4057(0.0710)
	6.1182(0.2961)
	5.0090(0.0462)

	
	

	
	0.10584(0.0037)
	5.1328(0.1187)
	0.9977(0.0064)

	
	0.3059(0.0108)
	4.5210(0.1629)
	3.9930(0.0311)

	
	0.5034(0.0195)
	2.9958(0.13785
	2.0009(0.0158)

	
	0.20877(0.0097)
	3.5549(0.0931)
	2.9905(0.0250)

	
	0.3992(0.0134)
	6.0348(0.0253)
	5.0038(0.0191)




5. Application to real data 
In this section, we present the GPUD(J-S) family's practical utility through the analysis of two sets of real data to show the potential of the new family of distributions. The first set of data is related to the global health problem currently being experienced by the pandemic caused by a new strain of coronavirus (COVID-19), which has infected more than 187 million people around the world and has caused the death of more than 4 million people as of June 31, 2021. The data correspond to people who died from COVID-19 and also had diabetes. The time span from onset of symptoms s to patient’s death  of the person was analyzed. The data is collected from  concerns Mexico, specifically it ; this information was obtained from the Secretary of Health of the Government of Mexico (https://www.gob.mx/salud/documentos/datos-abiertos-bases-historicas-direccion-general-de-epidemiologia). The data correspond from February 27 (first person infected with COVID in Mexico and had diabetes) to April 20, 2020. A total of 1113 data was obtained up to that date.
 
It should be clarified that the information of the referred source is available in days (dates). However, it was necessary, for compatible calculation purposes, to divide each data by the longest life span of the infected persons (76.1 days), to obtain thus, values of the study variable, in the interval , because as this is a requirement of our model. 

The second set of data refers to the remission times (in months) of a sample of 128 patients with bladder cancer presented by Shakhatreh (2018): 

0.08, 0.20, 0.40, 0.50, 0.51, 0.81, 0.90, 1.05, 1.19, 1.26, 1.35, 1.40, 1.46, 1.76, 2.02, 2.02, 2.07, 2.09, 2.23, 2.26, 2.46, 2.54, 2.62, 2.64, 2.69, 2.69, 2.75, 2.83, 2.87, 3.02, 3.25, 3.31, 3.36, 3.36, 3.48, 3.52, 3.57, 3.64, 3.70, 3.82, 3.88, 4.18, 4.23, 4.26, 4.33, 4.34, 4.40, 4.50, 4.51, 4.87, 4.98, 5.06, 5.09, 5.17, 5.32, 5.32, 5.34, 5.41, 5.41, 5.49, 5.62, 5.71, 5.85, 6.25, 6.54, 6.76, 6.93, 6.94, 6.97, 7.09, 7.26, 7.28, 7.32, 7.39, 7.59, 7.62, 7.63, 7.66, 7.87, 7.93, 8.26, 8.37, 8.53, 8.65, 8.66, 9.02, 9.22, 9.47, 9.74, 10.06, 10.34, 10.66, 10.75, 11.25, 11.64, 11.79, 11.98, 12.02, 12.03, 12.07, 12.63, 13.11, 13.29, 13.80, 14.24, 14.76, 14.77, 14.83, 15.96, 16.62, 17.12, 17.14, 17.36, 18.10, 19.13, 20.28, 21.73, 22.69, 23.63, 25.74, 25.82, 26.31, 32.15, 34.26, 36.66, 43.01, 46.12, 79.05. 

In this case, a similar procedure was performed to the COVID-19 dataset. For this second set, each data was divided by 79.051 to obtain values of the study variable in the interval .

The fit of the  distribution is compared with the following lifetime distributions for a continuous variable :

1. Weibull distribution having pdfPDF	Comment by Rees Storm: Capitalization here and below in 1–6, OK?



2. Exponentiated Weibull (EW) distribution (Pal et al., 2006) having pdfPDF



3. New Marshall-Olkin Weibull (NMOW) distribution (Cui et al., 2020) having pdfPDF



4. Kumaraswamy exponential-Weibull (KwEW) distribution (Cordeiro et al. 2016) having PDFpdf




5. Alpha power transformed Weibull (APTW) distribution (Dey et al. 2017) having PDFpdf


6. Extended Exponentiated Weibull (EEW) distribution (Bidram et al. 2015) having PDFpdf




Tables 5 and 6 present the calculations obtained from the seven distributions for the values of the estimators, log-likelihood (–log L), Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). According to Jayakumar and Sankaran (2019),  y .  is the likelihood function evaluated in the maximum likelihood estimates,  is the number of parameters, and  is the sample (data set). Additionally, the Crammer-von Mises (W*), Anderson-Darling (A*), and Kolmogorov-Smirnov (K-S) statistics and their corresponding -value are calculated in order to test the goodness of fit and have other criteria. That allows identifying which of these distributions best fits the data set. Usually, the smaller the K-S, W*, and A* statistics' values, we find that the fit to the data is better. 

It can be notedNote that in Table 5, the K-S statistic of the  distribution is the smallest compared to the other distributions, and therefore the value corresponding to the -value is the highest, which shows that this new proposal produces the best fit for the COVID-19 dataset. On the other hand, referring to Table 6 corresponding to those for bladder cancer, something similar occurs with the , where the calculated values of K-S and the -value show the best fit of the data.


Table 5. Parameter estimates and goodness-of-fit statistics for COVID-19 data.
	Model
	MLEs
	−log L
	AIC
	BIC
	W*
	A*
	K−S
	p-value
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[image: ]
Figure 9. The fitted PDFs of the , W, EW, NMOW, KwEE, APTW, and EEW for Covid-19 data.

[image: ]
Figure 10. Q-Q plot for the  distribution for the COVID-19 data set.


Table 6. Parameter estimates and goodness-of-fit statistics for cancer data.
	Model
	MLEs
	−log L
	AIC
	BIC
	W*
	A*
	K−S
	p-value
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[image: ]
Figure 11. The fitted PDFs of the , W, EW, NMOW, KwEE, APTW, and EEW for bladder cancer data.

[image: ]
Figure 12. Q-Q plot for the  distribution for bladder cancer data.

Figures 9 and 11 show the fit of the different distributions contrasted with the . As can be seen in the figures, our model presents excellent flexibility, and it can be considered that the model is competitive with other widely accepted distributions and usedin use such as the Weibull distribution or the Exponentiated Weibull, among others.	Comment by Rees Storm: Wording change, OK?

6. Conclusions 
This article introduced a new family of the usual uniform distribution with three parameters , called Generalized Potenciada Uniform Distribution  The method used in this proposal incorporates a parameter  as the power of the values of the continuous random variable, which favorings a greater diversity of the probability density,  and survivalsurvival and hazard functions. BesidesFurthermore, some properties are derived from the new distribution. 
Motivated by these findings above, we undertook the task of deepeneding our research in such a way that
our approach which allowed us to generalize the model presented in Jayakumar and Sankaran (2016)., which Doing so made it possible to generate a new family of distributions, called , which presents excellent flexibility in the cumulative distribution function, due to the presence of the parameter . It To should be clarifyied that our GPUD approach allows us to generalize other models, too, such as that of Jose and Krishna (2011), that which is research are in process. In order toTo demonstrate the effectiveness of the modelthe above, two sets of real data related to COVID-19 and bladder cancer were adjustedadapted, and the maxLik package in R-language was used to find the estimators of the parameters. 	Comment by Rees Storm: Wording change, OK?	Comment by Rees Storm: Word change, OK?
The results obtained show that the  can be considered asis a valid alternative compared to other known distributions, such as the Weibull, Exponentiated Weibull, New Marshall-Olkin Weibull distributions, among others, with the added advantage that it gives provides the versatility of working with the parameter  in the values of the random variable. 
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