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1 Scientific Background

The ability to integrate and reason across multiple data modalities is a central frontier in modern artificial intel-

ligence. As applications increasingly involve diverse sensory or semantic inputs—such as text, images, speech,

molecular structures, and biological measurements—there is growing demand for multimodal representation

learning (MMRL): learning joint embeddings that capture shared semantics across modalities. This capability

is foundational to many recent successes in AI, from vision-language models like CLIP [20] and GPT-4V, to

biomedical applications such as protein structure prediction or multi-omics data integration.

However, most advances in MMRL rely heavily on paired supervision: large-scale datasets of aligned sam-

ples across modalities (e.g., image–text pairs, audio–video clips). In contrast, many scientific and real-world

datasets are unpaired, weakly paired, or noisily aligned. For instance, patient data may include structured clin-

ical tests, free-text notes, and medical images collected asynchronously and with missing links; environmental

sensors may capture time series from different locations and modalities with no direct correspondences. The

vast majority of multimodal data remains underutilized simply because it lacks perfect alignment.

This project aims to develop a principled and unified framework for multimodal representation learning

from unpaired data, grounded in mathematical theory and scalable algorithms. We identify three core chal-

lenges that arise in the absence of paired supervision: (i) how to learn shared structure when only partial or

noisy correspondences are available; (ii) how to extract statistically correlated components across modal-

ities without access to paired samples; and (iii) how to fuse disparate modality-specific representations

into a coherent joint embedding space. These challenges are addressed through three tightly connected

technical objectives:

1. Learning shared representations from weakly-paired data, leveraging partial or probabilistic

alignment to guide robust cross-modal embedding;

2. Unpaired canonical correlation analysis (CCA), formulating a new framework for discovering

correlated structure from fully unpaired samples;

3. Unpaired representation fusion, designing methods to integrate independently trained modality-

specific embeddings into a unified representation space.

Each objective tackles a distinct aspect of the unpaired MMRL problem, yet together they contribute to

a comprehensive, theoretically grounded approach for learning with multimodal data in real-world set-

tings. The methods developed will build on various mathematical tools from spectral geometry, statistics,
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operator theory and optimization, and will be evaluated both empirically and analytically to ensure inter-

pretability, stability, and generalization. While grounded in geometric and spectral methods, this proposal

addresses a fundamental challenge in modern AI — the ability to learn unified representations from dis-

joint, unaligned, or siloed data. Our methods are broadly applicable across science and technology do-

mains where aligned multimodal data is costly or unavailable, making them valuable tools for scalable,

data-efficient, and privacy-aware AI systems

1.1 Current approaches for representation Learning from unpaired data

Approaches such as CycleGAN [31] and domain-adversarial training [10] aim to align the marginal distribu-

tions of different modalities by fooling a discriminator into believing that mapped samples come from a shared

domain. While attractive, such approaches come with serious drawbacks, such as instability, mode collapse,

and lack of guarantees. Specifically, in scientific applications—where spurious correlations are common and

precise interpretation matters—these drawbacks limit the reliability of adversarial approaches.

A second line of work aims at aligning marginal distributions by matching statistical or geometric pat-

terns. Typically, such models implicitly make rigid assumptions, such as structural isomorphism or metric

compatibility across modalities, which is problematic when modalities differ in information content, noise, or

sampling.

Contrastive methods have seen success in paired settings, and some efforts extend them to unpaired data

using heuristic pseudo-pairing strategies. While popular, such methods are mostly heuristic and may introduce

noisy or biased pseudo-labels, which may result in embeddings that may capture correlations that do not reflect

true cross-modal semantics.

To summarize, across all these approaches, common limitations emerge: A reliance on implicit or frag-

ile alignment signals, lack of generality across domains and modalities, and absence of rigorous theoretical

guarantees for shared structure discovery in the unpaired setting. These limitations highlight the need for a new

class of methods—mathematically grounded, computationally efficient, and broadly applicable across scientific

domains—which this proposal aims to develop.

Multimodal representation learning from unpaired data is rapidly becoming a central research focus, with

several fascinating recent contributions that explore representation learning strategies in the absence of direct

supervision in various domains, e.g., [16, 29, 30, 11]. This growing body of work highlights both the promise

and the complexity of the unpaired setting, motivating the need for new methods that are both mathematically

principled and practically effective.”

1.2 Scientific Potential and AI for Science

Beyond algorithmic innovation, the ability to learn from unpaired multimodal data has transformative poten-

tial for AI for science. In scientific domains—such as biology, neuroscience, geophysics, and materials sci-

ence—data is often multimodal but rarely aligned. Developing methods that can integrate genomics and imag-

ing, or correlate text-based reports with sensor data, without relying on curated pairings, can unlock rich, latent

structure in complex systems. Moreover, such methods support key scientific goals: hypothesis generation,

data-driven discovery, and interpretable modeling of high-dimensional processes.

In line with emerging trends toward weak supervision, modality fusion, and foundation models, this project

aims to establish the mathematical and algorithmic foundations for robust multimodal learning in the absence

of explicit labels or pairs—broadening the reach of AI into previously inaccessible or underutilized scientific

data regimes.
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2 Research Objectives and Expected Significance

Objective 1: Learning Shared Representations from Weakly-Paired Data

This objective aims to develop a theoretical and algorithmic framework for learning shared representations

across modalities under weak supervision. A shared representation is a common latent space in which in-

stances from different modalities that convey the same underlying information are mapped to the same—or

nearby—points. In many practical settings, such as in science, medicine, and human-centered data, such corre-

spondences are not fully available: data may be only coarsely aligned, sparsely paired, or entirely unpaired. This

objective addresses the challenge of learning shared representations in these weakly-paired regimes by exploit-

ing the universality of embedding geometries—the observation that meaningful structure in each modality

can be captured in a way that is stable, comparable, and aligned across domains. By enabling the discovery of

shared latent structure without relying on strong pairing assumptions, this objective contributes to broadening

the scope and robustness of multimodal representation learning in real-world, weakly supervised environments.

Objective 2: Unpaired Canonical Correlation Analysis (CCA)

The second objective is to establish a framework for discovering maximally correlated representations across

modalities without access to paired data. Canonical Correlation Analysis (CCA) traditionally requires paired

samples to identify projections that reveal shared latent structure between two views. In the absence of such

pairing, the problem becomes fundamentally ill-posed, as many joint distributions can be consistent with a

given pair of marginals. This objective addresses the challenge by introducing a principled criterion for se-

lecting among these: namely, the joint distribution that maximizes cross-modal correlation. We show that

this joint can be characterized as the solution to an optimal transport problem, augmented with orthogonality

constraints to ensure the resulting embeddings behave analogously to classical CCA projections. Beyond the

theoretical formulation, this objective also includes the development of efficient and scalable algorithms for

computing such unpaired CCA embeddings, enabling practical application to large-scale multimodal datasets.

This contributes both foundational insights and computational tools to the broader effort of multimodal repre-

sentation learning from unpaired data.

Objective 3: Unpaired Representation Fusion

The third objective is to develop a framework for fusing representations across modalities in the absence of

pairing, under the assumption that different modalities carry both shared and modality-specific information. In

contrast to approaches that focus solely on common latent structure, this objective seeks to learn rich represen-

tations that integrate the full informational content of all modalities—capturing both what is shared and what

is unique. Achieving this without access to paired data requires novel strategies for aligning and combining

modalities. A key innovation in our approach is the use of artificially generated pairs, which serve as anchors

for bridging modalities without relying on real correspondences. This departs fundamentally from CycleGAN-

style methods, which rely on bidirectional consistency losses and implicitly assume strong information overlap.

By relaxing this assumption, our goal is to enable more flexible and expressive multimodal fusion that reflects

the complexity of real-world data. This objective advances multimodal representation learning by addressing

a central, yet underexplored, challenge: how to integrate complementary signals from unpaired sources into a

unified representation space.
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2.1 Expected significance

Multimodal data is pervasive across science and technology — from medical diagnostics that combine imaging,

text, and molecular data, to autonomous systems that process visual, auditory, and spatial signals. Yet in

many real-world settings, paired multimodal data is rare or unavailable, severely limiting the applicability

of standard multimodal learning approaches. This project addresses this fundamental challenge by developing

mathematically grounded and practically effective methods for learning from unpaired multimodal data, thereby

expanding the scope and usability of machine learning in real-world contexts.

On the scientific level, the project is expected to make fundamental contributions to the theory of mul-

timodal representation learning. It introduces new frameworks for learning shared and fused representations

without supervision, grounded in tools from optimal transport, spectral theory, and statistical dependence.

These contributions go beyond heuristic or adversarial approaches by offering a principled understanding of

when and how unpaired modalities can be aligned and integrated — filling an important gap in the literature.

The project is also expected to yield new algorithmic paradigms that are scalable, robust, and broadly applica-

ble.

From a practical standpoint, the outcomes of this research will be relevant across domains that involve

heterogeneous and unaligned data sources. In biomedicine, for example, the ability to integrate genomic,

imaging, and clinical text data without requiring aligned patient samples could lead to more holistic diagnostic

and prognostic models. In climate science, combining satellite imagery with sensor readings and textual reports

can support more comprehensive environmental monitoring. In human-computer interaction, learning from

unpaired speech, gesture, and visual input can enable more adaptive and multimodal AI agents.

Moreover, the project aligns with broader trends in AI that prioritize data efficiency, robust generalization,

and cross-modal understanding. By enabling flexible and modular representation learning from unpaired data,

it supports the development of AI systems that are more adaptable to real-world complexity, including scenarios

where supervised data is scarce or privacy constraints prevent alignment.

In summary, this project has the potential to advance both the foundations of machine learning and its

practical reach across scientific and technological domains, making multimodal AI more broadly accessible,

theoretically principled, and capable of addressing high-impact challenges in science and society.

3 Detailed Description of the Proposed Research

3.1 Learning Shared Representations from Weakly-Paired Data

Multimodal representation learning aims to construct a common embedding space in which samples from dif-

ferent modalities that convey the same underlying information are mapped to similar representations. In most

existing frameworks, this goal is achieved through fully paired supervision, where each sample in one modality

is matched with its exact counterpart in the other. However, in many practical settings—such as medicine, sci-

entific research, or human behavior modeling—pairing between modalities is sparse, noisy, or entirely missing.

This objective aims to develop a theoretically grounded framework for learning shared representations under

weak supervision, leveraging the intrinsic geometry of each modality to guide alignment.

3.1.1 Rationale

Mathematical Motivation. Modern pre-trained unimodal foundation models have a proven ability to repre-

sent semantics. For example, two given images have close embeddings if their semantic meaning is similar,
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Figure 1: Empirical demonstration of universality. (a) Distances between corresponding random walks on image and
text graphs from MSCOCO, compared to distances to randomly shuffled (non-matching) walks. Although constructed
independently from unimodal features, corresponding walks exhibit significantly greater similarity. (b) Distances between
paired and unpaired points in the shared space of aligned 2D spectral embeddings (SEs). Paired points are consistently
closer, indicating that the independently learned SEs capture analogous structure across modalities.

and far apart otherwise. These similarities can be captured by a random walk process on the samples’ repre-

sentations. This suggests that a random walk process defined on such unimodal representations should largely

correspond to semantic similarity. Therefore, we can expect random walks defined on different unimodal rep-

resentations that capture semantics well to be highly similar. Random walk processes are finite analogs of

diffusion operators. Thereby, the similarity of random walks that are constructed from different, modality-

dependent representations implies that the eigenfunctions of the corresponding diffusion operators will have

universality properties (i.e., modality-invariance) [6]. Therefore, constructing a spectral embedding (SE) based

on the leading eigenvectors of random walks, which are viewed as discrete approximations of the leading

eigenfunctions of diffusion operators [2, 23], enables us to take advantage of this concept even in the absence

of paired data.

We formalize our assumption as follows. Let M be a latent, underlying semantic manifold, and let f, g be

two transformations, such that f(M) and g(M) represent the two modalities from which we observe samples.

There is a body of work specifying conditions under which the spectral properties of M are preserved under

f, g. For example, if f, g have bounded distortion and bounded Ricci curvature, the corresponding eigenfunc-

tions of the Laplace-Beltrami operator on f(M) and g(M) are similar in the L∞ sense [4].

Intuitively, our assumption states that the diffusion operators defined on each modality are relatively similar.

This assumption is also empirically supported in recent works [14, 8, 12]. Then, universality is enabled through

the eigenfunction preservation properties of the similar diffusion operators. Namely, the eigenfunctions of these

operators will be universal, in the sense of modality-invariance (see Figure 1).

In practice, the ability to learn Laplacian eigenfunctions is obtained via SpectralNet [21], a previous work

of the PI. While trained to compute the eigenvectors of the graph Laplacian of its training data, being a general-

izable parametric map makes it a practical means to compute the eigenfunctions of the Laplacian operator (and

thus also of the Diffusion operator), viewing the eigenvectors as a discretization of the eigenfunctions [2, 23].

Crucially, we train SpectralNet on unimodal data only; hence, no paired data is needed to learn the Laplacian

eigenfunctions, i.e., our universal embedding functions.

Overview. In a recent pre-prent of ours [28], we propose and explore a novel pipeline, named Spectral Uni-

versal Embedding (SUE). SUE consists of three steps: SE, CCA and MMD. First, it maps each pre-trained

unimodal embedding space into its corresponding eigenspace, to retrieve the global structure of each modality

[1, 17, 24]. Using SpectralNet [21], this is done parametrically, allowing generalization to test data. Note-

worthy, SE is not unique, as eigenvalues with multiplicity p can yield any basis spanning the p-dimensional

eigenspace and even single eigenvectors may differ by sign.

To resolve the SE ambiguity and provide additional linear alignment, we use CCA on a minimal number of
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Figure 2: SUE’s overview. The modalities (represented by their unimodal embeddings) represent an unobserved universal
(semantic) distribution; the SE is capable of retrieving this universal structure, up to rotations; CCA on a minimal number
of pairs enable linear alignment between the modalities, but not sufficient for a joint universal embedding; the MMD then
fixes the misalignment between the modalities, integrating them into the universal embedding space.

paired samples. However, as the CCA purposefully considers a limited number of samples, and the SEs differ

by more than an orthogonal transformation, we strengthen the cross-modal alignment using a Maximum Mean

Discrepancy (MMD) residual network [22]. This kind of network architecture was originally proposed (by the

PI) for batch-effect removal, by minimizing the empirical MMD value of two distributions. Namely, we view

the two low-dimensional representations as similar distributions and learn a (close to identity) non-linear shift

to align the distributions. The MMD serves as the last step to fine-tune the alignment. Notably, MMD loss does

not require paired data, which enables the utilization of the full unpaired dataset. Figure 2 depicts SUE.

3.1.2 Uncovering SUE

In this section, we formularize SUE, roughly described in Sec 3.1.1. A summary of the steps of the SUE

algorithm is outlined in Algorithm 1.

Notations. Throughout this section, we will use the following notations. Let X ⊆ Rd1 ,Y ⊆ Rd2 be sets of

unpaired pre-trained unimodal embeddings of sizes n1, n2, resp. Accordingly, denote Xp = {x1, . . . , xm} ⊆
X ,Yp = {y1, . . . , ym} ⊆ Y to be sets of paired embeddings. Importantly, m ≪ n1, n2. Let k ≥ r be two

pre-chosen dimensions for the SE and final universal representations.

Approach. Given X ,Y , we train two independent SpectralNet models SX : X → Rk, SY : Y → Rk to

approximate the k-dimensional SE of each modality. Due to the non-uniqueness of the SE, SX and SY might

differ by sign and basis of each eigenspace.

To address this ambiguity we utilize Xp and Yp. Specifically, we employ CCA on
(
SX (Xp), SY(Yp)

)
to

obtain the projections QX , QY ∈ Rk×r. These projections are used to align SX (X ) and SY(Y). The linearly

aligned SEs approximations can be written as S̃X := QX ◦ SX , S̃Y := QY ◦ SY .

Then, we learn a residual neural network Fθ : Rr → Rr to bring the distribution of the linearly aligned SEs

as close as possible. Specifically, we minimize the squared MMD between the two empirical distributions

LMMD =
1

m2
1

∑
xi,xj∈X

κ(x̃i, x̃j)−
1

m1m2

∑
xi∈X ,yj∈Y

κ(x̃i, ỹj) +
1

m2
2

∑
yi,yj∈Y

κ(ỹi, ỹj), (1)

where m1,m2 are the corresponding batch sizes, κ is a universal kernel (e.g., RBF kernel), and x̃i = S̃X (xi),

ỹi = S̃Y(yi). The final functions can be written as fX := S̃X , fY := Fθ ◦ S̃Y .
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Figure 3: Almost exclusively unpaired image retrieval. Retrieved images for custom captions on the MSCOCO dataset,
trained with 100 pairs and 10k non-pairs. The retrieved images are highly similar semantically to the text queries, even
though almost no pairs were available during training.

Given a new test point yt, sampled from the same distribution as Y , we simply propagate it through fY , and

similarly to a test point sampled from the X distribution.

Algorithm 1: Spectral Universal Embedding (SUE)
Input: Unpaired sets of pre-trained unimodal embeddings X ∈ Rn1×d1 and Y ∈ Rn2×d2 , and

paired sets Xp and Yp of size m ≥ 0

Output: Maps fX : Rd1 → Rr, fY : Rd2 → Rr approximating the universal embedding from
each modality

1 Train SX , SY

2 Perform CCA on
(
SX (Xp), SY(Yp)

)
to obtain projections QX , QY ∈ Rk×r

3 Train a residual neural network Fθ : Rr → Rr to minimize the MMD loss LMMD (Eq. 1)
4 Return the maps:

fX := QX ◦ SX , fY := Fθ ◦QY ◦ SY

5 At inference time, propagate the sample x or y through the appropriate map fX (x) or fY(y)

3.1.3 Preliminary Results

In this section, we provide a demonstration of SUE for vision-language retrieval (Figure 3, Table 1). Additional

result demonstrating capabilities in zero-shot classification and image manupulation are not provided, due to

space limitations. In addition, Figure 4 demonstrates that SUE is designed to benefit from unpaired data, by

analyzing the effects of difference numbers of paired and unpaired instances on the performance of Sue.

Unpaired samples. Fig. 4b shows the impact of additional unpaired samples. This experiment is of signifi-

cant interest, as unpaired samples are usually considered unusable in the multimodal setting for point-to-point

matching. The results indicate that additional unpaired data significantly enhances retrieval results. This opens

the door for a new regime of multimodal learning - using unpaired data with only a minimal number of available

pairs.

Paired samples. Fig. 4c depicts the results of an analogous experiment examining the effect of the number

of paired samples required for the CCA step, with the unpaired samples held constant. As expected, a minimal

number of paired samples are required for good results (∼500 in this case of Flickr30k). However, SUE does

not rely on additional pairs, as increasing their number above the minimum required is redundant. This outcome

highlights the potential for learning significant cross-modal embeddings while focusing on unpaired data, which

is much easier to obtain.
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Table 1: Retrieval results. Results with few paired samples on vision-language ( ) and vision-vision ( ) datasets
from each modality to another: image-to-text (I2T), text-to-image (T2I), edges-to-shoes (E2S), shoes-to-edges (S2E); by
SUE and Contrastive. The Imp. column states the relative mean improvement of SUE over Contrastive learning. Using
the same small number of pairs, SUE significantly outperforms the popular paired method. SUE substantially relies on
unpaired data.

#paired SUE (ours) Contrastive Imp.R@1 R@5 R@10 R@1 R@5 R@10

MSCOCO 100 I2T 5.75 21.50 34.25 1.50 8.50 13.00 +257.20%
T2I 5.25 18.25 33.25 0.80 5.80 12.20

Flickr30k 500 I2T 4.25 19.75 32.00 3.00 9.50 16.20 +103.32%
T2I 5.75 22.00 32.75 2.50 9.80 15.00

Polyvore 500 I2T 6.00 22.75 32.25 3.20 13.8 22.5 +55.67%
T2I 4.75 20.75 32.00 4.00 11.50 23.00

Edges2Shoes 50 E2S 4.00 16.00 25.25 1.0 5.50 14.00 +200.51%
S2E 3.50 17.00 27.00 0.80 6.00 12.80

Figure 4: (a) Contrastive requires an order of magnitude more pairs to achieve similar results as SUE in the weakly-
paired regime. Recall@10 results on MSCOCO by SUE (with 100 pairs) and Contrastive with various numbers of pairs.
SUE exploits unpaired data to outperform contrastive learning when limited pairs are available. An order of magnitude
more pairs are required to achieve similar results with contrastive learning; (b-c) Effect of #unpaired and #paired samples
on Recall@10 results on image retrieval on the Flickr30k dataset. (b) SUE improves as the amount of unpaired data
is increased. (c) SUE relies on non-pairs instead of pairs. SUE relies minimally on paired data, while substantially on
unpaired data, enabling it to enhance its performance with additional unpaired samples, which are much easier to obtain.

3.1.4 Future Directions

The proposed method advances multimodal learning by showing that meaningful shared representations can be

learned from structure alone, without explicit correspondence. This opens the door to broader deployment of

multimodal models in settings where data collection is siloed, incomplete, or privacy-constrained.

As part of this objective, we plan to:

• Task 1.1: Formalize conditions under which spectral alignment is provably possible.

• Task 1.2: Extend the method to handle multiple modalities, by using multiview CCA machinery

• Task 1.3: Apply the method to real-world scientific datasets, such as multi-omics, medical imaging +

text, sensor fusion, graphs, and time series

• Task 1.4: Investigate robustness to modality-specific distortions and distribution shifts.

• Task 1.5: Most importantly, the following objective proposes the development of an unpaired CCA

technique. While important in its own right, an immediate application of it would be to turn SUE into a

fully unpaired method, as the pairs are used in the SUE pipeline only in CCA.

Ultimately, this objective offers a new paradigm for multimodal learning: instead of relying on dense

supervision, we extract and align universal geometric structure, enabling robust, interpretable, and scalable

learning in weakly supervised environments.
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3.2 Objective 2: Unpaired Canonical Correlation Analysis (CCA)

3.2.1 Overview of this objective.

Despite recent progress in leveraging unpaired data, no principled extension of CCA to the unpaired setting

exists. Our aim is to bridge this gap by establishing a theoretical connection between distributional divergences

and correlation, and by formulating a provable equivalence to CCA that holds without access to paired samples.

In particular, our theoretical analysis reveals that the Wasserstein distance plays a central role in this equivalence

[27]. Specifically, the 2-Wasserstein distance between two marginal distributions PX , PY can be shown to be

equivalent to the correlation of their maximally correlated joint distribution, which we denote by MCJ(PX , PY ).

This insight leads to propose an approach for unpaired CCA, which we term UCCA, operating by finding linear

orthogonal projections for each view, with minimal Wasserstein distance. An important preliminary result of

ours (Theorem 3.3) states that, under mild assumptions,

UCCA(PX , PY ) = CCA
(

MCJ(PX , PY )
)
.

Intuitively, this means that UCCA recovers the CCA solution of a specific, highly meaningful joint distribution

of PX , PY .

Building on this theoretical foundation, we aim to develop a practical algorithm that can learn shared

representations in fully unpaired settings. The reformulation of correlation maximization as a distribution

matching problem enables the application of tools from Riemannian geometry and manifold optimization to

the problem of correlation maximization in the unpaired setting. Specifically, we define the following tasks:

• Task 1.1: Theoretical Connection between Wasserstein Distance and CCA: We aim to prove a formal

link between minimizing the Wasserstein distance between two distributions and maximizing the corre-

lation under their maximally correlated joint. This result provides a bridge between optimal transport and

classical correlation-based methods.

• Task 1.2: Unpaired Canonical Correlation Analysis (UCCA): Based on our theoretical insights, we

aim to introduce a fully unpaired variant of CCA. This practical tool enables correlation-based learning

without any paired data, by connecting Wasserstein distance, correlation, and optimization in a unified

framework.

• Task 1.3: Unpaired Nonlinear Shared Representation Learning: Finally, by integrating our weakly-

paired and unpaired techniques, we aim to construct a fully unpaired multimodal learning framework

capable of learning nonlinear shared representations.

3.2.2 Previous work on Unpaired CCA.

Timilsina et al. [26] proposed a provable framework for unpaired shared component analysis, although its

connection to correlation remains unclear. An earlier attempt by Hoshen and Wolf [13] introduced an unpaired

variant of CCA; however, their method is unstable and requires multiple runs to obtain satisfactory results, as

noted in their own work. Additionally, no implementation is publicly available, limiting its reproducibility and

practical use. On a more theoretical front, the concept of a maximally correlated joint distribution has been

studied in depth [7, 15, 25], and its connection to optimal transport is well established [27]. However, the link

between this joint and the classical CCA algorithm has not been formally drawn.
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Figure 5: MCJ. A demonstration of Maximum Correlation Joint between two uniform distributions. Many joints are
possible, but the left joint maximizes the correlation and indeed is the MCJ.

3.2.3 Preliminary theoretical results

While in the weakly-paired domain we have developed and assessed a method to capture a universal embedding,

in the unpaired domain, our current results are mostly theoretical. To understand our theoretical result, we first

need to define a few terms.

Definition 3.1. The Maximum Correlation Joint (MCJ) of two whitened distribution PX , PY is

MCJ(PX , PY ) = arg sup
PXY ∈J (PX ,PY )

TC(PXY )

where J (PX , PY ) is the set of all joint distributions of PX and PY , and TC(PXY ) is the sum of correlations

between the corresponding dimensions.

A demonstration of the MCJ is depicted in Fig. 5. Def. 3.1 lets us reformulate the known connection

between Wasserstein distance and correlation, as follows.

Proposition 3.2. Let PX , PY be whitened probability measures, then

TC
(
MCJ(PX , PY )

)
= d− 1

2
W2(PX , PY )

2

where W2(PX , PY ) is the 2-Wasserstein distance between PX , PY .

That is, the 2-Wasserstein distance between the marginal distributions PX , PY of two views corresponds to

the correlation between the maximally correlated joints of the marginal distributions. For readability, we skip

a few formal definitions here, and intuitively define MCJF (PX , PY ) as the “best” MCJ of PX , PY in terms

of total correlation, over all projections in a function class F . We also denote by UCCA our algorithm for

unpaired CCA. That is, minimizing the Wasserstein distance over all orthogonal projections from Rd to Rk. By

that, we can finally state our novel result, which is

Theorem 3.3. Let PX , PY be whitened probability measures. Under mild assumptions,

UCCA(PX , PY ) = CCA(MCJVk(Rn)(PX , PY ))

Intuitively, Thm. 3.3 states that our UCCA algorithm is equivalent to CCA on a specific joint of PX , PY -

the best MCJ of their projections.

3.2.4 Preliminary empirical results

TODO: COMPLETE RESULTS HERE
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3.3 Objective 3: Unpaired Representation Fusion

3.3.1 Overview of this objective.

The prevailing paradigm in multi-view representation learning, particularly in contrastive self-supervised meth-

ods, is to extract only the shared information between views while suppressing view-specific information.

While this is effective for achieving invariance, it inevitably discards the complementary and unique signals

that each modality provides. In contrast, our objective in this case is not merely to align views by eliminating

differences, but rather to fuse them in a way that leverages both the shared structure and the unique information

contained in each view. This richer fusion is critical in settings where each modality contributes distinct yet

meaningful aspects of the underlying phenomenon. Crucially, we aim at learning such unified representations

across views in the absence of any pairwise correspondences.

Specifically, we plan to achieve this by thinking of each view as a diffusion operator constructed from its

data manifold. Using previous methods of the PI for generalizable spectral embeddings [21, 3], we generalize

the eigenfunctions of each operator to evaluate across all views, yielding artificially parallel diffusion maps.

These are then summed into a fused operator that encodes both global and view-specific geometry, serving as a

surrogate for true cross-view relationships.

3.3.2 Previous work on unpaired cross-domain learning.

In the cross-modal setting, cycle-consistency frameworks such as CycleGAN [31] and StarGAN [5] have been

applied to learn mappings between unpaired domains. While successful in some settings, these techniques often

struggle to preserve fine-grained structure, are difficult to train, and typically rely on implicit distributional

assumptions. Moreover, they do not explicitly model the geometric or spectral structure of the data.

A few recent works address unpaired multi-view scenarios by designing methods for specific tasks such

as clustering or classification. These methods typically not designed for learning a unified representation and

instead construct task-driven models that operate on cluster level or seek weak correspondences indirectly.

While these approaches provide practical solutions in constrained settings, they are not general-purpose multi-

view learning frameworks and do not support representation learning that integrates both shared and unique

information across modalities. TODO: COMPLETE CITATIONS HERE

3.3.3 Mathematical layout.

Diffusion Operator Fusion via artificial parallelism. consider unpaired datasets X(v) ⊆ Rnv×dv , where

X(v) is viewed as a sample from an underlying manifold MX(v) and where v indexes the views. We begin by

constructing view-specific random-walk matrices via

W
(v)
ij = exp

(
−
∥x(v)i − x

(v)
j ∥2

2σ2v

)
(2)

D
(v)
ii =

nv∑
j=1

W
(v)
ij (3)

P (v) = (D(v))−1W (v). (4)

Using SpectralNet [21, 3] allows us to learn the eigenfunctions ϕ(v)i of the diffusion operators P(v) whose
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finite analogues are the random walk matrices P (v). The operator P(v) acts on a function f as

P(v)f =
∑
i

λ
(v)
i ⟨ϕ(v)i , f⟩ϕ(v)i . (5)

Specifically, taking f to be a Dirac delta function supported on a point xj enables us to compute an artificial

value P (xj , xk) for any two points xj , xk ∈
⋃

v X (v) (in particular, ones which do not appear in the original

samples) via

P (v)(xj , xk) =
∑
i

λ
(v)
i ψ

(v)
i (xj)ψ

(v)
i (xk).

Importantly, this enables us to obtain artificial parallelism by artificially computing the random walk matrices

on parallel data.

Manifold alignment via functional maps While each view-specific diffusion operator P (v) admits a spectral

decomposition P (v)f =
∑

i λ
(v)
i ⟨ϕ(v)i , f⟩ϕ(v)i , its eigenfunctions ϕ(v)i are intrinsic to the manifold underlying

view v. Therefore, they cannot be directly evaluated on data from a different view. To fuse the diffusion

operator from different views, we need a way to align the eigenfunctions of the different manifolds so that they

become comparable. We plan to achieve this with functional maps [19]. A functional map Cvw is a linear

operator between function spaces over manifolds Mv and Mw. Specifically, if f is a functional over Mv, with

basis expansion

f =

k∑
i=1

a
(v)
i ϕ

(v)
i = avΦv

and g be its corresponding functional on Mw:

g =
k∑

i=1

a
(w)
i ϕ

(w)
i = awΦw

the functional map Cvw gives a convinient translation between their basis coefficients

f̃
(v→w)
i =

k∑
m=1

C[m, i] f (w)
m .

Typically, the bases that are used are the eigenbases of the corresponding Laplacians. For our purposes, this

gives us a machinery to evaluate an eigenfunction ψ(v)
i (xj) on points belonging to the other manifold Mw. In

practice, the matrix Cvw is obtained by solving a least squares minimization between known descriptors. In

practice, the descriptors often rely on some supervision, and part of our goals in this part of the research will

be to design unsupervised descriptors, which will enable us to learn the functional map in the absence of any

correspondence between the samples.

We therefore define the following tasks

• Task 1.1: Establish an algorithmic procedure for unpaired representation fusion. This will be done

via the above mathematical layout, by generating artificial parallelism and fusion of diffusion operators.

In particular, we will investigate whether such an approach gives benefits (in terms of both downstream

tasks accuracy and training efficiency) compared to domain conversion methods such as CycleGAN and

StarGAN.

• Task 1.2: Design unsupervised descriptors: functional maps are typically used in computer graph-
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ics. Recently, [9] have also used them for representation learning. However, they report a significant

gap between the performance with supervised and unsupervised descriptors. As a by-product of this re-

search objective, we plan to design improved unsupervised descriptors, possibly by leveraging spectral

properties.

• Task 1.3: Apply our approach for scientific discovery. Recent work [18] has shown the applicability

of unpaired translation methods for protein data. Inspired by these results, we aim to apply our method

to protein and multi-omics data as well, to advance scientific discovery and prediction capabilities.

3.3.4 Preliminary results

TODO: complete this

4 Plan of Evaluation

The success of this project will be evaluated through a combination of theoretical analysis, algorithmic de-

velopment, and empirical validation across synthetic and real-world multimodal datasets. Each of the three

objectives will be assessed according to the following criteria:

Objective 1: Learning Shared Representations from Weakly-Paired Data We will evaluate the quality of

the learned shared representations by measuring cross-modal retrieval performance, alignment consistency, and

robustness to pairing noise. Benchmark comparisons will be made against state-of-the-art methods in weakly

supervised and semi-supervised multimodal learning. Theoretical evaluation will involve proving conditions

under which universality guarantees hold and deriving error bounds on the recovered embeddings.

Objective 2: Unpaired Canonical Correlation Analysis The effectiveness of the proposed unpaired CCA

framework will be assessed through correlation recovery, representation disentanglement, and computational

efficiency. Empirical experiments will test the approach on standard unpaired datasets such as cross-lingual

word embeddings, image-text pairs, and audio-visual benchmarks. We will also evaluate the practicality of the

algorithm under distribution shifts and limited sample regimes.

Objective 3: Unpaired Representation Fusion Evaluation will focus on the ability of the model to cap-

ture both shared and modality-specific information without supervision. We will design proxy tasks such as

zero-shot classification, few-shot transfer, and multimodal completion to quantify the utility of fused repre-

sentations. Comparisons will include baselines based on CycleGAN-like models, mixture-of-experts, and late

fusion methods.

In all cases, evaluation will include ablation studies to isolate the effect of key components and scalability

tests on large datasets. Additionally, we will measure generalization to unseen modalities or domains, and

validate performance under imperfect or noisy input distributions. The outcomes of the project — including

theoretical findings, new algorithms, and empirical benchmarks — will be made available through open-source

implementations, peer-reviewed publications, and reproducible research artifacts, allowing the broader com-

munity to validate, adopt, and extend the work.
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5 Work Plan

The work will be performed by the PI, two Ph.D. students, and two M.Sc. students. One Ph.D. student and one

M.Sc student will work on objectives 1 and 3, while the other will work on objective 2.

6 Broader Impact

This project aims to make foundational contributions to multimodal representation learning under minimal su-

pervision, with broad implications for both the development and responsible deployment of AI systems. By

enabling learning from unpaired and weakly aligned data, the proposed research lowers the barrier to applying

machine learning in domains where annotation is costly, infeasible, or restricted by privacy — such as health-

care, environmental science, and public policy. These capabilities are especially important for democratizing

access to AI in settings where high-quality labeled datasets are not available. Furthermore, the project advances

representation learning in a direction that favors modularity, adaptability, and data efficiency, promoting the de-

velopment of AI systems that are more transparent, robust, and privacy-aware. By reducing reliance on manual

supervision and exploiting structure in unpaired data, the proposed methods open opportunities for scientific

discovery in fields that increasingly rely on multimodal measurements but lack aligned data — such as ge-

nomics, neuroscience, and climate modeling. In doing so, this work contributes to the broader goal of using

AI not only to build better models, but also to accelerate progress in science and improve societal outcomes

through data integration and cross-modal reasoning.

7 Summary

This project develops foundational methods for multimodal representation learning (MMRL) from unpaired

data, a setting that reflects the growing prevalence of heterogeneous, weakly aligned information across science

and technology. Traditional multimodal learning methods rely on paired supervision, which is often unavail-

able due to cost, privacy, or measurement constraints. To overcome this, we propose three mathematically

grounded objectives: (1) learning shared representations from weakly paired data based on universal spectral

embeddings, (2) formulating unpaired canonical correlation analysis (CCA) using optimal transport with or-

thogonality constraints, and (3) fusing unpaired multimodal data through artificial pairing mechanisms that

capture both shared and modality-specific content. These contributions are expected to yield practical, scalable

algorithms with broad applicability, from biomedical data integration to cross-modal AI systems. The project

will advance the theoretical foundations of MMRL while enabling data-efficient, modular, and privacy-aware

machine learning across domains.

Research team. I am a statistician by training, with a solid background in mathematics and algorithms and 20

years of experience in machine and deep learning research, both in the industry and academia. As such, I bring

a holistic, multi-view perspective, along with a rich toolbox to each of the research objectives. My research
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is multi-disciplinary at its core, as it requires knowledge of multiple fields such as machine learning, applied

mathematics, computer science, and engineering. Perhaps the best evidence of the multi-disciplinary nature of

my research is the papers I publish, which include both rigorous mathematical proofs and practical methods,

applied to challenging real-world problems. MY research team currently consists of one Ph.D. student and 14

M.Sc. students. In the past months, four M.Sc. students have graduated, all with publications in major machine

learning venues. I credit much of the productivity and creativity of the group to the fruitful discussions and close

interactions between the research group members, which I highly encourage, and all the projects described in

this research proposal are important elements of my team’s research. I also maintain collaborations with several

researchers in other departments at Bar Ilan, in other universities in Israel, at also in several US universities,

such as Yale and UCSD. I am convinced that both my team at Bar Ilan University and I are well-suited to meet

the challenges of this ambitious and fascinating research proposal.
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[7] DC Dowson and BV666017 Landau. The fréchet distance between multivariate normal distributions.

Journal of multivariate analysis, 12(3):450–455, 1982.

[8] David Fan, Shengbang Tong, Jiachen Zhu, Koustuv Sinha, Zhuang Liu, Xinlei Chen, Michael Rabbat,

Nicolas Ballas, Yann LeCun, Amir Bar, et al. Scaling language-free visual representation learning. arXiv

preprint arXiv:2504.01017, 2025.

[9] Marco Fumero, Marco Pegoraro, Valentino Maiorca, Francesco Locatello, and Emanuele Rodolà. Latent
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the structure guide you. arXiv preprint arXiv:2506.16895, 2025.

[13] Yedid Hoshen and Lior Wolf. Unsupervised correlation analysis. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 3319–3328, 2018.

[14] Minyoung Huh, Brian Cheung, Tongzhou Wang, and Phillip Isola. Position: The platonic representation

hypothesis. In Forty-first International Conference on Machine Learning.

[15] Martin Knott and Cyril S Smith. On the optimal mapping of distributions. Journal of Optimization Theory

and Applications, 43(1):39–49, 1984.

16



PI: Uri Shaham, Application No. ???/26

[16] Shuang Ma, Daniel McDuff, and Yale Song. Unpaired image-to-speech synthesis with multimodal infor-

mation bottleneck. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages

7598–7607, 2019.
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