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Exploring Enan,omeric Determinants in Natural Product Biosynthesis via an 

Integrated Molecular Modeling and Ar,ficial Intelligence Approach 

1. Scien(fic Background 

1.1. Highlight 

Earthly and marine plants, animals, fungi, and bacteria, among other organisms, produce a vast array of 

natural products, and these have been studied extensively in the past century. Enan:omeric pairs of these 

natural products frequently occur in nature, but the factors that determine which an:pode is produced are 

not well understood. Considering the fundamental role of enan2omers in molecular recogni2on by proteins 

across all of nature, this field demands more intensive inves2ga2on and dedicated research. In this 

proposal we aim to explore enan2omeric determinants in natural product biosynthesis via an integrated 

molecular modeling and ar2ficial intelligence approach. 

1.2. Natural Products and Enan,omers 

Earthly and marine plants, animals, fungi, and bacteria, among other organisms, produce a vast array of 

secondary metabolites, commonly called natural products.2 Unlike primary metabolites, which are essen:al 

for survival, secondary metabolites are not required for basic life func:ons; however, they o@en support 

reproduc:ve or defensive roles within the species that generate them.3-4 From a medicinal perspec:ve, 

natural products are an invaluable source of bioac:ve compounds, including an:tumor, an:bacterial, an:-

inflammatory, insec:cidal, and immunosuppressive agents, among others. These bioac:vi:es have been 

extensively harnessed in drug discovery and development projects.5-6  

In many cases, chiral natural products are biosynthesized in nature as single, op:cally pure 

enan:omers, with only one specific form produced by the organism.2 7 For instance, the diterpene Taxol is 

synthesized by the Taxus species (yew trees) with a dis:nct stereochemistry, which is crucial to its func:on as 

a potent an:cancer agent.8-9 However, enan:omeric pairs of natural products do frequently occur in nature 

(Figure 1). These mirror-image compounds are o@en found in different genera or species, where one 

enan:omer is isolated from one species and its opposite from another. Occasionally, a single species may 

produce both enan:omers, which can be isolated either as racemic or scalemic mixtures.1, 7, 10  

Bioac:ve natural products have been studied extensively in the past century, yet the enzyma:c 

synthesis of enan:omeric natural products is not well understood. This results from mul:ple factors, including 

the natural predominance of one enan:omer over its counterpart, which can leave the less common 

enan:omer undetected or unknown. Addi:onally, limited informa:on on the sequence and structure of the 

enzymes involved in enan:omer forma:on adds to this challenge, and the enan:omeric characteriza:on of 

natural products, which can be challenging,11 is not always reported in the literature. Considering the 
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fundamental role of enan2omers in 

molecular recogni2on by proteins 

across all of nature, this field demands 

more intensive explora2on and 

dedicated research. Several excellent 

studies have explored how to predict 

enan:omeric specificity in rela:vely 

simple enzyme reac:ons,12-13 but natural 

product biosynthesis presents a 

significant challenge due to the complex 

chemistry. 

In our research group we have 

dedicated much aQen:on in recent years 

to the biosynthesis of terpenes via 

terpene synthases (TPS).14-19 TPS catalyze 

the first step in the forma:on of 

terpenoids, which comprise the largest class of natural products in nature with well over 80,000 known 

compounds.20 TPS also form building blocks for other natural products, like steroids, saponins, carotenoids, 

meroterpenoids, and alkaloids.7, 21 The intricate structures generated by TPS are the result of substrate 

binding and folding in the ac:ve site, enzyme-controlled carboca:on reac:on cascades, and final reac:on 

quenching.16, 20, 22 The chemical reac:ons taking place in TPS can be extremely complex, involving highly 

specific ring forma:ons, proton and hydride shi@s, and Wagner–Meerwein rearrangements, spanning up to 

a dozen discrete chemical steps involving carboca:ons.23-25 The universal substrates for TPS are rela:vely 

simple C5n isoprenoid diphosphates (n=1, 2, 3, …) precursors; the most common being monoterpenes (n=2), 

sesquiterpenes (n=3) and diterpenes (n=4) (Figure 2).20, 22, 26-28 The corresponding substrates are called geranyl 

diphosphate (GPP), farnesyl 

diphosphate (FPP), and geranyl 

geranyl diphosphate (GGPP), 

respec:vely (Figure 2A). Subsequent 

func:onalizing enzymes, like P450 

monooxygenases, acyltransferases, 

and glycosyltransferases, generate 

func:onalized terpenes, i.e., 

terpenoids. Enan:omeric terpenes 

and terpenoids are rela:vely 

common, though they are typically 

Figure 1. Examples of natural products with known enan6omers. (±)-
limonene and (±)-𝛼-pinene are monoterpenes, (±)-𝛾-cadinene are 
sesquiterpenes, (±)-isoelisabethatriene A are diterpenes, (±)-trans-
carveol are monoterpenoids, and (±)-hyperjapone A are 
hypothesized to be formed from the reac6on between the achiral 
sesquiterpene humulene and a phloroglucinol intermediate via a 
Diels-alderase.1 Green colored rings encode molecules from plant 
sources, while blue color encodes molecules from microbial sources.  
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Figure 2. (A) Different TPS substrates: GPP, FPP, and GGPP. (B) Naming 
conven6on for pyrophosphate and magnesium atoms. (C) Biphasic ac6ve 
site of class I TPS. Polar residues with carbons are shown in pink, 
hydrophobic residues with carbons are shown in yellow, carboca6on 
carbons are colored cyan, and magnesium ions are colored green. 
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restricted to mono-, sesqui-, and, rarely, di-terpenes and terpenoids.7, 22, 29-31 The enan:omeric determinants 

in TPS are not well understood, although many terpenes have been fully characterized and in the case of 

limonene (Figure 1) both crystal structures have been resolved.32-33 This is partly due to the intricate chemistry 

involved in TPS, where the enzyme's specific role in the detailed reac:on mechanism o@en remains unclear.  

Recently, we 

employed an integrated 

approach combining 

structural, 

bioinforma:cs, and 

EnzyDock mechanis:c 

docking tools to address 

the ligand binding in 

class I TPS.15 In class I TPS 

the reac:on is ini:ated 

via heteroly:c C-O bond 

cleavage. We brought 

ini:al data sugges:ng 

that TPS bind their ligand 

in a binary mode: 

connec:ng the 

isoprenoid moiety to 

either O1𝛼 or O2𝛼 of the diphosphate (PP) moiety (Figure 2, 3). We were also able to show that our docking 

approach (EnyDock14, 34) was able to correctly predict this binary binding mode preference in all cases tested.15 

This new ligand binding rule is rooted in evolu:onary differences between TPS,35 and we brought evidence 

that this altera:on in binding, and subsequent chemistry, is due to TPS origina:ng from plants (pTPS) or 

microorganisms (mTPS).  

Importantly, we further suggested that this difference can cast light on the frequent observa:on that 

the chiral TPS products or intermediates of plant36 and bacterial37 terpene synthases represent opposite 

enan:omers.22, 37 For instance, isola:on of enan:omeric sesquiterpenes has revealed that terrestrial and 

marine plant sources some:mes produce opposite enan:omers.38-39 A fascina:ng example involving a 

monoterpene is the biosynthesis of 1,8-cineol by Cineol Synthase (Figure 4).31, 40 Although the final product 

is achiral, the reac:on mechanism proceeds via the chiral terpinyl ca:on intermediate, as shown by isotope 

labeling experiments. In this case, the (R)-terpinyl ca:on is formed in Salvia officinalis (plant),40 while the 

bacterial enzyme (Streptomyces clavuligerus, sc) proceeds via the (S)-terpinyl ca:on.31 Analysis of the ac:ve 

site from crystal structures and EnzyDock docking studies, suggested that the ac:ve site architectures in these 

plant and microbial enzymes have evolved to accommodate different enan:omers (Figure 4).  

Figure 3. Top: (A) Salvia officinalis bornyl diphosphate synthase (BPPS), an example of a 
plant TPS, where the isoprenoid group is connected via O1α (PDB ID: 1n21). (B) Naming 
conven6on for posi6vely charged residues binding the diphosphate group for plant TPS 
follows the residue numbers in Salvia officinalis BPPS. Bo;om: (C) Aspergillus terreus 
aristolochene synthase (AS), an example of a microbial TPS, where the isoprenoid group 
is connected via O2α (PDB ID: 4kux). (D) Naming conven6on for posi6vely charged 
residues binding the diphosphate group for microbial TPS follows the residue numbers 
in Aspergillus terreus AS. 
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Yet, many examples exist 

of opposite enan:omers both 

hailing from the same source, like 

the monoterpenes (+)-limonene 

(Citrus sinensis) and (-)-limonene 

(Mentha spicata) both hail from 

plant sources and both bind to the 

O1α posi:on of the 

pyrophosphate (Figure 2).32-33,41 

Addi:onally, two α-pinene 

synthases forming opposing 

enan:omers were isolated from 

Pinus taeda,42 and two 

germacrene D-synthases from 

Solidago canadensis form both 

(+)- and (−)-germacrene D.43 

Hence, the same species oEen 

form different enan2omers, and the factors determining chirality in TPS are likely complex and 

mul2faceted. It is the goal of this proposed project to explore the enan2omeric determinants in terpene 

biosynthesis in TPS and in subsequent terpene binding and func2onaliza2on in P450 enzymes. 

2. Research Objec(ves and Expected Significance 

LiQle is known about the intricate gene2c, biocataly2c, and mechanis2c details of how enan2omeric 

natural products are formed.44 Modifica2ons of chemoselec2vity in TPS, P450, and other natural product 

enzymes require the change of only a few amino acids, but the sequence differences between an2podal 

synthases show that the altera2on of substrate enan2oselec2vity is the result of significant sequence 

differences.42 The objec2ve of this project is to explore the enan2omeric determinants in terpene 

biosynthesis (in class I TPS) and subsequent terpene binding and func2onaliza2on (in P450). To this end, 

we plan to u:lize an integrated molecular modeling and ar:ficial intelligence (AI) approach to explore key 

differences between enzymes forming natural product enan:omers. We will construct annotated databases 

from collected data of known terpenes and terpenoids, the protein sequences of known TPS and relevant 

P450s, and available crystal structures from databases and the literature. We will apply computa:onal biology 

and chemistry modeling and data mining approaches to augment and extract knowledge from these 

databases. This knowledge will include correla:ons between enzyme chemistry (e.g., mechanisms, role of 

enzyme in catalysis, and forma:on of enan:omers) and enzyme taxonomy and physical aQributes (e.g., ac:ve 

Figure 4. (A) The biosynthesis of 1,8-cineol by Cineol Synthase. Different 
enan6omeric intermediates yield an achiral product. (B) EnzyDock docking 
reveals preference for O1α binding in pTPS (with and without(*) an ac6ve site 
water) and O2α binding in mTPS. (C) Ac6ve site of Cineol Synthases pTPS (PDB 
ID: 2j5c, green) and mTPS (PDB ID: 5nx7, cyan). The presumably cataly6cally 
important Asn residue is in flanking posi6ons in pTPS (N338) and mTPS (N305). 
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site structure, conserved 3D mo:fs). The databases and knowledge created during this project will be made 

available via a cloud-based web site.  

Understanding the determinants of the biosynthesis of enan2omeric natural products is cri2cal for 

many areas of science, like drug development, enzyme catalysis and design, biodiversity and evolu2on, 

molecular sensors, and synthe2c biology and biotechnology. Hence, we expect the knowledge regarding 

the determinants of terpene and terpenoid biosynthesis and in par2cular enan2omeric specificity, will be 

important for a broad scien2fic audience.  

3. Detailed Descrip(on of the Proposed Research 

3.1. Working Hypothesis 
The chirality of secondary metabolites formed in nature is determined by the enzymes that synthesize them, 

and specifically the ac:ve site architecture and dynamics, substrate posi:oning, and the detailed reac:on 

mechanism. These, in turn, are shaped by factors ranging from evolu:onary pressure on the organism to form 

biologically important enan:omers to the inherent chemistry of the reac:on being catalyzed. Hence, to 

appreciate the determinants of enan:omer forma:on, it is necessary to understand both the taxonomy of 

the enzymes and the enzyme reac:ons in atomic detail. As described in the Scien:fic Background (1.2), we 

recently discovered a deep connec:on between the substrate binding mode in TPS and the enzyme’s 

taxonomy, which might be connected to enan:omeric prevalence in plants and microorganisms.15 Addi:onal 

factors that might play a role in enan:omeric preferences in TPS enzymes are substrate fold in the ac:ve site; 

R/S preferences for the chiral substrates linalyl-PP (mono-TPS), nerolidyl-PP (sesqui-TPS), or geranyl-linalyl-

PP (di-TPS) which are required substrate intermediates in many mechanisms; and Re/Si approach of ca:ons 

to double bonds. 

In the following, we will detail a research program designed to further our understanding of the 

biological forma:on of enan:omers of terpenes and terpenoids, which together cons:tute the largest family 

of natural products.  

3.2. Project Design and Methods 

In this research project we will construct annotated databases of natural products, natural product enzymes, 

and their cataly:c reac:ons. We will apply computa:onal biology and chemistry modeling and data mining 

approaches to augment and extract knowledge regarding catalysis, and in par:cular enan:omer forma:on, 

from these databases. We stress that our analysis will cover all terpenes and terpenoids; not just those with 

idenAfied enanAomers. The overall project design is presented in Figure 5 and a detailed descrip:on of the 

methods appears below. 
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Figure 5. Workflow showing rela:on between project parts and databases generated. Databases are shown 

as stacks of grey disks and the adjacent pickaxe represents data mining. (3.2.1) Collect all known mono-, 

sesqui-, and di-terpenes and terpenoids from available databases and literature, and create an annotated 

database. Both enan:omeric an:podes will be deposited if available. (3.2.2) Create all possible mechanisms 

for the terpenes (e.g., carboca:on reac:ons) and terpenoids (e.g., oxida:on reac:ons) using RxnNet and 

compute energies for all sta:onary points using quantum chemistry methods (substrates, intermediates, 

transi:on states, products), and create an annotated database and link to products database. (3.2.3) Create 

machine learning (ML) poten:al energy models for terpene and terpenoid chemistry using the energies from 

the reac:on states database and augmented by energy calcula:ons of addi:onal non-sta:onary points. 

(3.2.4) Create an annotated local sequence database for TPS and P450 enzymes and link to products and 

possible mechanisms in case these are known. (3.2.5) Create 3D structure database for the TPS and P450 

enzymes in the sequence database. A structure that is not an ac:ve form (e.g., apo-state or not fully closed 

holo-state), will be “ac:vated” using specialized modeling techniques described in the text. If a crystal 

structure exists in ac:ve structural form, it will be completed using Modeller (if missing residues) and refined 

using CHARMM and added to the 3D enzyme database. If a crystal structure exists in inac:ve structural form, 
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it will be modelled into an ac:ve form using Modeller and CHARMM. If no crystal structure exists, it will be 

modelled using AlphaFold3 and modelled into an ac:ve form using Modeller and CHARMM as needed. (3.2.6) 

Using the reac:on mechanism states and 3D enzyme structures databases, in conjunc:on with the ML 

poten:al, we will perform mechanis:c docking using EnzyDock. The docking results will be curated and the 

most likely docked mechanisms will be deposited to the docked reac:on states database. (3.2.7) Detailed 

quantum mechanics-molecular mechanics (QM/MM) and ML/MM free energy simula:ons of TPS and P450 

enzyme mechanisms where both enan:omers are known. 

3.2.1. Create and mine a chemical database of known terpenes and terpenoids. We will collect all 

known mono-, sesqui-, and di-terpenes and terpenoids origina:ng from TPS and P450 enzymes from available 

databases and literature, and create an annotated database. Both enan:omeric an:podes will be deposited 

if known. As a star:ng point, we will use the excellent Natural Product Atlas,45 MARTS-DB (www.marts-

db.org), and TeroKit databases as star:ng points, which have > 150,000 terpenoids.46 Addi:onally, we will use 

a range of standard search tools like PubChem, Reaxys, SciFinder, ChemSpider, and Web of Science to iden:fy 

addi:onal terpenes and terpenoids. The dataset will be annotated with informa:on like molecule 

iden:fica:on (e.g., name, molecular formula, SMILES, etc.), classifica:on (e.g., mono-, sesqui-, di-terpene), 

structural data (e.g., 2D, 3D structures, chiral centers and enan:omeric characteriza:on), origin (plants, fungi, 

or bacteria), biosynthe:c pathway (substrate, pathway, enzymes involved), 

biological/ecological/pharmaceu:cal ac:vity, and literature references. The database will also include links 

to other databases in this project, like the reac:on mechanism database. Links to external publicly available 

databases, like PubChem, will be included where much addi:onal informa:on is available. 

Based on this informa:on we will apply machine learning (ML) approaches to obtain insights into the 

distribu:on of terpene and terpenoid enan:omers in nature. The ML methods will include clustering 

algorithms, which can reveal paQerns of enan:omer distribu:ons across different taxonomic groups (e.g., k-

means and hierarchical clustering), classifica:on algorithms (e.g., Support Vector Machines (SVM), Random 

Forests (RF), k-Nearest Neighbors (k-NN), and dimensionality reduc:on (e.g., Principal Component Analysis 

(PCA) or t-SNE). If sufficient data is available, deep learning (DL) tools will be applied. These tools are 

commonly used in our group. 

3.2.2. Create and mine a chemical database for reac9on mechanisms leading to terpenes and 

terpenoids using literature, RxnNet, and quantum mechanical calcula9ons. We will create plausible 

mechanisms for the terpenes (carboca:on reac:ons) and terpenoids (oxida:on reac:ons) and compute 

energies for all sta:onary points using our RxnNet approach (see below) and quantum chemistry methods in 

the gas-phase47-48 and chloroform solvent, which has been used in nano-capsules terpene synthesis.49-50 The 

reac:on mechanism informa:on will be used to create an annotated reac:on database, which will be used 

by our docking approach EnzyDock (see 3.2.6 below). The RxnNet mechanisms will be carefully compared 
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with the vast number of mechanisms proposed in earlier literature (experimental and computa:onal), e.g. 

ref. 22, 48, 51-52 and in the MARTS-DB database (www.marts-db.org) which has collected > 1,500 mechanisms 

from the literature. We stress that extensive earlier work has shown that computa:onal modeling of gas-

phase reac:ons for these systems can provide crucial insights into the enzyma:c process.17, 48 

Inspired by earlier work,53-56 

we recently developed a carboca:on 

reac:on tree generator Python code 

called RxnNet (Figure 6), which can 

automa:cally generate any 

carboca:on intermediate based on 

the SMILES string of a substrate,57 

using predefined, known chemical 

steps encoded as SMARTS strings 

(e.g., cycliza:ons, migra:ons, 

rearrangements, proton and hydride 

transfers) (several manuscript 

describing RxnNet are in prepara:on). 

These steps are combined to generate dis:nct mechanisms, including substrates, intermediates, transi:on 

states, and products. Special care is taken to allow for chirality and isotope labeling58 in RxnNet, so that all 

fine details of the chemical reac:ons are accounted for. RxnNet is wriQen in Python and makes extensive use 

of the RDKit library (www.rdkit.org/), and it includes automated dispatching of quantum chemical calcula:ons 

using the xTB, Gaussian 16 and ORCA programs. RxnNet performs conforma:onal search using classical force 

fields, followed by semi-empirical (SE) (GFNn-xTB) or ML (e.g., AIMNet2) calcula:ons on the lowest energy 

conformers followed by final density func:onal theory (DFT) scoring using M062X or 𝜔B97M-V with suitable 

basis sets (e.g., def2-TZVPP), as these are robust methods (e.g., see Table 1 in 59) and can reliably treat terpene 

chemistry as we have shown in a recent study.60 This protocol iden:fies both intermediates using standard 

geometry op:miza:on and transi:on states using a novel combina:on of a geodesic ini:al reac:on pathway61 

guess followed by the climbing image nudged elas:c band (NEB) algorithm.62 In the current project, the 

RxnNet program will be expanded to include P450 enzyma:c reac:ons that modify terpenes (e.g., 

hydroxyla:on, epoxida:on, desatura:on, oxida:ve ring forma:on and rearrangement, and C-C bond 

cleavage). We will employ the RxnNet program to map the reac:on mechanisms for the reac:ons in the 

chemical database of known terpenes and terpenoids that are generated by TPS and P450 enzymes (sec:on 

3.2.1).  

The database will include 1D, 2D, and 3D informa:on about all reac:on states (substrates, 

intermediates, transi:on states, products) of the TPS and P450 products. The database will be augmented by 

Figure 6. Example of reac6on tree generated for a sesquiterpenyl ca6on, 
which is formed from farnesyl diphosphate. The first reac6on step shows 
all possible cycliza6ons, which allows dis6nc6on between different TPS 
according to sequence.  
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comparison and references to the extensive reac:on informa:on that already exists in the literature (see e.g., 
22, 48, 51). The three-dimensional structures (e.g., Cartesian coordinates) for intermediates and transi:on states, 

together with models for the substrates and the products, will be used for docking (3.2.6) in enzymes from 

the three-dimensional protein structure database (3.2.5), as described below. 

 We will apply ML/DL approaches (e.g., see list of methods in 3.2.1) to iden:fy possible correla:ons 

between details of the most plausible reac:on mechanism in the gas-phase and in chloroform with 

informa:on from the chemical database of terpenes and terpenoids (e.g., origin, biosynthe:c pathway, 

biological/ecological/pharmaceu:cal ac:vity). For instance, previous work has iden:fied correla:on between 

the ini:al ring closure step in sesquiterpene biosynthesis and product origin.63-64 

3.2.3. Create a ML poten9al for efficient and accurate large-scale docking using EnzyDock and free 

energy simula9ons. To be able to rapidly screen many reac:on pathways in EnzyDock (see 3.2.6 below) and 

perform free energy simula:ons (see 3.2.7 below), it will be advantageous to employ fast, yet accurate, 

poten:als. We will create ML poten:al energy models for terpene and terpenoid chemistry using the energies 

from the reac:on states database (see sec:on 3.2.2) and augmented by energy calcula:ons of addi:onal 

non-sta:onary points (e.g., using random coordinate perturba:ons and molecular dynamics (MD) 

simula:ons). This will be extended to also include ML/MM poten:als based on data from QM/MM 

calcula:ons performed for these systems in the past,17, 19, 65-66 as well as calcula:ons we will perform herein. 

Our strategy will follow the ML and ML/MM approach presented in ref. 67, which has been used in enzyme 

calcula:ons. In the ML/MM implementa:on, each ML atom is represented by its local environment matrix to 

capture the internal interac:ons within the ML region (learned from the QM interac:ons), while the MM 

atoms are represented as point charges without atomic iden::es for the ML–MM electrosta:c interac:ons 

and the ML–MM van der Waals interac:ons are treated at the MM level. The PI (D. T. M.) spent four weeks 

this past summer with the authors of 67 and received detailed training in developing and using this ML and 

ML/MM approach. Considering the complexity of the chemistry involved in TPS and P450 chemistry, we will 

not aQempt to learn the poten:al energy surface from scratch. Rather, we will adopt a ∆-ML approach using 

a SE method (e.g., DFTB68-69) as the basis for energy calcula:ons as suggested in 67, and ML will be used to 

learn the difference between the SE method and the high level DFT used (e.g., 𝜔B97M-V from sec:on 3.2.2). 

All methods described in this sec:on, including the ∆-ML/MM methods, 67 have been implemented in the 

CHARMM simula:on program,70 which is the playorm used by EnzyDock.14, 34 We will also explore the use of 

equivariant graph neural network (EGNN) approaches ini:ally proposed by Welling71 and co-workers and 

Kozinsky and co-workers (NequIP),72 which are data efficient and showed excellent performance on the QM9 

and MD-17 databases, respec:vely.71 We have recently used EGNN in a ML study.73 

3.2.4. Create and mine a sequence database of known TPS and P450 enzymes. The goal of this 

database and accompanying analysis is to point to residues likely to be involved in stabilizing specific 
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carboca:on skeletons and co-evolved ac:ve site residues, as well as form the basis for construc:on of 3D 

models (see 3.2.5 below). For instance, it is well established that TPS ac:ve sites are rich in aroma:c 

residues,20 which stabilize ca:ons via 𝜋-ca:on interac:ons, but many other interac:ons are possible.16 We 

will gather sequence data and func:onally annotate all TPS and P450 enzymes with known products (for 

sesquiterpene synthases this informa:on exists in part63 and this data will be downloaded and updated as 

needed).74 Enzyme sequences (e.g., from all UniProt proteins, the OneKP transcriptome dataset and the 

microbial genome database) will be iden:fied using hidden Markov models, mul:ple sequence alignment, 

followed by phylogene:c analysis, feature extrac:on (e.g., posi:on-specific scoring matrix and posi:on-

specific frequency matrix), and clustering. This will classify the enzymes, e.g., dis:nguish between mono-, 

sesqui-, and diterpene synthases using methods like Terzyme75 or the convolu:onal neural network-based 

DeepEC,76 which is freely available Python code. The mono-, sesqui- and di-TPS will be grouped separately 

according to the known ini:al carboca:on cycliza:on intermediates, as the ini:al cycliza:on determines the 

ini:al branching of the reac:on mechanism, using our mechanis:c database (3.2.2). Subsequent clustering 

of sequences according to ensuing carboca:on reac:on steps will be aQempted, with input from the results 

from RxnNet (3.2.2). The P450 synthases will be annotated according to the kind of chemical reac:on they 

perform. As a star:ng point, we will analyze exis:ng plant77 and bacterial78 P450 databases. 

We will link the sequence database with the chemical database of known terpenes and terpenoids 

(3.2.1) and the chemical database for reac:on mechanisms (3.2.2). The current approach expands on 

excellent previous work on sesquiterpenes, where the focus was correla:on between the ini:al cycliza:on 

step in sesquiterpene forma:on and taxonomy.63-64  

3.2.5. Create and mine a 3D structure database for known TPS and P450 using available crystal 

structures and refined AlphaFold3 models. We will create a 3D structure database for the TPS and P450 

enzymes in the sequence database (see previous sec:on, 3.2.4). 3D structural enzyme informa:on for the 

TPS and P450 families is important both for understanding the chemical mechanism of how terpenes and 

terpenoids are formed, and in par:cular enan:omer forma:on, and for poten:al engineering of the enzymes 

to design new product poryolios.16-17 We have previously generated an ini:al dataset of selected class I mono-

, sesqui-, and di-TPSs in their cataly:cally fully closed, i.e., “ac:ve” form (i.e., fully closed holo state with key 

conserved hydrogen bonds intact).15 Structure “ac:va:on” was achieved by enforcing a set of conserved 

hydrogen bonds via restrained MD simula:ons and minimiza:on.15 This dataset will be expanded to include 

the TPS and P450 enzymes in the sequence database (see previous sec:on, 3.2.4). The enzymes will be 

modeled in their cataly:cally competent, “ac:ve” state. This will be achieved by using a workflow combining 

available crystal structures, AlphaFold379, and Modeller80 (Figure 5). Whenever possible, crystal structures 

will be employed. If these experimental structures are either of the apo enzyme or the holo enzyme not in a 

fully cataly:cally competent state, the experimental structure will be modeled (i.e., “ac:vated”) to generate 

the fully ac:ve enzyme, as we have shown in the past for, e.g., taxadiene synthase65, 81 and other TPS.15 
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AlphaFold3 will be used to generate ini:al models in the many cases where no experimental crystal structure 

exists. However, these structures might not be accurate enough for TPS modeling at the atomic level, as we 

have recently indicated.82 Hence, subsequent refinement, or “ac:va:on”, of the model is necessary. This will 

be achieved using Modeller, relying on exis:ng TPS structures 

resolved in their ac:ve state, e.g., for TPS the Salvia officinalis bornyl 

diphosphate synthase (PDB ID: 1n2183) and Aspergillus terreus 

aristolochene synthase (PDB ID: 4kux84) are good template structures. 

For P450 enzymes, the structures of P450cam (PDB: 1DZ4,85 2CPP,86 

4WJS87 for monoterpenes) and CYP76AH1 (PDB: 5YM3 for 

diterpenes88) are relevant and will be used for modeling. Specific 

enzyme regions will be remodeled as needed to place highly 

conserved residues in posi:ons required for catalysis, as iden:fied by 

high quality crystal structures and prior modeling studies in our group. 

The final structure models will be relaxed using MD simula:ons and 

minimiza:on using the CHARMM program,70 which allows simula:ons 

with many restraints that will keep important conserved protein-

protein and protein-ligand interac:ons89 intact during the simula:ons. 

Tasks automa:on will be achieved by wri:ng scripts in Python, Linux, 

and CHARMM, as we have done previously.15 

We will apply ML techniques along with carefully cra@ed descriptors to analyze the ac:ve sites in TPS 

and P450 enzymes. The enzymes in these families will be aligned in 3D according to CATH fold classifica:on 

(hQps://www.cathdb.info/) to obtain meaningful spa:al alignments. 3D descriptors include ac:ve site 

volume, ac:ve site asymmetry (Figure 7),15 accessible surface area, ac:ve site depth, ac:ve site curvature, 

hydrophobicity/hydrophilicity paQerns, electrosta:c poten:al (Figure 7),15 and rigidity/flexibility. Amino acid 

physicochemical features, like ability to stabilize carboca:ons (as encoded in descriptors like zScales or 

VHSR),90 will be extracted and clustered in 3D. This will define carboca:on stabilizing residues within the 

ac:ve site 3D space according to TPS sub-families and binding of terpenes in P450 enzymes. Using such 

descriptors, we will apply ML/DL techniques91 to obtain correla:on between conserved 3D features in TPS 

and P450 enzymes and their taxonomy and chemical func:on (i.e., chemistry, see 3.2.2). We will carefully 

analyze and compare the differences between pairs of enzymes forming enan:omers.  

3.2.6. Create and mine a 3D enzyme mechanism database of TPS and P450 enzymes with docked 

states (bound substrates, intermediates, transi9on states, and products) and database mining. We 

will perform mechanis:c docking of the compounds in the chemical database of known terpenes and 

terpenoids (3.2.1). To this end, we will employ our EnzyDock program in conjunc:on with the chemical 

database for reac:on mechanisms leading to terpenes and terpenoids (3.2.2) and the 3D structure database 

Figure 7. (A) Electrosta6c poten6al in 
a TPS. (B) Ac6ve site volume in a TPS. 
(C) Asymmetry of ac6ves sites in 
several TPS, defined as the ra6o 
between ac6ve site volume near the 
bound O (O1α for pTPS, O2α for 
mTPS) and the other O (O1α for 
mTPS, O2α for pTPS) (see Figure 3). 
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for known TPS and P450 (3.2.5). Here we will provide a brief descrip:on of EnzyDock and how it can be an 

important tool for understanding the reac:ons in TPS and P450 enzymes.  

We recently developed EnzyDock, which is a CHARMM-based docking program,70 and has conceptual 

similari:es with docking tools targe:ng mul:step reac:ons in TPS.92-94 Since EnzyDock relies on CHARMM 

func:onali:es, it benefits from decades of development by the CHARMM development team.70 EnzyDock 

includes a series of protocols to predict the chemically relevant orienta:ons, conforma:ons, and energies of 

reac:on coordinate states (Figure 8). The main feature incorporated into EnzyDock is mechanism-based 

mul:-state consensus docking that allows the docking of mul:ple states (reac:on substrate, intermediates, 

transi:on states, products) in a mechanis:cally consistent (i.e., consensus or similar poses) and induced-fit 

manner. For instance, this assures that the substrate (GPP, FPP, GGPP) in TPS folds correctly if one performs 

docking with the product as a template (or “seed”) for the docking of all states. We note that EnzyDock is a 

docking-tool; it does not compute free energy profiles, which can be obtained from e.g. umbrella sampling,95 

metadynamics,96 or transi:on-path sampling97 and this will be addressed below in sec:on 3.2.7. Consensus 

docking is achieved by applying geometric restraints on reac:on states rela:ve to a pre-determined “seed” 

state, such that all states are docked with similar poses (within a given user-defined threshold), and a reac:on 

Pathfinder module iden:fies all geometrically matching poses along a reac:on path (Figure 8).17 MD and MC 

simulated annealing sampling of bound states is performed on a grid represen:ng the enzyme, and poses are 

scored using the CHARMM3698 and CGenFF99 force fields (FF) and op:onal refinement using QM/MM34 with 

a range of QM methods (e.g., SE, DFT). Solva:on is modeled using implicit solva:on and explicit waters may 

be included. We have applied EnzyDock to diverse enzyme systems, such as terpene synthases,14-17, 25, 34 

racemases, Diels-Alderases, covalently bound ligands,17, 34 and the main protease in SARS-CoV-2.100  

 

 
Figure 8. Main concepts of EnzyDock. Top LeE: Dock mul:ple states into enzyme (substrate, S, intermediates 

A-I, product) with chemical informa:on like regio- and stereochemistry encoded via restraints. Top Right: 
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Large sets of poses are obtained, and geometrically matching poses are found via the Pathfinder program 

(grey line). If a “seed” state is defined (e.g., here the substrate, S), restraints are applied on subsequent states 

to enforce poses similar to S. BoQom: EnzyDock implementa:on in CHARMM-GUI.101 LeE: Ligand building. 

Middle: Defining restraints. Right: Defining docking grid and flexible ac:ve site residues. 

In the current project we will score poses using the ∆-ML/MM poten:al developed in sec:on 3.2.3. 

This will allow us to rapidly and accurately score binding modes of substrate, intermediates, transi:ons states, 

and products for probably mechanisms for each enzyme in the 3D structure database for known TPS and 

P450 at a low cost. To allow rapid screening of the many ligand states involved in mechanis:c docking, we 

have already implemented an interface between RxnNet and EnzyDock, which allows providing EnzyDock 

with Python Pickle files of mechanisms from RxnNet. The docking results will be curated and compared with 

available muta:onal data in the literature for cases where this exists. The most probable docked mechanisms 

will be deposited to the docked reac:on database, which will be mined (see 3.2.8 below). We will analyze 

and compare the docking results for pairs of enzymes forming enan:omers. In TPS enzymes, this includes 

substrate fold in the ac:ve site and oxygen binding preference (O1𝛼 vs O2𝛼, see Figures 2, 3); R/S preferences 

for the chiral substrates linalyl-PP (mono-TPS), nerolidyl-PP (sesqui-TPS), or geranyl-linalyl-PP (di-TPS) where 

relevant for mechanism; and Re/Si approach of ca:ons to double bonds. In P450s we will look for differen:al 

binding of enan:omeric terpenes and func:onaliza:on crea:ng new chiral posi:ons leading to enan:omers. 

3.2.7. Complete mechanis9c studies. We will perform in depth study of selected TPS and P450 reac:ons 

where both enan:omers are known using QM/MM and ∆-ML/MM poten:als and free energy simula:ons. 

We will compute the poten:al of mean force profiles using mul:dimensional umbrella sampling,95 which we 

have used extensively for TPS reac:ons and is a well-established approach. We will compare the QM(𝜔B97M-

V)/MM and ∆-ML/MM free energy profiles for selected reac:ons and if necessary, improve the ∆-ML/MM by 

further training the ML model (transfer learning). A suitable system for this purpose is limonene synthase, for 

which crystal structures exist for both (-)-4S- and (+)-4R-limonene synthases in their holo-form.32-33 Once the 

accuracy of the ∆-ML/MM has been validated, we will use this poten:al exclusively due to its efficiency. The 

accuracy of the simula:ons will be validated against experimentally observed product distribu:ons. Based on 

the simula:on data, we will iden:fy paQerns in the enan:o-selec:vity role played by ac:ve site residues and 

cofactors (PP, Mg2+ ions) obtained from the complete mechanis:c studies and docking (3.2.6). 

3.2.8. Data integra9on and mining. In this project, we will produce annotated databases of terpenes and 

terpenoids and their enzymes (sequences and 3D structures), biosynthesis reac:ons, and structural models 

of all reac:on states for all reac:ons studied. This is a wealth of informa2on that will be mined together to 

obtain deeper knowledge of TPS and P450 enzyme catalysis in general and enan2omeric specificity in 

par2cular. To this end, we will adopt the novel approach in ref. 91, termed EzMechanism, which can 

automa:cally infer mechanis:c paths for a given 3D ac:ve site and enzyme reac:on, based on a set of 
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cataly:c rules compiled from the Mechanism and Cataly:c Site Atlas, a database of enzyme mechanisms. 

Currently this atlas only contains five TPS reac:ons, which is far too few to allow efficient learning of complex 

TPS and P450 reac:ons. Addi:onally, the proposed TPS mechanisms in the atlas are not curated and are not 

always in line with the consensus view in the literature (e.g., for trichodiene synthase51). Here we propose to 

combine the extensive mechanis:c informa:on generated in this proposal based on the cataly:c rules in 

RxnNet (3.2.2), together with 3D enzyme models (3.2.5) and docked reac:on states (3.2.6), to allow greatly 

enhanced genera:on of TPS and P450 reac:on rules and hypotheses. Our extensive experience in modeling 

TPS reac:ons will allow us to generate highly specific TPS rules, both chemical rules like in RxnNet and rules 

of the role of the enzyme in guiding reac:on cascades, and par:cularly enan:oselec:vity. Once applied to 

TPS reac:ons, we will apply the same approach to P450 reac:ons. We expect that the rules and hypotheses 

generated by this model will provide deep insight into differences between enan:omer catalysis and will also 

clarify areas where we have insufficient knowledge. 

3.2.9. Data Management. The data collected will ini:ally be arranged in local databases that will be hosted 

on our servers at Bar-Ilan University and once a database is complete will be hosted in the cloud for public 

access (e.g., Amazon Web Service or Google Cloud). The databases will be wriQen in Python using cloud-

ready databases like PostgreSQL, MySQL, or MongoDB. The database cura:on will include data collec:on and 

selec:on, data cleaning, annota:on and enrichment, verifica:on and valida:on, and documenta:on. Links 

between databases will be implemented using Python libraries like Foreign Data Wrappers (for PostgreSQL 

and MySQL) or Database References (for MongoDB). All databases will be hosted on a single website; since 

the focus of this project is basic science, the ini:al website will be simple with limited features.  

4. Poten(al caveats 
(1) The ML poten:al might not be accurate and general enough to treat the complex carboca:on and 

oxida:on reac:ons encountered in this project. We will address this by trying different ML architectures, as 

well as increasing the amount of training data. However, if the ML poten:als accuracy is insufficient, we will 

employ tradi:onal EnzyDock docking scoring and QM(𝜔B97M-V)/MM for simula:ons. This means a smaller 

number of systems can be studied using free energy simula:ons, but this is not likely to impact the general 

conclusions of the project. (2) We might not iden:fy new rules for biosynthesis of enan:omers. Indeed, this 

is a possibility. However, this in itself is an important finding, as it would underscore the complexity of the 

problem. Furthermore, the wealth of annotated data, mechanis:c and structural data, and deep knowledge 

generated regarding TPS and P450 biosynthesis will be highly valuable for the scien:fic community.  

5. Expected Outcome and Dissemina(on 
This project will generate searchable databases with a basic, easily accessible web-interface that will serve 

the scien:fic community. The databases will include: 
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(1) Annotated terpenes and terpenoids, which includes enan:omeric informa:on and all relevant 

informa:on regarding the enzyme responsible for its synthesis (sec:on 3.2.1). 

(2) Terpene and terpenoid reac:ons, which includes all possible reac:on mechanisms towards products 

in the database, including the presumed dominant mechanism. This will include accurate DFT energies 

for the gas-phase and chloroform reac:ons towards all products (sec:on 3.2.2). 

(3) Enzyme structure database of TPS and P450 enzymes in closed cataly:cally ac:ve form (sec:on 3.2.5). 

(4) Enzyme mechanism database with all enzymes in closed cataly:cally ac:ve form with all docked states 

(substrates, intermediates, transi:on states, and products) (sec:on 3.2.6). 

Addi:onally, we will further develop the freely available EnzyDock and RxnNet programs. Finally, we will 

generate a wealth of knowledge and iden:fy rules for enan:omeric determinants in TPS and P450 enzymes.  

6. Preliminary Results 
The EnzyDock program developed in our group has 

been tested on relevant systems.17, 34, 100 Pipelines 

for streamlined work with protein prepara:on, 

structural alignment, modeling and docking of 

large data sets already exist in our group (Figure 

9).17, 100 The RxnNet program is a fully func:onal code and is ready for use in this project.  

 A key ques:on in this project is how many terpenes and terpenoids have known enanAomers and 

known enzymes. We performed a preliminary, non-exhaus:ve search of databases and the literature, and 

iden:fied significant number of such cases: monoterpenes (6), sesquiterpenes (12), and diterpenes (3). This 

is sufficient to ini:ate this project. 

7. Group details 
PI experience. We have the required exper:se and experience for the proposed study. We have extensive 

experience in enzyme modeling using enhanced sampling techniques, like umbrella sampling, and we have 

extensive experience in mul:scale simula:ons.17, 25, 102-103 Our research has focused intensely on TPS modeling 

(e.g., 14-17, 25, 34). We have the required experience in ML modeling and ML poten:als.15, 73, 100 Available 

Resources: Hardware. Each researcher has a desktop or laptop computer. The group has several Linux 

clusters. In total, the group possesses over 50 compute nodes with a total of ca. 2,000 cores and 5 GPU nodes. 

SoEware. CHARMM, Schrodinger suite of modeling programs, Gaussian, Q-Chem, ORCA, and addi:onal 

so@ware packages are available. We have licenses to the search engines men:oned in sec:on 3.2.1. 

Personnel. 9 PhD students, 3 MSc students, and 2 post-doctoral fellows. In the current project we will 

dedicate personnel as follows: 1 post-doc (P450, sec:ons 3.2.1 - 3.2.9), 1 PhD student (TPS, sec:ons 3.2.1 – 

3.2.9), 1 MSc student (TPS, 3.2.6 - 3.2.7).   

Figure 9. Workflow for automated EnzyDock simula6ons of 
database of enzymes and mechanisms for TPS and P450. 
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