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Exploring Enantiomeric Determinants in Natural Product Biosynthesis via an

Integrated Molecular Modeling and Artificial Intelligence Approach

1. Scientific Background

1.1. Highlight

Earthly and marine plants, animals, fungi, and bacteria, among other organisms, produce a vast array of
natural products, and these have been studied extensively in the past century. Enantiomeric pairs of these
natural products frequently occur in nature, but the factors that determine which antipode is produced are
not well understood. Considering the fundamental role of enantiomers in molecular recognition by proteins
across all of nature, this field demands more intensive investigation and dedicated research. In this
proposal we aim to explore enantiomeric determinants in natural product biosynthesis via an integrated

molecular modeling and artificial intelligence approach.

1.2. Natural Products and Enantiomers

Earthly and marine plants, animals, fungi, and bacteria, among other organisms, produce a vast array of
secondary metabolites, commonly called natural products.? Unlike primary metabolites, which are essential
for survival, secondary metabolites are not required for basic life functions; however, they often support
reproductive or defensive roles within the species that generate them.>* From a medicinal perspective,
natural products are an invaluable source of bioactive compounds, including antitumor, antibacterial, anti-
inflammatory, insecticidal, and immunosuppressive agents, among others. These bioactivities have been
extensively harnessed in drug discovery and development projects.>®

In many cases, chiral natural products are biosynthesized in nature as single, optically pure
enantiomers, with only one specific form produced by the organism.? 7 For instance, the diterpene Taxol is
synthesized by the Taxus species (yew trees) with a distinct stereochemistry, which is crucial to its function as
a potent anticancer agent.®® However, enantiomeric pairs of natural products do frequently occur in nature
(Figure 1). These mirror-image compounds are often found in different genera or species, where one
enantiomer is isolated from one species and its opposite from another. Occasionally, a single species may
produce both enantiomers, which can be isolated either as racemic or scalemic mixtures. 7~ 10

Bioactive natural products have been studied extensively in the past century, yet the enzymatic
synthesis of enantiomeric natural products is not well understood. This results from multiple factors, including
the natural predominance of one enantiomer over its counterpart, which can leave the less common
enantiomer undetected or unknown. Additionally, limited information on the sequence and structure of the
enzymes involved in enantiomer formation adds to this challenge, and the enantiomeric characterization of

1

natural products, which can be challenging,'! is not always reported in the literature. Considering the



fundamental role of enantiomers in
molecular recognition by proteins
across all of nature, this field demands
more intensive exploration and
dedicated research. Several excellent
studies have explored how to predict
enantiomeric specificity in relatively
simple enzyme reactions,'**® but natural
product  biosynthesis presents a
significant challenge due to the complex
chemistry.

In our research group we have
dedicated much attention in recent years
to the biosynthesis of terpenes via
terpene synthases (TPS).}*° TPS catalyze
the first step in the formation of
terpenoids, which comprise the largest
compounds.? TPS also form building blo

meroterpenoids, and alkaloids.” 2! The
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Figure 1. Examples of natural products with known enantiomers. (+)-
limonene and (+)-a-pinene are monoterpenes, (1)-y-cadinene are
sesquiterpenes, (+)-isoelisabethatriene A are diterpenes, (+)-trans-
carveol are monoterpenoids, and (+)-hyperjapone A are
hypothesized to be formed from the reaction between the achiral
sesquiterpene humulene and a phloroglucinol intermediate via a
Diels-alderase.! Green colored rings encode molecules from plant
sources, while blue color encodes molecules from microbial sources.

class of natural products in nature with well over 80,000 known
cks for other natural products, like steroids, saponins, carotenoids,

intricate structures generated by TPS are the result of substrate

binding and folding in the active site, enzyme-controlled carbocation reaction cascades, and final reaction

quenching.'® 2> 22 The chemical reactions taking place in TPS can be extremely complex, involving highly

specific ring formations, proton and hydride shifts, and Wagner—Meerwein rearrangements, spanning up to

a dozen discrete chemical steps involving carbocations.?>?> The universal substrates for TPS are relatively

simple Cs,isoprenoid diphosphates (n=1,

2, 3, ...) precursors; the most common being monoterpenes (n=2),

sesquiterpenes (n=3) and diterpenes (n=4) (Figure 2).2%2% 2628 The corresponding substrates are called gerany!

diphosphate (GPP), farnesyl
diphosphate (FPP), and geranyl
geranyl diphosphate (GGPP),
respectively (Figure 2A). Subsequent
functionalizing enzymes, like P450
monooxygenases, acyltransferases,
and glycosyltransferases, generate
functionalized terpenes, i.e.,
terpenoids. Enantiomeric terpenes
and terpenoids are relatively

common, though they are typically
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Figure 2. (A) Different TPS substrates: GPP, FPP, and GGPP. (B) Naming
convention for pyrophosphate and magnesium atoms. (C) Biphasic active
site of class | TPS. Polar residues with carbons are shown in pink,
hydrophobic residues with carbons are shown in yellow, carbocation
carbons are colored cyan, and magnesium ions are colored green.
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restricted to mono-, sesqui-, and, rarely, di-terpenes and terpenoids.” 2 2°31 The enantiomeric determinants

in TPS are not well understood, although many terpenes have been fully characterized and in the case of
limonene (Figure 1) both crystal structures have been resolved.3?*3 This is partly due to the intricate chemistry
involved in TPS, where the enzyme's specific role in the detailed reaction mechanism often remains unclear.
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cleavage. We brought Figure 3. Top: (A) Salvia officinalis bornyl diphosphate synthase (BPPS), an example of a
plant TPS, where the isoprenoid group is connected via Ola (PDB ID: 1n21). (B) Naming
initial data suggesting  (,nyention for positively charged residues binding the diphosphate group for plant TPS
that TPS bind their ligand follows the residue numbers in Salvia officinalis BPPS. Bottom: (C) Aspergillus terreus
aristolochene synthase (AS), an example of a microbial TPS, where the isoprenoid group
in a binary mode: is connected via O2a (PDB ID: 4kux). (D) Naming convention for positively charged
residues binding the diphosphate group for microbial TPS follows the residue numbers

connecting the in Aspergillus terreus AS.

isoprenoid moiety to
either Ola or O2a of the diphosphate (PP) moiety (Figure 2, 3). We were also able to show that our docking
approach (EnyDock!*3%) was able to correctly predict this binary binding mode preference in all cases tested.*®
This new ligand binding rule is rooted in evolutionary differences between TPS,*> and we brought evidence
that this alteration in binding, and subsequent chemistry, is due to TPS originating from plants (pTPS) or
microorganisms (mTPS).

Importantly, we further suggested that this difference can cast light on the frequent observation that
the chiral TPS products or intermediates of plant®® and bacterial®’ terpene synthases represent opposite
enantiomers.?% 37 For instance, isolation of enantiomeric sesquiterpenes has revealed that terrestrial and
marine plant sources sometimes produce opposite enantiomers.®®3° A fascinating example involving a
monoterpene is the biosynthesis of 1,8-cineol by Cineol Synthase (Figure 4).3*%° Although the final product
is achiral, the reaction mechanism proceeds via the chiral terpinyl cation intermediate, as shown by isotope

labeling experiments. In this case, the (R)-terpinyl cation is formed in Salvia officinalis (plant),*

while the
bacterial enzyme (Streptomyces clavuligerus, sc) proceeds via the (S)-terpinyl cation.3! Analysis of the active
site from crystal structures and EnzyDock docking studies, suggested that the active site architectures in these

plant and microbial enzymes have evolved to accommodate different enantiomers (Figure 4).
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germacrene D-synthases from Figure 4. (A) The biosynthesis of 1,8-cineol by Cineol Synthase. Different

enantiomeric intermediates yield an achiral product. (B) EnzyDock docking
Solidago canadensis form both reveals preference for Ola binding in pTPS (with and without(*) an active site
water) and O2a binding in mTPS. (C) Active site of Cineol Synthases pTPS (PDB
ID: 2j5¢, green) and mTPS (PDB ID: 5nx7, cyan). The presumably catalytically
Hence, the same species often important Asn residue is in flanking positions in pTPS (N338) and mTPS (N305).

(+)- and (-)-germacrene D.*

form different enantiomers, and the factors determining chirality in TPS are likely complex and
multifaceted. It is the goal of this proposed project to explore the enantiomeric determinants in terpene

biosynthesis in TPS and in subsequent terpene binding and functionalization in P450 enzymes.

2. Research Objectives and Expected Significance

Little is known about the intricate genetic, biocatalytic, and mechanistic details of how enantiomeric
natural products are formed.* Modifications of chemoselectivity in TPS, P450, and other natural product
enzymes require the change of only a few amino acids, but the sequence differences between antipodal
synthases show that the alteration of substrate enantioselectivity is the result of significant sequence
differences.®? The objective of this project is to explore the enantiomeric determinants in terpene
biosynthesis (in class | TPS) and subsequent terpene binding and functionalization (in P450). To this end,
we plan to utilize an integrated molecular modeling and artificial intelligence (Al) approach to explore key
differences between enzymes forming natural product enantiomers. We will construct annotated databases
from collected data of known terpenes and terpenoids, the protein sequences of known TPS and relevant
P450s, and available crystal structures from databases and the literature. We will apply computational biology
and chemistry modeling and data mining approaches to augment and extract knowledge from these
databases. This knowledge will include correlations between enzyme chemistry (e.g., mechanisms, role of

enzyme in catalysis, and formation of enantiomers) and enzyme taxonomy and physical attributes (e.g., active
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site structure, conserved 3D motifs). The databases and knowledge created during this project will be made

available via a cloud-based web site.

Understanding the determinants of the biosynthesis of enantiomeric natural products is critical for
many areas of science, like drug development, enzyme catalysis and design, biodiversity and evolution,
molecular sensors, and synthetic biology and biotechnology. Hence, we expect the knowledge regarding
the determinants of terpene and terpenoid biosynthesis and in particular enantiomeric specificity, will be

important for a broad scientific audience.

3. Detailed Description of the Proposed Research

3.1. Working Hypothesis

The chirality of secondary metabolites formed in nature is determined by the enzymes that synthesize them,
and specifically the active site architecture and dynamics, substrate positioning, and the detailed reaction
mechanism. These, in turn, are shaped by factors ranging from evolutionary pressure on the organism to form
biologically important enantiomers to the inherent chemistry of the reaction being catalyzed. Hence, to
appreciate the determinants of enantiomer formation, it is necessary to understand both the taxonomy of
the enzymes and the enzyme reactions in atomic detail. As described in the Scientific Background (1.2), we
recently discovered a deep connection between the substrate binding mode in TPS and the enzyme’s
taxonomy, which might be connected to enantiomeric prevalence in plants and microorganisms.*> Additional
factors that might play a role in enantiomeric preferences in TPS enzymes are substrate fold in the active site;
R/S preferences for the chiral substrates linalyl-PP (mono-TPS), nerolidyl-PP (sesqui-TPS), or geranyl-linalyl-
PP (di-TPS) which are required substrate intermediates in many mechanisms; and Re/Si approach of cations

to double bonds.

In the following, we will detail a research program designed to further our understanding of the
biological formation of enantiomers of terpenes and terpenoids, which together constitute the largest family

of natural products.

3.2. Project Design and Methods

In this research project we will construct annotated databases of natural products, natural product enzymes,
and their catalytic reactions. We will apply computational biology and chemistry modeling and data mining
approaches to augment and extract knowledge regarding catalysis, and in particular enantiomer formation,
from these databases. We stress that our analysis will cover all terpenes and terpenoids; not just those with
identified enantiomers. The overall project design is presented in Figure 5 and a detailed description of the

methods appears below.
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Figure 5. Workflow showing relation between project parts and databases generated. Databases are shown
as stacks of grey disks and the adjacent pickaxe represents data mining. (3.2.1) Collect all known mono-,
sesqui-, and di-terpenes and terpenoids from available databases and literature, and create an annotated
database. Both enantiomeric antipodes will be deposited if available. (3.2.2) Create all possible mechanisms
for the terpenes (e.g., carbocation reactions) and terpenoids (e.g., oxidation reactions) using RxnNet and
compute energies for all stationary points using quantum chemistry methods (substrates, intermediates,
transition states, products), and create an annotated database and link to products database. (3.2.3) Create
machine learning (ML) potential energy models for terpene and terpenoid chemistry using the energies from
the reaction states database and augmented by energy calculations of additional non-stationary points.
(3.2.4) Create an annotated local sequence database for TPS and P450 enzymes and link to products and
possible mechanisms in case these are known. (3.2.5) Create 3D structure database for the TPS and P450
enzymes in the sequence database. A structure that is not an active form (e.g., apo-state or not fully closed
holo-state), will be “activated” using specialized modeling techniques described in the text. If a crystal
structure exists in active structural form, it will be completed using Modeller (if missing residues) and refined

using CHARMM and added to the 3D enzyme database. If a crystal structure exists in inactive structural form,
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it will be modelled into an active form using Modeller and CHARMM. If no crystal structure exists, it will be

modelled using AlphaFold3 and modelled into an active form using Modeller and CHARMM as needed. (3.2.6)
Using the reaction mechanism states and 3D enzyme structures databases, in conjunction with the ML
potential, we will perform mechanistic docking using EnzyDock. The docking results will be curated and the
most likely docked mechanisms will be deposited to the docked reaction states database. (3.2.7) Detailed
guantum mechanics-molecular mechanics (QM/MM) and ML/MM free energy simulations of TPS and P450

enzyme mechanisms where both enantiomers are known.

3.2.1. Create and mine a chemical database of known terpenes and terpenoids. We will collect all
known mono-, sesqui-, and di-terpenes and terpenoids originating from TPS and P450 enzymes from available
databases and literature, and create an annotated database. Both enantiomeric antipodes will be deposited
if known. As a starting point, we will use the excellent Natural Product Atlas,”® MARTS-DB (www.marts-
db.org), and TeroKit databases as starting points, which have > 150,000 terpenoids.*® Additionally, we will use
a range of standard search tools like PubChem, Reaxys, SciFinder, ChemSpider, and Web of Science to identify
additional terpenes and terpenoids. The dataset will be annotated with information like molecule
identification (e.g., name, molecular formula, SMILES, etc.), classification (e.g., mono-, sesqui-, di-terpene),
structural data (e.g., 2D, 3D structures, chiral centers and enantiomeric characterization), origin (plants, fungi,
or bacteria), biosynthetic pathway (substrate, pathway, enzymes involved),
biological/ecological/pharmaceutical activity, and literature references. The database will also include links
to other databases in this project, like the reaction mechanism database. Links to external publicly available

databases, like PubChem, will be included where much additional information is available.

Based on this information we will apply machine learning (ML) approaches to obtain insights into the
distribution of terpene and terpenoid enantiomers in nature. The ML methods will include clustering
algorithms, which can reveal patterns of enantiomer distributions across different taxonomic groups (e.g., k-
means and hierarchical clustering), classification algorithms (e.g., Support Vector Machines (SVM), Random
Forests (RF), k-Nearest Neighbors (k-NN), and dimensionality reduction (e.g., Principal Component Analysis
(PCA) or t-SNE). If sufficient data is available, deep learning (DL) tools will be applied. These tools are

commonly used in our group.

3.2.2. Create and mine a chemical database for reaction mechanisms leading to terpenes and

terpenoids using literature, RxnNet, and quantum mechanical calculations. We will create plausible
mechanisms for the terpenes (carbocation reactions) and terpenoids (oxidation reactions) and compute
energies for all stationary points using our RxnNet approach (see below) and quantum chemistry methods in

4748 3nd chloroform solvent, which has been used in nano-capsules terpene synthesis.***° The

the gas-phase
reaction mechanism information will be used to create an annotated reaction database, which will be used

by our docking approach EnzyDock (see 3.2.6 below). The RxnNet mechanisms will be carefully compared
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with the vast number of mechanisms proposed in earlier literature (experimental and computational), e.g.

ref. 22485152 3nd in the MARTS-DB database (www.marts-db.org) which has collected > 1,500 mechanisms
from the literature. We stress that extensive earlier work has shown that computational modeling of gas-

phase reactions for these systems can provide crucial insights into the enzymatic process.”- %8

Inspired by earlier work,>-® §
we recently developed a carbocation St:'\
reaction tree generator Python code / 117 11,10\
called RxnNet (Figure 6), which can
automatically generate any g:O\ ;;CQ\ EE:;\ ‘&V
carbocation intermediate based on

the SMILES string of a substrate,”’ @L\_)' g:@\ @\

using predefined, known chemical Input:

SMILES string

steps encoded as SMARTS strings < / \ 1 SMARTS Reactions:
([C+:11-[C:2]=[C:3])>>([C+:3]-[C:2]=[C+0:1])
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Full paths for the desired product
rearrangements, proton and hydride . ] ) ]
Figure 6. Example of reaction tree generated for a sesquiterpenyl cation,
transfers) (several manuscript  which is formed from farnesyl diphosphate. The first reaction step shows

all possible cyclizations, which allows distinction between different TPS

describing RxnNet are in preparation). according to sequence.

These steps are combined to generate distinct mechanisms, including substrates, intermediates, transition
states, and products. Special care is taken to allow for chirality and isotope labeling®® in RxnNet, so that all
fine details of the chemical reactions are accounted for. RxnNet is written in Python and makes extensive use
of the RDKit library (www.rdkit.org/), and it includes automated dispatching of quantum chemical calculations
using the xTB, Gaussian 16 and ORCA programs. RxnNet performs conformational search using classical force
fields, followed by semi-empirical (SE) (GFNn-xTB) or ML (e.g., AIMNet2) calculations on the lowest energy
conformers followed by final density functional theory (DFT) scoring using M062X or wB97M-V with suitable
basis sets (e.g., def2-TZVPP), as these are robust methods (e.g., see Table 1 in >°) and can reliably treat terpene
chemistry as we have shown in a recent study.?® This protocol identifies both intermediates using standard
geometry optimization and transition states using a novel combination of a geodesic initial reaction pathway®!
guess followed by the climbing image nudged elastic band (NEB) algorithm.®? In the current project, the
RxnNet program will be expanded to include P450 enzymatic reactions that modify terpenes (e.g.,
hydroxylation, epoxidation, desaturation, oxidative ring formation and rearrangement, and C-C bond
cleavage). We will employ the RxnNet program to map the reaction mechanisms for the reactions in the
chemical database of known terpenes and terpenoids that are generated by TPS and P450 enzymes (section

3.2.1).

The database will include 1D, 2D, and 3D information about all reaction states (substrates,

intermediates, transition states, products) of the TPS and P450 products. The database will be augmented by
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comparison and references to the extensive reaction information that already exists in the literature (see e.g.,

22,48,51) The three-dimensional structures (e.g., Cartesian coordinates) for intermediates and transition states,
together with models for the substrates and the products, will be used for docking (3.2.6) in enzymes from

the three-dimensional protein structure database (3.2.5), as described below.

We will apply ML/DL approaches (e.g., see list of methods in 3.2.1) to identify possible correlations
between details of the most plausible reaction mechanism in the gas-phase and in chloroform with
information from the chemical database of terpenes and terpenoids (e.g., origin, biosynthetic pathway,
biological/ecological/pharmaceutical activity). For instance, previous work has identified correlation between

the initial ring closure step in sesquiterpene biosynthesis and product origin.53-4

3.2.3. Create a ML potential for efficient and accurate large-scale docking using EnzyDock and free
energy simulations. To be able to rapidly screen many reaction pathways in EnzyDock (see 3.2.6 below) and
perform free energy simulations (see 3.2.7 below), it will be advantageous to employ fast, yet accurate,
potentials. We will create ML potential energy models for terpene and terpenoid chemistry using the energies
from the reaction states database (see section 3.2.2) and augmented by energy calculations of additional
non-stationary points (e.g., using random coordinate perturbations and molecular dynamics (MD)
simulations). This will be extended to also include ML/MM potentials based on data from QM/MM

t,17: 196566 35 well as calculations we will perform herein.

calculations performed for these systems in the pas
Our strategy will follow the ML and ML/MM approach presented in ref. ¢, which has been used in enzyme
calculations. In the ML/MM implementation, each ML atom is represented by its local environment matrix to
capture the internal interactions within the ML region (learned from the QM interactions), while the MM
atoms are represented as point charges without atomic identities for the ML—MM electrostatic interactions
and the ML-MM van der Waals interactions are treated at the MM level. The PI (D. T. M.) spent four weeks
this past summer with the authors of ®” and received detailed training in developing and using this ML and
ML/MM approach. Considering the complexity of the chemistry involved in TPS and P450 chemistry, we will
not attempt to learn the potential energy surface from scratch. Rather, we will adopt a A-ML approach using
a SE method (e.g., DFTB®®%°) as the basis for energy calculations as suggested in ¢’, and ML will be used to
learn the difference between the SE method and the high level DFT used (e.g., wB97M-V from section 3.2.2).
All methods described in this section, including the A-ML/MM methods, ¢’ have been implemented in the
CHARMM simulation program,’® which is the platform used by EnzyDock.* 3** We will also explore the use of
equivariant graph neural network (EGNN) approaches initially proposed by Welling’* and co-workers and

)72
’

Kozinsky and co-workers (NequlP),”> which are data efficient and showed excellent performance on the QM9

and MD-17 databases, respectively.”* We have recently used EGNN in a ML study.”®

3.2.4. Create and mine a sequence database of known TPS and P450 enzymes. The goal of this

database and accompanying analysis is to point to residues likely to be involved in stabilizing specific
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carbocation skeletons and co-evolved active site residues, as well as form the basis for construction of 3D

models (see 3.2.5 below). For instance, it is well established that TPS active sites are rich in aromatic
residues,?’ which stabilize cations via m-cation interactions, but many other interactions are possible.® We
will gather sequence data and functionally annotate all TPS and P450 enzymes with known products (for
sesquiterpene synthases this information exists in part®® and this data will be downloaded and updated as
needed).”* Enzyme sequences (e.g., from all UniProt proteins, the OneKP transcriptome dataset and the
microbial genome database) will be identified using hidden Markov models, multiple sequence alignment,
followed by phylogenetic analysis, feature extraction (e.g., position-specific scoring matrix and position-
specific frequency matrix), and clustering. This will classify the enzymes, e.g., distinguish between mono-,
sesqui-, and diterpene synthases using methods like Terzyme’® or the convolutional neural network-based
DeepEC,”® which is freely available Python code. The mono-, sesqui- and di-TPS will be grouped separately
according to the known initial carbocation cyclization intermediates, as the initial cyclization determines the
initial branching of the reaction mechanism, using our mechanistic database (3.2.2). Subsequent clustering
of sequences according to ensuing carbocation reaction steps will be attempted, with input from the results
from RxnNet (3.2.2). The P450 synthases will be annotated according to the kind of chemical reaction they

perform. As a starting point, we will analyze existing plant”” and bacterial’® P450 databases.

We will link the sequence database with the chemical database of known terpenes and terpenoids
(3.2.1) and the chemical database for reaction mechanisms (3.2.2). The current approach expands on
excellent previous work on sesquiterpenes, where the focus was correlation between the initial cyclization

step in sesquiterpene formation and taxonomy.5354

3.2.5. Create and mine a 3D structure database for known TPS and P450 using available crystal
structures and refined AlphaFold3 models. We will create a 3D structure database for the TPS and P450
enzymes in the sequence database (see previous section, 3.2.4). 3D structural enzyme information for the
TPS and P450 families is important both for understanding the chemical mechanism of how terpenes and
terpenoids are formed, and in particular enantiomer formation, and for potential engineering of the enzymes
to design new product portfolios.'®” We have previously generated an initial dataset of selected class | mono-
, sesqui-, and di-TPSs in their catalytically fully closed, i.e., “active” form (i.e., fully closed holo state with key
conserved hydrogen bonds intact).’> Structure “activation” was achieved by enforcing a set of conserved
hydrogen bonds via restrained MD simulations and minimization.* This dataset will be expanded to include
the TPS and P450 enzymes in the sequence database (see previous section, 3.2.4). The enzymes will be
modeled in their catalytically competent, “active” state. This will be achieved by using a workflow combining
available crystal structures, AlphaFold3’°, and Modeller® (Figure 5). Whenever possible, crystal structures
will be employed. If these experimental structures are either of the apo enzyme or the holo enzyme not in a
fully catalytically competent state, the experimental structure will be modeled (i.e., “activated”) to generate

the fully active enzyme, as we have shown in the past for, e.g., taxadiene synthase® 8! and other TPS.»
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AlphaFold3 will be used to generate initial models in the many cases where no experimental crystal structure

exists. However, these structures might not be accurate enough for TPS modeling at the atomic level, as we
have recently indicated.®? Hence, subsequent refinement, or “activation”, of the model is necessary. This will

be achieved using Modeller, relying on existing TPS structures

N
>

resolved in their active state, e.g., for TPS the Salvia officinalis bornyl

&é °°o
(]

diphosphate synthase (PDB ID: 1n21%) and Aspergillus terreus

e

aristolochene synthase (PDB ID: 4kux®*) are good template structures.

=

For P450 enzymes, the structures of P450cam (PDB: 1Dz4,%° 2CPp,8¢

O [

4WJS¥”  for monoterpenes) and CYP76AH1 (PDB: 5YM3 for "
diterpenes®) are relevant and will be used for modeling. Specific

enzyme regions will be remodeled as needed to place highly

ACTIVE SITE VOLUME RATIO
®

conserved residues in positions required for catalysis, as identified by ‘ H H H H
SIT111

high quality crystal structures and prior modeling studies in our group.
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The final structure models will be relaxed using MD simulations and Figure 7. (A) Electrostatic potential in

minimization using the CHARMM program,’® which allows simulations @ TPS. (B) Active site volume in a TPS.
(C) Asymmetry of actives sites in
with many restraints that will keep important conserved protein- several TPS, defined as the ratio
between active site volume near the
bound O (Ola for pTPS, O2a for
Tasks automation will be achieved by writing scripts in Python, Linux, =~ mTPS) and the other O (Ola for
mTPS, O2a for pTPS) (see Figure 3).

protein and protein-ligand interactions®® intact during the simulations.

and CHARMM, as we have done previously.?

We will apply ML techniques along with carefully crafted descriptors to analyze the active sites in TPS
and P450 enzymes. The enzymes in these families will be aligned in 3D according to CATH fold classification
(https://www.cathdb.info/) to obtain meaningful spatial alignments. 3D descriptors include active site

volume, active site asymmetry (Figure 7),%

accessible surface area, active site depth, active site curvature,
hydrophobicity/hydrophilicity patterns, electrostatic potential (Figure 7),%° and rigidity/flexibility. Amino acid
physicochemical features, like ability to stabilize carbocations (as encoded in descriptors like zScales or
VHSR),®® will be extracted and clustered in 3D. This will define carbocation stabilizing residues within the
active site 3D space according to TPS sub-families and binding of terpenes in P450 enzymes. Using such
descriptors, we will apply ML/DL techniques® to obtain correlation between conserved 3D features in TPS

and P450 enzymes and their taxonomy and chemical function (i.e., chemistry, see 3.2.2). We will carefully

analyze and compare the differences between pairs of enzymes forming enantiomers.

3.2.6. Create and mine a 3D enzyme mechanism database of TPS and P450 enzymes with docked
states (bound substrates, intermediates, transition states, and products) and database mining. We
will perform mechanistic docking of the compounds in the chemical database of known terpenes and
terpenoids (3.2.1). To this end, we will employ our EnzyDock program in conjunction with the chemical

database for reaction mechanisms leading to terpenes and terpenoids (3.2.2) and the 3D structure database
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for known TPS and P450 (3.2.5). Here we will provide a brief description of EnzyDock and how it can be an

important tool for understanding the reactions in TPS and P450 enzymes.

We recently developed EnzyDock, which is a CHARMM-based docking program,’® and has conceptual
similarities with docking tools targeting multistep reactions in TPS.°*** Since EnzyDock relies on CHARMM
functionalities, it benefits from decades of development by the CHARMM development team.”® EnzyDock
includes a series of protocols to predict the chemically relevant orientations, conformations, and energies of
reaction coordinate states (Figure 8). The main feature incorporated into EnzyDock is mechanism-based
multi-state consensus docking that allows the docking of multiple states (reaction substrate, intermediates,
transition states, products) in a mechanistically consistent (i.e., consensus or similar poses) and induced-fit
manner. For instance, this assures that the substrate (GPP, FPP, GGPP) in TPS folds correctly if one performs
docking with the product as a template (or “seed”) for the docking of all states. We note that EnzyDock is a
docking-tool; it does not compute free energy profiles, which can be obtained from e.g. umbrella sampling,*®
metadynamics,®® or transition-path sampling®” and this will be addressed below in section 3.2.7. Consensus
docking is achieved by applying geometric restraints on reaction states relative to a pre-determined “seed”
state, such that all states are docked with similar poses (within a given user-defined threshold), and a reaction
Pathfinder module identifies all geometrically matching poses along a reaction path (Figure 8).” MD and MC
simulated annealing sampling of bound states is performed on a grid representing the enzyme, and poses are
scored using the CHARMM36°® and CGenFF*° force fields (FF) and optional refinement using QVI/MM?3* with
a range of QM methods (e.g., SE, DFT). Solvation is modeled using implicit solvation and explicit waters may
be included. We have applied EnzyDock to diverse enzyme systems, such as terpene synthases,*17 25 34

racemases, Diels-Alderases, covalently bound ligands,*” 34 and the main protease in SARS-CoV-2.1%°

Docking poses
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- 42 0000000
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diphosphata Poses should
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Figure 8. Main concepts of EnzyDock. Top Left: Dock multiple states into enzyme (substrate, S, intermediates

A-l, product) with chemical information like regio- and stereochemistry encoded via restraints. Top Right:



Application No. 3176/25
P11 Name: Dan T Major
Large sets of poses are obtained, and geometrically matching poses are found via the Pathfinder program

(grey line). If a “seed” state is defined (e.g., here the substrate, S), restraints are applied on subsequent states
to enforce poses similar to S. Bottom: EnzyDock implementation in CHARMM-GUI.'%! Left: Ligand building.

Middle: Defining restraints. Right: Defining docking grid and flexible active site residues.

In the current project we will score poses using the A-ML/MM potential developed in section 3.2.3.
This will allow us to rapidly and accurately score binding modes of substrate, intermediates, transitions states,
and products for probably mechanisms for each enzyme in the 3D structure database for known TPS and
P450 at a low cost. To allow rapid screening of the many ligand states involved in mechanistic docking, we
have already implemented an interface between RxnNet and EnzyDock, which allows providing EnzyDock
with Python Pickle files of mechanisms from RxnNet. The docking results will be curated and compared with
available mutational data in the literature for cases where this exists. The most probable docked mechanisms
will be deposited to the docked reaction database, which will be mined (see 3.2.8 below). We will analyze
and compare the docking results for pairs of enzymes forming enantiomers. In TPS enzymes, this includes
substrate fold in the active site and oxygen binding preference (Ola vs O2«, see Figures 2, 3); R/S preferences
for the chiral substrates linalyl-PP (mono-TPS), nerolidyl-PP (sesqui-TPS), or geranyl-linalyl-PP (di-TPS) where
relevant for mechanism; and Re/Si approach of cations to double bonds. In P450s we will look for differential

binding of enantiomeric terpenes and functionalization creating new chiral positions leading to enantiomers.

3.2.7. Complete mechanistic studies. We will perform in depth study of selected TPS and P450 reactions
where both enantiomers are known using QM/MM and A-ML/MM potentials and free energy simulations.
We will compute the potential of mean force profiles using multidimensional umbrella sampling,” which we
have used extensively for TPS reactions and is a well-established approach. We will compare the QM(wB97M-
V)/MM and A-ML/MM free energy profiles for selected reactions and if necessary, improve the A-ML/MM by
further training the ML model (transfer learning). A suitable system for this purpose is limonene synthase, for
which crystal structures exist for both (-)-4S- and (+)-4R-limonene synthases in their holo-form.3?33 Once the
accuracy of the A-ML/MM has been validated, we will use this potential exclusively due to its efficiency. The
accuracy of the simulations will be validated against experimentally observed product distributions. Based on
the simulation data, we will identify patterns in the enantio-selectivity role played by active site residues and

cofactors (PP, Mg?* ions) obtained from the complete mechanistic studies and docking (3.2.6).

3.2.8. Data integration and mining. In this project, we will produce annotated databases of terpenes and
terpenoids and their enzymes (sequences and 3D structures), biosynthesis reactions, and structural models
of all reaction states for all reactions studied. This is a wealth of information that will be mined together to
obtain deeper knowledge of TPS and P450 enzyme catalysis in general and enantiomeric specificity in
particular. To this end, we will adopt the novel approach in ref. ®1, termed EzMechanism, which can

automatically infer mechanistic paths for a given 3D active site and enzyme reaction, based on a set of
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catalytic rules compiled from the Mechanism and Catalytic Site Atlas, a database of enzyme mechanisms.

Currently this atlas only contains five TPS reactions, which is far too few to allow efficient learning of complex
TPS and P450 reactions. Additionally, the proposed TPS mechanisms in the atlas are not curated and are not
always in line with the consensus view in the literature (e.g., for trichodiene synthase®!). Here we propose to
combine the extensive mechanistic information generated in this proposal based on the catalytic rules in
RxnNet (3.2.2), together with 3D enzyme models (3.2.5) and docked reaction states (3.2.6), to allow greatly
enhanced generation of TPS and P450 reaction rules and hypotheses. Our extensive experience in modeling
TPS reactions will allow us to generate highly specific TPS rules, both chemical rules like in RxnNet and rules
of the role of the enzyme in guiding reaction cascades, and particularly enantioselectivity. Once applied to
TPS reactions, we will apply the same approach to P450 reactions. We expect that the rules and hypotheses
generated by this model will provide deep insight into differences between enantiomer catalysis and will also

clarify areas where we have insufficient knowledge.

3.2.9. Data Management. The data collected will initially be arranged in local databases that will be hosted
on our servers at Bar-llan University and once a database is complete will be hosted in the cloud for public
access (e.g., Amazon Web Service or Google Cloud). The databases will be written in Python using cloud-
ready databases like PostgreSQL, MySQL, or MongoDB. The database curation will include data collection and
selection, data cleaning, annotation and enrichment, verification and validation, and documentation. Links
between databases will be implemented using Python libraries like Foreign Data Wrappers (for PostgreSQL
and MySQL) or Database References (for MongoDB). All databases will be hosted on a single website; since

the focus of this project is basic science, the initial website will be simple with limited features.

4. Potential caveats

(1) The ML potential might not be accurate and general enough to treat the complex carbocation and
oxidation reactions encountered in this project. We will address this by trying different ML architectures, as
well as increasing the amount of training data. However, if the ML potentials accuracy is insufficient, we will
employ traditional EnzyDock docking scoring and QM(wB97M-V)/MM for simulations. This means a smaller
number of systems can be studied using free energy simulations, but this is not likely to impact the general
conclusions of the project. (2) We might not identify new rules for biosynthesis of enantiomers. Indeed, this
is a possibility. However, this in itself is an important finding, as it would underscore the complexity of the
problem. Furthermore, the wealth of annotated data, mechanistic and structural data, and deep knowledge

generated regarding TPS and P450 biosynthesis will be highly valuable for the scientific community.

5. Expected Outcome and Dissemination

This project will generate searchable databases with a basic, easily accessible web-interface that will serve

the scientific community. The databases will include:
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(1) Annotated terpenes and terpenoids, which includes enantiomeric information and all relevant

information regarding the enzyme responsible for its synthesis (section 3.2.1).

(2) Terpene and terpenoid reactions, which includes all possible reaction mechanisms towards products
in the database, including the presumed dominant mechanism. This will include accurate DFT energies
for the gas-phase and chloroform reactions towards all products (section 3.2.2).

(3) Enzyme structure database of TPS and P450 enzymes in closed catalytically active form (section 3.2.5).

(4) Enzyme mechanism database with all enzymes in closed catalytically active form with all docked states
(substrates, intermediates, transition states, and products) (section 3.2.6).

Additionally, we will further develop the freely available EnzyDock and RxnNet programs. Finally, we will

generate a wealth of knowledge and identify rules for enantiomeric determinants in TPS and P450 enzymes.

6. Preliminary Results

The EnzyDock program developed in our group has —
; . l\ ‘ } r
been tested on relevant systems.!”- 34 190 pipelines = | 1 |
£ ruct Preparation Large scale Data
for streamlined work with protein preparation, and mechanistic. (0" Dok EnayDock - analysis

database

structural alignment, modeling and docking of Figure 9. Workflow for automated EnzyDock simulations of

large data sets already exist in our group (Figure database of enzymes and mechanisms for TPS and P450.

9).17:1% The RxnNet program is a fully functional code and is ready for use in this project.

A key question in this project is how many terpenes and terpenoids have known enantiomers and
known enzymes. We performed a preliminary, non-exhaustive search of databases and the literature, and
identified significant number of such cases: monoterpenes (6), sesquiterpenes (12), and diterpenes (3). This

is sufficient to initiate this project.

7. Group details

Pl experience. We have the required expertise and experience for the proposed study. We have extensive
experience in enzyme modeling using enhanced sampling techniques, like umbrella sampling, and we have
extensive experience in multiscale simulations.'”- 2> 102103 Qyr research has focused intensely on TPS modeling
(e.g., #1725 3%) We have the required experience in ML modeling and ML potentials.’> 7> 1% Available
Resources: Hardware. Each researcher has a desktop or laptop computer. The group has several Linux
clusters. In total, the group possesses over 50 compute nodes with a total of ca. 2,000 cores and 5 GPU nodes.
Software. CHARMM, Schrodinger suite of modeling programs, Gaussian, Q-Chem, ORCA, and additional
software packages are available. We have licenses to the search engines mentioned in section 3.2.1.
Personnel. 9 PhD students, 3 MSc students, and 2 post-doctoral fellows. In the current project we will
dedicate personnel as follows: 1 post-doc (P450, sections 3.2.1 - 3.2.9), 1 PhD student (TPS, sections 3.2.1 —
3.2.9), 1 MSc student (TPS, 3.2.6 - 3.2.7).
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