
Application No. xxxx/xx. PI: Rotem Dror

1 Scientific Background
Consider
chang-
ing the
font.

The field of Natural Language Processing (NLP) has undergone remarkable transformations with
the rise of large language models (LLMs). These models are now widely used as text generators across
a range of applications, sometimes even being anthropomorphized and attributed with human-like
qualities such as intelligence, empathy, and humor. While many applications of LLMs are constructive
and beneficial, others raise concerns of misuse or even harm to humanity as a whole and to the scientific
community in particular [7, 56].

For researchers, it can be disconcerting to observe that a single methodology or tool is able to
rise to completely dominate a research field, and LLMs have clearly become the de facto standard in
state-of-the-art NLP research. For example, the terms “LLM,” “large language models,” and other
related expressions appeared in 47% of the titles of long papers accepted to ACL 2025, the leading
conference of the NLP community. However, this pattern is not unprecedented. The NLP community
has experienced similar takeovers with the introduction of word embeddings such as Word2Vec in 2013
[39], the adoption of deep learning and LSTMs in 2015 [60], the emergence of attention mechanisms
and transformers in 2018 [53], and now with the advent of LLMs [33, 1, 35, 57]. Even prior to the
neural network era, comparable transitions occurred with the rise of probabilistic graphical models
[34] and the broader shift from linguistics-driven to statistical approaches in NLP.

Indeed, NLP has a long history of such “methodological conquests.” However, through each and
every one of them, one principle remained constant: human judgment and opinion was always
regarded as the ultimate gold standard and what researchers defined as their objective when
optimizing and designing models for language processing. In this research, I wish to explore
whether this foundational principle is still true and, in particular, to investigate if humans
are still required for annotating data and judging model outputs.

Labeled data is fundamental in NLP because it provides the ground truth that models learn from
and are evaluated against. Labeled data enables supervised learning by supplying input-output pairs,
supporting reliable evaluation and benchmarking, and capturing complex aspects and attributes of
text such as sentiment, intent and semantic roles, or linguistic phenomena, that models cannot infer
from raw text alone. However, with the advent of LLMs, which can generate, summarize, and
reason over text with no task-specific supervision or labels, the question of the necessity
and role of labeled data annotated by humans has resurfaced.

The position taken in this proposal is that labeled data remains essential. While LLMs achieve
impressive performance on widely known benchmarks, they still are generalists—they are not pre-
trained to optimize performance for every task or domain—and real-world applications often require
domain-specific knowledge and expertise, such as analyzing medical reports, legal texts, or under-
standing dialects and texts written in low-resource languages. Data annotations provide the labeled
data needed to fine-tune or adapt LLMs for such specialized use cases. Furthermore, without evalu-
ation against high-quality labels, it is impossible to know how well a model performs or to diagnose
its failures; labeled data serves as the gold standard for measuring accuracy, comparing models, and
understanding errors. Finally, human oversight is critical to assure fairness and robustness of models,
help detecting bias, preserve social values, and ensure inclusion [25]. By decorating the text with
complex linguistic, pragmatic, and cultural nuances, we guide models toward outputs that are reli-
able, interpretable, and aligned with human judgment and ethics. In short, even in the era of LLMs,
human-labeled data provide both the foundation and the compass for responsible, high-quality NLP
research and applications.
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At the same time, traditional manual annotation and model evaluation are slow, costly, and often
inconsistent processes. Almost every researcher who has curated, generated data, or supervised model
output evaluations has had to navigate it: drafting clear guidelines, accounting for labor costs, ethics
approvals, human fatigue, and other practical considerations [40, 38]. Once the annotations are
collected, they must be thoroughly reviewed for consistency and noisy annotators may need to be
filtered out. Today, however, we have the luxury of leveraging LLMs for annotation and evaluation.
This requires crafting an effective prompt, which can itself be assisted by LLMs, and implementing
a straightforward interface with the model’s API [43]. The result is a rapid, large-scale annotation
at minimal cost and effort. While not perfect and occasionally prone to hallucinations, this approach
drastically reduces the time, effort, and expense associated with traditional manual annotation.

So, while I unequivocally believe that we need humans in the loop of data annotation and model
evaluation, the role of human annotators has evolved. We still rely on human intelligence and pref-
erences when designing and guiding models, but the sheer volume of manual annotations required is
no longer as extensive as it once was. Instead, human supervision can focus on monitoring the evalu-
ation of model outputs, ensuring that automated labeling is accurate, and providing guidance where
the models struggle. This shift allows us to concentrate on quality rather than quantity. Instead of
annotating entire datasets, it is more effective to engage a smaller number of highly skilled annotators
to produce a high-quality sample that can guide automatic annotation and evaluation.

In this research proposal, my goal is to investigate how and when LLMs can effectively
and reliably replace human annotators and judges, as well as to develop methods for as-
sessing the quality of annotators in both subjective and objective NLP tasks. To achieve
this, we will conduct a thorough examination of the LLM-as-a-judge framework [36], explore potential
improvements to this paradigm, and propose new methodologies for implementing automatic annota-
tors and judges. In addition, we will design evaluation methodologies applicable to both human and
machine annotators and judges. This research will be complemented by large-scale empirical studies
across diverse NLP tasks and datasets, with the goal of identifying when and how LLM-based anno-
tation and evaluation can serve as a reliable substitute for human input, and when human expertise
remains indispensable.

1.1 LLM-as-A-Judge and LLM-as-An-Annotator

LLM-as-a-judge is a recently new paradigm in NLP that is increasingly being employed in both
research and industry [36, 49, 12, 13]. According to the initial definition of the paradigm, LLMs are
used as evaluators of model outputs [36]. The term LLM-as-an-annotator was coined in our recent
work [9], to denote the general paradigm that uses LLMs for annotation, evaluation, or labeling
tasks that are traditionally performed by humans. Thus, making LLM-as-a-judge a special case of
LLM-as-an-annotator.

LLMs are extensively used in NLP research, taking on a pivotal role once filled by humans. They
are employed to annotate new datasets [26, 50], or refine existing ones [42, 45], and commonly serve
as evaluators for benchmarking models and methods [2, 28, 36]. LLMs’ influence extends far beyond
the NLP field. They annotate papers for literature reviews [8, 30] and in social science, researchers
leverage LLM annotations to uncover social insights [54, 61]. Accordingly, LLMs directly shape the
results, findings, and insights of studies and guide the direction of scientific inquiry.

Despite the advantages of the LLM-as-a-judge paradigm, research shows that LLMs amplify biases,
leading to unfair or inconsistent judgments [4, 10, 58] and that they may struggle with tasks that re-
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quire deep contextual understanding or domain-specific expertise [46, 48]. These weaknesses highlight
the need for rigorous evaluation and transparency when relying on LLM annotations in research. I think
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1.2 Evaluation of LLMs as Judges and Annotators

Evaluating the potential of LLMs as reliable judges or annotators, replacing or completing human
effort, has embarked in recent studies that proposed and demonstrated the usage of LLMs as judges
[13, 59]. Chiang and Lee [12] investigated the feasibility of LLMs as alternatives to human evaluations.
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Their work demonstrated that LLMs can replace humans in certain evaluative tasks, albeit with some
limitations, particularly in complex, subjective contexts.
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In a related vein, Dong et al. [19] explored the concept of personalized LLM judges. Their research
suggested that LLMs could be fine-tuned to reflect individual preferences or judgments, offering a
personalized evaluation framework that can enhance user-specific tasks . Building on this, Verga et al.

such as?

[55] proposed an approach of using a panel of diverse LLM models to evaluate outputs, shifting the
paradigm from a single authoritative judge to a jury of models, a concept that was suggested before
by Gordon et al. [27] in the pre-LLM era.

The question of bias in LLM evaluations has been a prominent concern in the literature. Jung
et al. [31] focused on ensuring provable guarantees for human agreement when using LLMs as judges.
Their work introduced mechanisms to align LLM outputs with human consensus, aiming to mitigate
judgment discrepancies arising from model biases. Similarly, Chen et al. [10] conducted an analysis on
judgment biases in LLMs, comparing human and LLM decision-making processes. They emphasized
the need for bias-mitigation strategies to improve fairness and reliability in automated judgments.

Still, many studies employing LLM annotations do not explicitly measure the alignment between
LLMs and humans, and those that do typically use traditional measures such as accuracy (% agree-
ment), F1 score, inter-annotator agreement (IAA) kappas [14, 24], and correlations [37], which have
limitations. To start, IAA measures assess agreement among a group of annotators, while our goal is
to compare the LLM to the group of human annotators. Other measures frequently rely on majority
vote labels, overlooking important nuances that individuals introduce. In a recently published study,
we establish a criterion for making a definitive yes/no decision on whether an LLM can replace a hu-
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man annotator and provide a rigorous statistical analysis to ensure that replacement is justified (see
Figure 1 for an illustration of the method) [9]. This is a first step in accomplishing the objectives of
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this research proposal that are outlined in the next section. However, agreement between annotators
should not be regarded as the sole indicator of reliable annotators. There are several reasons for this:

Subjectivity of Interpretations: Different annotators may have varying perspectives, biases, or
expertise levels, leading to differences in judgment even when following the same guidelines. This is
particularly relevant for tasks involving emotions, opinions, or cultural aspects.

Task Complexity and Ambiguity: Some annotation tasks inherently involve ambiguous cases
where multiple interpretations are reasonable, such as measuring the quality of a generated story
or text summaries. High agreement does not necessarily imply correctness, nor does low agreement
always indicate poor-quality annotations. For example, in summarization evaluation, one annotator
might prioritize factual coverage of key events, while another might value readability and conciseness
more. Both perspectives are valid, yet they may lead to different judgments about the same summary.
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1. Exclude each annotator in turn, and estimate the probabilities that the LLM
aligns better with the remaining than the excluded one (     ) and vice versa (     )

4. Calculate the LLM's winning rate and determine if it can replace humans.

3. Apply an FDR procedure and identify the rejected hypotheses.

2. Conduct hypothesis tests to compare the probabilities and obtain p-values. 

🤖
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🤖

x3

🤖

🤖

Repeat for every      and obtain: 

Figure 1: An Illustration of the Alt-Test: Given instances annotated by human annotators, we
first exclude each annotator in turn to estimate the probabilities that the LLM better represents the
remaining annotators and that the excluded annotator better represents them. We then test whether
the LLM probability exceeds the annotator probability (considering a cost-benefit penalty ε), and
apply a False Discovery Rate (FDR) controlling procedure. Then, we calculate the winning rate, ω,
as the proportion of rejected hypotheses. If ω ≥ 0.5, we conclude that the LLM is more likely to hold
an advantage over human annotators, which justifies using it.

Systematic Biases and Group Effects: Certain annotators might systematically agree due to
shared biases rather than objective correctness. Conversely, disagreement among annotators with
different perspectives can provide a richer understanding of the data and populations. For example,
when asking whether eating cockroaches is “disgusting,” annotators from cultures where insects are a
common source of protein may label it as acceptable or even appealing, while annotators from cultures
where insects are not considered food are more likely to rate it as highly aversive. Isn’t
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Subjective annotations represent a particularly interesting and challenging case for this proposal
because they do not have a single, universally correct answer. Instead, they reflect personal judgments,
cultural norms, and individual differences in perception. This makes them fundamentally different from
objective annotations such as part-of-speech tagging or named entity recognition, where annotator
agreement is more straightforward to interpret and giving a single label to each data instance makes
sense. Precisely because subjective tasks involve diversity in interpretation, they expose the limitations
of relying solely on annotator agreement as a measure of quality. Moreover, they offer an opportunity
to explore how LLMs, with their ability to model and emulate diverse perspectives as personas,
can complement or even enhance traditional annotation practices. The next subsection discusses
how subjective tasks provide a natural setting to examine the potential and limitations of LLMs as
annotators and their general importance to NLP. Maybe

talk a
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1.3 Evaluation of Subjective Annotations

Many aspects of human language understanding are inherently subjective and reflect diverse perspec-
tives. Phenomena such as humor, sarcasm, offensiveness, or embarrassment are closely tied to personal
experiences, cultural backgrounds, and individual sensitivities. As such, these tasks do not admit a
single universally agreed upon gold label. Instead, disagreements among annotators are an intrinsic
and meaningful feature rather than an error to be eliminated.

Recognizing this, the NLP community has devoted significant efforts to developing models and
evaluation frameworks that better capture subjectivity. Previous research has highlighted the limi-
tations of consensus-based evaluation and proposed alternative approaches that embrace annotator
diversity. For example, Basile et al. [5] modeled individual annotators as distinct sources of person-
alized signals, while Davani et al. [15] introduced multi-annotator models that explicitly predict each
annotator’s label, thereby advancing personalization in NLP systems. Similarly, Amidei et al. [3]
argued for defining acceptable bounds of annotator agreement, rather than enforcing full consensus,
to account for the intrinsic variability of subjective judgments.

Other approaches emphasize the importance of considering the full distribution of annotations.
Works such as Hou et al. [29], Cheng et al. [11], Uma et al. [51] argued that predictive models
should approximate label distributions rather than a single output. Our previous work [22] pro-
vided methodological tools for distribution-level evaluation, while Van Der Meer et al. [52] introduced
annotator-centric metrics that compare predicted and gold distributions across subjective tasks using
Jensen-Shannon divergence [44].

Recent advances in calibration methods further refine model evaluation for subjective tasks. For
instance, Khurana et al. [32] proposed the Crowd-Calibrator architecture, which explicitly accounts for
disagreement by measuring the distance between model predictions and the crowd’s label distribution.
This approach enables models to abstain from making overly confident predictions when annotator
disagreement is high, thereby aligning system behavior with human uncertainty.

While these contributions advance the treatment of subjectivity at the dataset level, an important
gap remains: the lack of methodologies for assessing the reliability and quality of individual
annotators within subjective frameworks. Developing such methods constitutes a central research
objective of this proposal.

2 Research Objectives and Expected Significance

The overarching goal of this research is to solve the core problem that is the absence of a standardized,
statistically sound methodology for validating the use of LLMs as replacements and supplements for
human annotators and judges. This problem manifests in two distinct domains:

Objective Tasks: For tasks with a presumed ground truth, how can we statistically justify that an
LLM annotator is a comparable or superior alternative to recruiting a human annotator, considering
the benefits of cost and speed?

Subjective Tasks: For tasks where disagreement is meaningful and there is no single ground truth,
how can we evaluate an LLM’s quality as an annotator?

To solve these questions, I will focus on three main research objectives: Try to
differ-
entiate
more;
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RO1 Develop rigorous evaluation methods to determine when LLMs can replace or aug-
ment human annotators: This objective focuses on extending the statistical frameworks
proposed in Calderon et al. [9] to provide principled justification for the use of LLMs as annota-
tors and judges across a variety of scenarios and tasks. This work package will include refining
statistical tests for comparing LLMs and human annotators, calibrating thresholds for decision-
making based on cost-benefit tradeoffs, and adapting the methodology to different annotation
types (classification, regression, structured outputs and free-text). Additionally, this objective
entails the design of hybrid annotation workflows in which LLMs assist annotation efforts while
human experts provide supervision, adjudication, and calibration.

RO2 Advance evaluation metrics for subjective tasks by focusing on annotator consis-
tency, expected disagreement, and persona modeling: The second objective addresses
the unique challenges of subjective annotation tasks, where diversity of opinions is both ex-
pected and meaningful. We will redefine the notion of annotator quality for these tasks by in-
troducing new measures of self-consistency (intra-annotator consistency) and relative-reliability
(inter-annotator stable patterns of disagreement). These metrics will be applied to both hu-
man and LLM annotators, with comparisons to traditional agreement-based measures. We will
also explore persona modeling techniques for LLMs, enabling them to emulate diverse human
perspectives and examining them as representatives of human groups.

RO3 Benchmark LLM annotation reliability across diverse datasets and domains, from
objective classification to open-ended subjective tasks: To ensure generalizability, this
objective involves systematic benchmarking of LLM annotation performance across a broad set
of domains and task types. We will curate a suite of datasets that vary along key dimensions:
annotation type, task subjectivity, and annotator expertise. Each dataset will be annotated by
both humans and LLMs under controlled conditions, and performance will be evaluated using the
proposed statistical tests and consistency-based metrics. This benchmarking effort will produce
a public repository of annotated datasets, evaluation results, and analysis protocols, enabling
reproducibility and providing the community with practical guidelines on when and how LLMs
can reliably serve as annotators.
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The proposed research will substantially advance both the theory and practice of data annotation
in NLP. By addressing the methodological and conceptual gaps raised above, the project will generate
outcomes with significant scientific, practical, and societal impact.

First, the development of rigorous statistical evaluation methods (RO1) will provide the NLP
community with principled tools for determining when LLMs can reliably replace or complement hu-
man annotators. This contribution will enhance the transparency and reproducibility of research that
relies on LLM-generated labels, mitigating the risks associated with adopting automated annotation
pipelines without sufficient validation.

Second, advancing metrics for subjective tasks (RO2) will establish a new and novel paradigm
for evaluating annotators in domains where disagreement is inherently desired. By shifting the focus
from consensus to consistency and reliability, this research will ensure that diversity of perspectives is
preserved rather than erased in the annotation process. This has broader implications for fairness and
inclusivity, as it enables models to better reflect under-represented or minority viewpoints. Moreover,
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the development of meta-evaluation strategies will directly inform best practices for building more
robust, fair, and accurate models, and even personalized models for various tasks. Cite
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Third, the systematic benchmarking of LLM annotation reliability across diverse datasets and
domains (RO3) will provide the community with concrete empirical evidence regarding the strengths
and limitations of LLMs as annotators. The resulting datasets, benchmarks, and analysis protocols
will serve as critical resources for both researchers and practitioners, enabling evidence-based decisions
about integrating LLMs into annotation workflows.
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Taken together, these contributions will transform current practices in annotation by offering rigor-
ous methodologies, validated metrics, and practical guidelines. Beyond NLP, the significance extends
to interdisciplinary domains such as psychology, social sciences, and human-computer interaction
(HCI), where annotation quality directly shapes downstream analyses and conclusions. Ultimately,
this project will help ensure that annotation practices in the LLM era remain scientifically rigorous,
cost-efficient, and socially responsible.

3 Detailed Description of the Proposed Research

We aim to rigorously evaluate the effectiveness of LLMs as annotators, i.e., labeling data instances,
and judges, i.e., evaluating outputs of models, by comparing their performance to that of human
annotators and judges. We will focus on quantifying how closely LLMs align with human annotators
and whether they can replace or complement humans in both objective and subjective NLP tasks.

3.1 Working Hypotheses
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notations or judgments more than any individual human annotator would. Instead of measuring the
LLM’s agreement with an average label derived from multiple human annotations, we assess the effect
of substituting each human annotator with the LLM. This method simulates the LLM in the role of an
annotator by directly replacing each of the human annotators in turn and observing the consequences.

For subjective annotations, traditional agreement metrics are insufficient, and discarding anno-
tators who deviate from the majority may eliminate meaningful minority perspectives. Building on
this perspective, we define a good annotator as one who follows their “inner truth” rather than pro-
ducing random noise. We introduce two criteria for assessing the quality of subjective annotators;
importantly, these criteria can also serve as complements to traditional agreement-based measures in
objective tasks:

1. Self Consistency: Does the annotator make similar judgments across similar items?

2. Relative Consistency: Does the annotator’s bias (disagreement) with respect to the other
annotators remain constant across all examples?

3.2 Methodology

3.2.1 The Alt-Test for Objective Tasks

In Calderon et al. [9], we propose using an LLM instead of human annotators when it offers a com-
parable alternative to recruiting an annotator. By comparing the predictions of the LLM to those of
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humans, we can evaluate which more closely emulates the gold label distribution which is approxi-
mated using the collective responses of multiple annotators. Accordingly, a key consideration in our
method is that the perspective of every annotator is valued. Specifically, our leave-one-out approach
excludes one annotator at a time from the pool of annotators and evaluates how well the LLM’s an-
notations align with those of the remaining annotators. The procedure is illustrated in Figure 1 and
detailed below.
Notations and Definitions For a dataset of n instances {x1, . . . , xn} and m human annotators
{h1, . . . , hm}, we denote the annotation of the jth annotator for instance xi as hj(xi). The annotation
predicted by the LLM is denoted as f(xi). In addition, [−j] = {1, . . . , j − 1, j + 1, . . . ,m}. The set of
indices of the instances annotated by hj is denoted as Ij . Similarly, Hi is the set of indices of human
annotators that annotated xi.
Instance Alignment Score We start by examining the removal of each human annotator hj in turn
and compute a score that measures the alignment between the annotations of the [−j] human annota-
tors and the annotation of the LLM for instance xi. We use S(f, xi, j) to denote the alignment scoring
function between f(xi) and the annotations of Hi[−j]. Below, we formally define three variants of S:

−RMSE(f, xi, j) = −
√√√√ 1

|Hi| − 1

∑
k∈Hi[−j]

(f(xi)− hk(xi))2

ACC(f, xi, j) =
1

|Hi| − 1

∑
k∈Hi[−j]

1{f(xi) = hk(xi)}

SIM(f, xi, j) =
1

|Hi| − 1

∑
k∈Hi[−j]

similarity(f(xi), hk(xi))

Advantage Probabilities After computing the alignment score for each data instance, we estimate
the likelihood that the LLM achieves a comparable alignment with the annotators to that of the ex-
cluded annotator by calculating the percentage of instances for which the score of the LLM, S(f, xi, j),
was higher or equal to the score of the jth excluded human annotator, S(hj , xi, j). We represent this
event (for xi) using the indicator:

W f
i,j =

1, if S(f, xi, j) ≥ S(hj , xi, j)

0, otherwise

Similarly, we define the indicator W h
i,j by reversing the inequality (to ≤) in the definition above,

representing that the annotation of hj for xi is comparable to that of the LLM.
The expectation of W f

i,j represents the probability that the LLM annotations are as good as or
better than those of hj . We denote this probability as the advantage over hj probability and estimate
this probability by averaging W f

i,j values across all instances:

ρfj = P̂(LLM ⪰ hj) = Ê[W f
i,j ] =

1

|Ij |
∑
i∈Ij

W f
i,j

Similarly, ρhj estimates the probability that hj holds an advantage over the LLM, calculated by aver-
aging the values of W h

i,j .
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Should the LLM Replace Annotators? If ρfj is significantly larger than ρhj it indicates that
employing the LLM instead of hj is a justified evidence-based decision. Notice, however, that employ-
ing an LLM is a cheaper and less labor-intensive alternative. Therefore, we introduce ε, a cost-benefit
hyperparameter which penalizes ρhj to reflect the higher cost and effort associated with human annota-
tion. We define the following set of hypothesis testing problems to test if the LLMs’ relative advantage
probability is significantly larger than that of hj :

H0j :ρ
f
j ≤ ρhj − ε vs. H1j :ρ

f
j > ρhj − ε

If the p-value < α (typically α = 0.05), we reject the null hypothesis, concluding that the LLM holds
a statistically significant advantage over hj when considering the cost-benefit tradeoff.

So far, we discussed the advantage of LLMs over a single human annotator. To generalize our
conclusion to any annotator, we measure the percentage of annotators that the LLM “wins”, i.e., the
proportion of rejected null hypotheses. We denote this winning rate (WR) by ω, formally:

ω =
1

m

m∑
j=1

1{H0j is rejected}

where 1{H0j is rejected} is an indicator that receives one if the null hypothesis is rejected and zero,
otherwise. If ω ≥ 0.5, then the LLM wins the majority of human annotators, hence we assert that it
can replace human annotators.

Simply counting the number of rejected null hypotheses is problematic due to the accumulation
of Type-I errors when performing multiple hypothesis tests, particularly when the hypotheses are
dependent [20]. In our case, the dependency arises because the score of hj relies on the annotations of
the remaining [−j] annotators (see how S is defined). We recommend using the Benjamini-Yekutieli
procedure [6] to control the false discovery rate (FDR), as it is specifically suited for scenarios where
the null hypotheses are dependent.
How to Compare LLM Judges? In many scenarios, we wish to compare different LLM judges.
While it is possible to compare LLMs by their winning rate (ω), we argue this is suboptimal. First, ω
does not account for the magnitude of the wins. Second, ω depends on the value of ε, and third, the
range of its possible values depends on the number of human annotators, making it a coarse measure.
Therefore, for comparing LLM judges, we propose the Average Advantage Probability (AP):

ρ =
1

m

m∑
j=1

ρfj

We argue that ρ is a good measure for comparing LLM judges due to its desirable properties. Unlike
ω, ρ spans a denser range of values and accounts for the magnitude of ρfj s. Furthermore, it is more
interpretable than traditional measures like F1, Cohen’s κ, or correlation—it directly represents the
probability that the LLM annotations are as good as or better than those of a randomly chosen
annotator. This intuitive interpretation makes it accessible and meaningful for decision-makers. It feels

like a
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3.2.2 Measuring Self Consistency for Subjective Tasks

To measure the self-consistency of annotators and data quality in subjective tasks we define the
following implementable definitions:
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• A high-quality annotator is one who provides consistent labels for similar samples.

• A high-quality sample is one that elicits consistent labels from similar annotators, while produc-
ing divergent labels from annotators with genuinely different annotation strategies.

Given an annotation matrix A with rows representing annotators and columns representing sam-
ples, we aim to learn two quality vectors: one assigning quality scores to annotators and the other to
samples. This approach is (a) generalizable, as it does not depend on the type of data, annotation, or
embedding methods; and (b) flexible, since it enables us to sort annotators by their estimated quality
and decide whether to exclude them from the pool of annotators based on their self-consistency on
high-quality samples, rather than their agreement with the majority.

We estimate the annotator-quality vector (qA) and the sample-quality vector(qI) simultaneously
using an iterative, SVD-based framework, inspired by recommendation systems [47]. Importantly,
the original annotation matrix A remains fixed throughout the process. The algorithm begins by
assigning equal trust to annotators and equal weight to samples. At each iteration, annotations
are reweighted and factorized to reveal latent structures. From these, similarity graphs are built for
annotators and samples. Quality is then updated by measuring how consistent each annotator is across
similar samples, and how consistent each sample is across similar annotators. Consistent behavior is
rewarded, inconsistency penalized. The process continues until annotator and sample quality scores
stabilize. The proposed algorithm appears in Algorithm 1. We plan to develop convergence proofs
and theoretical guarantees for the proposed framework.

Algorithm 1: Joint Estimation of Annotator and Sample Quality
Input: Annotation matrix A ∈ Rm×n, tolerance ϵ, max iterations Tmax

Output: Annotator quality qA, sample quality qI

Initialize: qA ← 1
m1m, qI ← 1

n1n.
for t = 1, 2, . . . , Tmax do

A′ ← Diag(qA)A Diag(qI)

(U ′,Σ, V ′)← SVD(A′)

SA ← U ′U ′⊤, SI ← V ′V ′⊤

LA ← DA − SA, LI ← DI − SI

for annotator a do
rA(a)← 2Aa·LIA

⊤
a·

qA(a)← 1/(rA(a) + δ)

for sample i do
rI(i)← 2A⊤

·iLAA·i

qI(i)← 1/(rI(i) + δ)

Normalize qA, qI so that ∥qA∥1 = ∥qI∥1 = 1

if ∥q(t)A − q
(t−1)
A ∥1 + ∥q(t)I − q

(t−1)
I ∥1 < ϵ then

break
return qA, qI

3.2.3 Measuring Relative Consistency for Subjective Tasks So
this is
RO 2?
Might
wanna
explic-
itly
state
this.

We introduce a reliability measure inspired by Cohen’s κ [14], adapted to capture relative con-
sistency rather than raw agreement. Multiple annotators label a shared dataset, and their relative
consistency is assessed under the assumptions that: (a) instances are independent, (b) the label space
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is mutually exclusive and exhaustive, (c) annotators act independently with comparable competence,
and (d) no ground truth is presumed.

Our approach is probabilistic. For each annotator pair (hi, hj), we define a task-specific notion
of consistency (for nominal or ordinal labels), then compute observed vs. expected frequencies under
independence. Pairwise scores are aggregated into a global coefficient.
Setup Let D = {x1, . . . , x|D|} be the data, L the label set (ordinal or nominal), and H = {h1, . . . , hn}
the group of annotators. For two annotators, let D(joint) be the subset they both labeled and let
Ci,j ⊆ L2 denote the set of pairs of labels that are considered consistent. The definition of a consistent Why

does
this de-
pend on
the an-
notator
pair?

pair of labels will depend on the type of annotations and task. We define the following probabilities:
Marginal Probability: The probability that the annotator hi assigns a specific label, x ∈ L.

P̂ (hi = x) =
#{k : Labelhi

(xk) = x}
|D(joint)|

.

Joint Probability: The probability that the two annotators, hi and hj , assign the specific set of
labels x and y to the same instance, xk.

P̂ (hi = x, hj = y) =
#{k : Labelhi

(xk) = x ∧ Labelhj
(xk) = y}

|D(joint)|
.

Pairwise Consistency For a set of consistent label pairs Ci,j ⊆ L2 we define:

Po =
∑

(x,y)∈Ci,j

P̂ (hi = x, hj = y), Pe =
∑

(x,y)∈Ci,j

P̂ (hi = x)P̂ (hj = y).

Pairwise Relative Consistency:

RC(hi, hj) =
Po − Pe

1− Pe
.

RC > 0 indicates above-chance consistency, RC ≈ 0 chance-level, RC < 0 systematic divergence.
The overall relative consistency is the mean across annotator pairs:

RC = 2
n(n−1)

∑
i<j

RC(hi, hj).

Consistency Definitions
Ordinal: Two labels (x, y) are rank-order consistent if, say, hi assigns higher scores than hj both on
this instance and more often across D(joint).
Nominal: Consistency may be based on: (i) Exact Match (lenient or stricter variants), (ii) Binary
Case (e.g., P (hi = x, hj = y) > P (hi = y, hj = x)), (iii) Similarity-based, using a label similarity
function S with threshold α.

This framework generalizes Cohen’s κ: it rewards not only exact matches but also consistent
disagreement patterns, making it suitable for subjective annotation tasks. I think

this
whole
section
needs
to be
clarified.
Add in-
tuition,
as well
as make
it clear
when
and why
things
are de-
pendent
on the
choice of
annota-
tor pair.

3.3 Preliminary Results

Might
be too
much.
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Discrete Annotation Tasks
WAX (ε = 0.1) LGBTeen (ε = 0.2) MT-Bench (ε = 0.2) Framing (ε = 0.15) CEBaB-A (ε = 0.1)

Acc WR ω AP ρ Acc WR ω AP ρ Acc WR ω AP ρ Acc WR ω AP ρ Acc WR ω AP ρ
Gemini-Flash 0.38 0.38 0.69 0.54 0.25 0.71 0.62 0.0 0.72 0.69 1.0 0.83 0.88 0.7 0.91
Gemini-Pro 0.39 0.5 0.74 0.47 0.0 0.67 0.62 0.0 0.76 0.79 1.0 0.91 0.91 0.9 0.94
GPT-4o 0.38 0.5 0.73 0.63 0.75 0.77 0.68 0.0 0.77 0.80 1.0 0.92 0.90 0.9 0.93
GPT-4o-mini 0.24 0.0 0.59 0.59 0.75 0.76 0.60 0.0 0.74 0.74 1.0 0.87 0.86 0.5 0.90
Llama-3.1 0.24 0.0 0.57 0.54 0.0 0.72 0.54 0.0 0.69 0.66 0.5 0.80 0.87 0.6 0.89
Mistral-v3 0.17 0.0 0.50 0.58 0.25 0.75 0.52 0.0 0.68 0.66 0.25 0.80 0.78 0.1 0.81

Continuous and Textual Annotation Tasks
SummEval (ε = 0.2) 10K Prompts (ε = 0.15) CEBaB-S (ε = 0.1) Lesion (ε = 0.15) KiloGram (ε = 0.1)
Pears WR ω AP ρ Pears WR ω AP ρ Pears WR ω AP ρ Pears WR ω AP ρ Sim WR ω AP ρ

Gemini-Flash 0.51 0.0 0.46 0.44 0.31 0.67 0.75 0.6 0.82 0.70 0.17 0.71 0.79 0.66 0.61
Gemini-Pro 0.47 0.0 0.44 0.33 0.08 0.63 0.78 0.8 0.87 0.73 1.0 0.81 0.77 0.08 0.43
GPT-4o 0.54 0.0 0.48 0.47 0.69 0.76 0.80 0.9 0.90 0.67 0.0 0.62 0.78 0.2 0.53
GPT-4o-mini 0.50 0.0 0.54 0.46 0.92 0.80 0.79 0.9 0.89 0.72 0.67 0.73 0.78 0.16 0.49
Llama-3.1 0.36 0.0 0.58 0.23 0.15 0.67 0.78 0.6 0.85 – – – – – –
Mistral-v3 0.12 0.0 0.62 0.28 0.15 0.67 0.76 0.5 0.83 – – – – – –

Table 1: Main Results (zero-shot) — Full Datasets: For all tasks, we report a traditional LLM-
human alignment measure, such as accuracy with the majority vote (Acc) for discrete tasks, Pearson’s
correlation (Pears) for continuous tasks, and average similarity (Sim) for textual tasks. Additionally,
we present our proposed measures: the winning rate (WR ω, the ε value is stated next to the dataset
name) and the average advantage probability (AP ρ). Bold values indicate the best-performing LLM
according to ρ, while a light green background highlights ω ≥ 0.5.

3.3.1 The Alt-Test

Table 1 presents the performance of various LLMs across discrete, continuous, and free-text tasks. We
report three key measures: traditional LLM-human alignment measures (accuracy, Pearson’s corre-
lation, and similarity), the winning rate (WR, denoted as ω), and the average advantage probability
(AP, denoted as ρ). For each dataset, we selected ε values based on the type of annotators: experts
(ε = 0.2), skilled annotators (ε = 0.15), and crowd-workers (ε = 0.1). Below, we summarize our main
findings. A complete presentation of our findings can be found at Calderon et al. [9].

LLMs can sometimes replace humans. Table 1 shows that many LLMs pass the alt-test across
various datasets. While in two datasets (MT-Bench, and SummEval), none of the LLMs pass the test,
in four (Framing, CEBAB-A, CEBaB-S and Lesion), almost all LLMs achieve ω ≥ 0.5. In the free-text
dataset KiloGram, only Gemini-Flash passes the test. The results suggest that in many scenarios,
employing LLMs can be an alternative to recruiting additional human annotators.

Our results also demonstrate that test success depends on the dataset and annotation aspect, with
LLMs often failing to pass it. This emphasizes the relevance of the alt-test: researchers cannot simply
rely on LLM annotations without justifying this choice.

Few-Shot improves LLM-human alignment. Table 1 indicates that the closed-source LLMs
(GPTs and Geminis), outperform open-source LLMs.1 However, Table 1 reports only zero-shot ex-
periments. Thus, we also conducted experiments using three other strategies: few-shot, CoT, and
ensemble. The results are presented in Table 2 and are based on 100 bootstraps of three annota-
tors and 100 randomly sampled instances from five datasets. The reduced sample size was chosen to
minimize computational costs2 and primarily to reflect practical constraints better, as researchers are
unlikely to annotate thousands of instances for testing whether the LLM is a good judge.

1Further experiments across varying model sizes are necessary to support broader claims about model openness.
2We annotated a maximum of 300 instances per dataset, which were then used for bootstrapping.
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3 Annotators and 100 Instances Subsets
WAX (ε = 0.1) LGBTeen (ε = 0.2) MT-Bench (ε = 0.2) SummEval (ε = 0.2) 10K Prompts (ε = 0.15)

Acc WR ω AP ρ Acc WR ω AP ρ Acc WR ω AP ρ Acc WR ω AP ρ Acc WR ω AP ρ
Gemini-Flash 0.34 0.0 0.67 0.47 0.0 0.71 0.62 0.0 0.71 0.52 0.0 0.46 0.45 0.0 0.72

+ 4-shots 0.38 0.33 0.74 0.60 1.0 0.82 0.59 0.0 0.72 0.65 0.67 0.82 0.51 1.0 0.82
+ CoT 0.36 0.33 0.75 0.42 0.0 0.67 0.64 0.0 0.77 0.39 0.0 0.38 0.47 0.0 0.68

Gemini-Pro 0.40 0.33 0.72 0.45 0.0 0.69 0.61 0.0 0.77 0.40 0.0 0.44 0.42 0.0 0.69
+ 4-shots 0.38 0.33 0.70 0.55 0.0 0.75 0.65 0.0 0.79 0.58 0.33 0.76 0.34 0.0 0.68
+ CoT 0.39 0.33 0.71 0.53 0.0 0.75 0.56 0.0 0.76 0.50 0.0 0.54 0.48 0.0 0.76

GPT-4o 0.37 0.33 0.73 0.57 0.0 0.78 0.69 0.0 0.78 0.54 0.0 0.48 0.50 0.33 0.77
+ 4-shots 0.37 0.33 0.72 0.51 0.0 0.74 0.70 0.33 0.79 0.60 0.67 0.76 0.44 0.0 0.74
+ CoT 0.35 0.33 0.72 0.53 0.0 0.71 0.65 0.33 0.79 0.59 0.0 0.66 0.46 1.0 0.77

GPT-4o-mini 0.24 0.0 0.63 0.47 0.0 0.72 0.57 0.0 0.73 0.44 0.0 0.50 0.39 0.67 0.78
+ 4-shots 0.32 0.33 0.69 0.53 0.0 0.77 0.58 0.0 0.74 0.62 0.67 0.78 0.39 0.0 0.72
+ CoT 0.39 0.0 0.71 0.52 0.0 0.72 0.58 0.0 0.72 0.58 0.0 0.58 0.34 0.33 0.75

Ens. Geminis 0.40 0.33 0.73 0.54 0.0 0.77 0.63 0.0 0.76 0.53 0.0 0.60 0.45 0.0 0.75
Ens. GPTs 0.37 0.33 0.71 0.54 0.0 0.76 0.64 0.0 0.74 0.61 0.33 0.70 0.45 0.67 0.77
Ens. All 0.44 0.33 0.77 0.56 0.0 0.78 0.59 0.0 0.72 0.56 0.0 0.66 0.43 0.67 0.76

Table 2: Results – Advanced LLM Judges: Each subset contains three annotators and one
hundred instances. Ens. stands for “Ensemble”. Please see the caption of Table 1 for information
about the metrics.

As shown in Table 2, the few-shot approach (with four demonstrations) improved the performance
of nearly all LLM judges. Importantly, two few-shot LLMs achieved ω ≥ 0.5 on SummEval, a result
not observed in the zero-shot setting. This success can be attributed to the demonstrations in the
prompt, which helped align the LLMs’ scoring distributions more closely with the human distributions.
In contrast, the CoT methodology led to a decline in performance in many cases (45%). Finally, First

appear-
ance, I
think—
expand
and
maybe
cite and
define

ensembling few-shot models did not improve performance.

Ok, so
what’s
left to
do on
this
RO?

3.3.2 Self Consistency for Subjective Tasks

We conducted a controlled experiment to test convergence of the algorithm in practice. We generated
a synthetic annotation matrix A ∈ Rm×n with m = 60 annotators and n = 120 items. Each item was
assigned a latent “true” position si ∈ [1, 5], corresponding to a score on a Likert scale. Each annotator
a was modeled with three parameters: a base bias ba ∈ [1.5, 4.5], a sensitivity αa ∈ [0.5, 1.5], and a
noise level σa ∈ [0.2, 0.8]. Each annotation was generated as

Aai = clip[1,5]

(
round

(
ba + αa(si − 3) + εai

))
, εai ∼ N (0, σ2

a).

We then applied our algorithm with the following hyperparameters: stability constant δ = 10−4,
maximum iterations Tmax = 300, and tolerance ϵ = 5 · 10−5.

Metrics. At each iteration we recorded:

• ∆t = ∥q(t)A − q
(t−1)
A ∥1 + ∥q(t)I − q

(t−1)
I ∥1 (iterate change).

• Residt = ∥q(t)A − qfpA ∥1 + ∥q
(t)
I − qfpI ∥1 (residual after one more update).

• Φt =
∑

a log(rA(a) + δ) +
∑

i log(rI(i) + δ) (potential function).

Results. As shown in Figure 2, the algorithm consistently converged within 20–40 iterations. Both
∆t and Residt decayed geometrically toward zero, reaching values below 10−4. The potential func-
tion Φt showed monotone stabilization across iterations, confirming the presence of a Lyapunov-like
descent property. Annotator and item quality vectors qA, qI quickly stabilized: the set of top-ranked
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Figure 2: Convergence diagnostics of the proposed method: iterate change (∆), potential (Φ), and
residual across iterations.

annotators and items became fixed after roughly 10 iterations, while weights continued to fine-tune
until convergence. Same:

what’s
left?
(Here
it’s
more
obvious
but still
worth
making
explicit)

3.3.3 Relative Consistency for Subjective Tasks

Table 3 presents results across various simulated scenarios. RC assigns high scores in cases of structured
subjectivity (‘Threshold Bias’ and ‘Outlier Annotator’) where Cohen’s κ remains low or near zero. In
contrast, both metrics present near zero in random annotation scenarios that do not show item-level
coordination (‘Random Disagreement’, ‘Rank Bias’).

In the Divergent Preferences scenario, both metrics yield negative values, with RC producing more
extreme scores. This outcome reflects a key difference in how the two metrics respond to disagreement
patterns: Cohen’s κ given a near zero score because the annotators do not agree much, however, the
label distribution is very skewed. RC on the other hand gives a very negative score since the annotators
consistently act in an inconsistent way that contradicts disagreement pattern. This demonstrates RC’s
sensitivity to systematic inconsistencies in annotator behavior, rather than chance alignment alone.
These trends are consistent across both nominal and ordinal versions of the simulated tasks. Once

more,
what’s
left?
‘future
work’
section
needed.

4 Resources

4.1 Resource Availability

The proposed research is highly feasible given the accessibility of resources and the availability of the
required expertise. The project will be carried out by the PI, one PhD student, and two MSc students,
ensuring sufficient personnel to cover the theoretical, experimental, and implementation aspects of the
work. The computational infrastructure available through the hosting institution already supports
large-scale NLP research; however, the requested funding will be used to expand and advance these Be con-

crete.resources, enabling more efficient training and evaluation of models, large-scale statistical analyses,
and systematic benchmarking of human and LLM-based annotations. The research also leverages
widely accessible NLP datasets, many of which are already curated with multiple annotators and
demographic information, reducing the need for costly new data collection. Where additional data is
required, annotation will be supported through established institutional pipelines and access to public
annotation archives. The PI has extensive experience in annotation studies, statistical evaluation, and
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Scenario Cohen’s κ Consistency (RC) Description Interpretation
Mean CI Mean CI

Nominal Scenarios
Random Disagreement 0 [-0.06, 0.07] 0 [-0.07, 0.08] Annotators label randomly; no

structure.
Sanity check: both
metrics reflect randomness.

Rank Bias 0 [-0.05, 0.06] 0 [-0.12, 0.13] Two groups prefer opposite labels;
no item-level coordination.

Sanity check: shared
group priors, both metrics
remain low due to unaligned
preferences.

Outlier Annotator 0.21 [0.20, 0.24] 0.74 [0.73, 0.75] One annotator always flips labels
from others.

Consistent Opposer: RC
captures structure; κ
penalizes.

Clustered Disagreement 0.40 [0.34, 0.45] 0.40 [-0.12, 0.85] Annotators split into two inter-
nally consistent groups.

Clustered Opinions:
both metrics penalize
inter-group disagreement.

Threshold Bias 0.29 [0.23, 0.36] 1.00 [1.00, 1.00] Each annotator applies a fixed
threshold to latent signal.

Consistent Thresholds:
RC detects perfect consistency;

κ sees disagreement.
Noisy Threshold Bias 0.18 [0.11, 0.25] 0.40 [0.19, 0.60] Same as above with added label

noise.
Consistently Noisy
Thresholds: both metrics
degrade; RC remains more
stable.

Divergent Preferences 0.01 [-0.04, 0.07] -0.47 [-0.78, -0.23] Annotators showing strong indi-
vidual preference but opposite la-
bels, resulting in high marginals
but low joint agreement; random
noise introduces occasional agree-
ment.

Adversarial-Like Behavior:
RC detects systematic bad

behavior.

Table 3: Nominal Disagreement Scenarios: Simulated comparisons of Cohen’s κ and Relative
Consistency (RC) under various structured and unstructured disagreement settings. Each scenario is
based on 100 annotations from 5 annotators, with 10,000 bootstrap samples used to estimate means
and confidence intervals. RC better captures consistent disagreement in scenarios where κ fails.

reproducible NLP research, ensuring that both methodological development and empirical validation
are well within reach. Together, the personnel, infrastructure, and accessible resources provide a
strong foundation for the successful and timely execution of the proposed research. I think

this
makes
the
project
look too
conser-
vative.

4.2 Expertise and Relevant Work of the PI

All very
good
but re-
late it
to the
pro-
posed
work

Dr. Rotem Dror has established herself as a leading researcher in the field of NLP with a particular
focus on evaluation methodologies, statistical analysis, and the replicability of research. Her extensive
research portfolio showcases a deep understanding of the complexities involved in evaluating NLP
models and systems.

Her contributions include significant advances in statistical methodologies for evaluating NLP
models, such as the development of robust testing frameworks that ensure reliable model evaluations
across datasets [20]. Her work has set new benchmarks in the field by addressing limitations in widely-
used models and introducing innovative solutions, notably in the comparison of deep neural models
and the evaluation of text generation models like summarization and translation [22, 18, 9].

Dr. Dror’s research on evaluating NLP models has been groundbreaking, particularly her statistical
analysis of summarization and translation evaluation metrics, which has led to more accurate and fair
model comparisons [16, 17]. Additionally, she has contributed to understanding the robustness of
LLMs to prompt paraphrasing and their abilities as judges and annotators [41, 9].

Throughout her career, Dr. Dror has consistently pushed the boundaries of NLP evaluation,
ensuring that the methods she develops are statistically rigorous and practically applicable [21, 23].
Her work has had a lasting impact on the field, and her expertise in statistical evaluation, bias
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assessment, and model robustness will be crucial to achieving the objectives of the proposed research.
Dr. Dror is dedicated to advancing NLP through meticulous research and by making all findings, code,
data, and results publicly available, fostering transparency and collaboration within the community.

5 Expected Results and Pitfalls
A lot
of the
infor-
mation
here
is ap-
pearing
too late
(like the
persona
idea),
and the
way
that
it’s pre-
sented
without
citations
makes it
look like
an af-
terthought.
I think
you
should
extract
a §3.4
from
this
(and
expand
it).

We plan to conduct a series of experiments to both validate the theoretical foundations of our
frameworks and demonstrate their empirical utility on real-world annotation tasks. First, we will run
sanity checks to show that our self-consistency and relative-consistency measures capture intuitive
properties: good annotators label similar examples consistently, and good examples receive consistent
labels from similar annotators. Using datasets with multiple annotators and available demographic
information, we will test whether the annotator similarity matrix recovers meaningful clusters (e.g.,
along demographic lines), whether similar examples are grouped together, and whether minority anno-
tators are not unfairly penalized. Beyond these checks, we will design two core experiments. The first is
outlier detection, where we inject different types of random annotators (uniform, label-distribution-
based, demographically-biased, imitators, etc.) and measure our method’s ability to identify them
compared to baselines such as IAA or random detection. The second is learning dynamics, where
we train models on the labels provided by individual annotators and test the correlation between the
annotator’s quality score q and model performance (both per-annotator models and unified models).
These experiments will be repeated across multiple datasets to establish robustness. In addition,
we will analyze existing datasets by applying our method to characterize annotator populations and
example quality, and extend the analysis to LLM-generated personas, comparing their annotation
quality across models.

We expect our experiments to confirm that the proposed frameworks satisfy both theoretical and
empirical desiderata. In particular, we anticipate that the similarity-based modeling will produce
meaningful annotator clusters that align with demographic or behavioral subgroups, and that exam-
ple quality scores will correlate with prediction difficulty for trained models. We further expect that
minority annotators will not be systematically assigned low quality scores, thereby supporting the
claim that our approach captures informative minority perspectives rather than discarding them. In
the outlier detection experiments, we predict that our method will successfully identify various forms of
random or adversarial annotators more effectively than baseline approaches, while maintaining high
retention rates for minority annotators. In the learning dynamics setting, we anticipate observing
strong positive correlations between annotator quality scores and the performance of models trained
on their annotations, demonstrating that our metric reflects the practical utility of using our methods
to filter out bad annotators in both objective and subjective tasks. Finally, when analyzing existing
datasets and LLM-generated personas, we expect to uncover new insights into the structure of anno-
tator populations, the distribution of example difficulty, and the strengths and weaknesses of different
LLMs as synthetic annotators.

At the same time, several pitfalls must be considered. First, the availability of suitable datasets
with both rich annotation and demographic information may be limited, which could constrain the
scope of our validation. To mitigate this, our contingency plan includes performing a small-scale,
targeted data collection effort to supplement existing resources should they prove insufficient. Second,
while we aim to avoid penalizing minority annotators, there is a risk that if the data are too sparse
or skewed, quality scores may still inadvertently favor majority groups. We will address this by
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systematically monitoring for such effects and are prepared to implement methodological adjustments,
such as stratified analysis or re-weighting schemes, to ensure fairness. Third, our outlier detection
experiments rely on the injection of synthetic noise, which may not fully capture the complexities
of real-world low-quality annotators. To ensure our findings generalize, we will complement these
synthetic experiments with validation on real-world datasets. Fourth, model-based validation (e.g.,
learning dynamics) may be sensitive to the choice of model architecture, training setup, or dataset size,
introducing variance unrelated to our method. To ensure the robustness of our conclusions, we will
conduct a comprehensive evaluation across a diverse suite of models (including both closed and open-
source architectures) and datasets. Finally, when analyzing LLM-generated annotations, interpreting
results may be challenging since there is no definitive ground truth about which synthetic personas are
“better,” leaving some conclusions more exploratory than confirmatory. We frame this limitation as
an exploratory objective to characterize the behavior of different LLM personas, providing a valuable
typology of their annotation styles. (Any

plans
for
working
on non-
English
data?)
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