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1 Scientific Background

The ability to integrate and reason across multiple data modalities is a central frontier in modern artificial intel-

ligence. As applications increasingly involve diverse sensory or semantic inputs—such as text, images, speech,

molecular structures, and biological measurements—there is growing demand for multimodal representation

learning (MMRL): learning joint embeddings that capture shared semantics across modalities. This capability

is foundational to many recent successes in AI, from vision-language models like CLIP [28] and GPT-4V, to

biomedical applications such as protein structure prediction or multi-omics data integration.

However, most advances in MMRL rely heavily on paired supervision: large-scale datasets of aligned sam-

ples across modalities (e.g., image–text pairs, audio–video clips). In contrast, many scientific and real-world

datasets are unpaired, weakly paired, or noisily aligned. For instance, patient data may include structured clin-

ical tests, free-text notes, and medical images collected asynchronously and with missing links; environmental

sensors may capture time series from different locations and modalities with no direct correspondences. The

vast majority of multimodal data remains underutilized simply because it lacks perfect alignment.

This project aims to develop a principled and unified framework for multimodal representation learning

from unpaired data, grounded in mathematical theory and scalable algorithms. We identify three core chal-

lenges that arise in the absence of paired supervision: (i) how to learn shared structure when only partial or

noisy correspondences are available; (ii) how to extract statistically correlated components across modal-

ities without access to paired samples; and (iii) how to fuse disparate modality-specific representations

into a coherent joint embedding space. These challenges are addressed through three tightly connected

technical objectives:

1. Learning shared representations from weakly-paired data, leveraging partial or probabilistic

alignment to guide robust cross-modal embedding;

2. Unpaired canonical correlation analysis (CCA), formulating a new framework for discovering

correlated structure from fully unpaired samples;

3. Unpaired representation fusion, designing methods to integrate independently trained modality-

specific embeddings into a unified representation space.

Each objective tackles a distinct aspect of the unpaired MMRL problem, yet together they contribute to

a comprehensive, theoretically grounded approach for learning with multimodal data in real-world set-

tings. The methods developed will build on various mathematical tools from spectral geometry, statistics,
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operator theory and optimization, and will be evaluated both empirically and analytically to ensure inter-

pretability, stability, and generalization. While grounded in geometric and spectral methods, this proposal

addresses a fundamental challenge in modern AI — the ability to learn unified representations from dis-

joint, unaligned, or siloed data. Our methods are broadly applicable across science and technology do-

mains where aligned multimodal data is costly or unavailable, making them valuable tools for scalable,

data-efficient, and privacy-aware AI systems

1.1 Current approaches for representation Learning from unpaired data

Approaches such as CycleGAN [51] and domain-adversarial training [12] aim to align the marginal distribu-

tions of different modalities by fooling a discriminator into believing that mapped samples come from a shared

domain. While attractive, such approaches come with serious drawbacks, such as instability, mode collapse,

and lack of guarantees. Specifically, in scientific applications—where spurious correlations are common and

precise interpretation matters—these drawbacks limit the reliability of adversarial approaches.

A second line of work aims at aligning marginal distributions by matching statistical or geometric pat-

terns. Typically, such models implicitly make rigid assumptions, such as structural isomorphism or metric

compatibility across modalities, which is problematic when modalities differ in information content, noise, or

sampling.

Contrastive methods have seen success in paired settings, and some efforts extend them to unpaired data

using heuristic pseudo-pairing strategies. While popular, such methods are mostly heuristic and may introduce

noisy or biased pseudo-labels, which may result in embeddings that may capture correlations that do not reflect

true cross-modal semantics.

To summarize, across all these approaches, common limitations emerge: A reliance on implicit or frag-

ile alignment signals, lack of generality across domains and modalities, and absence of rigorous theoretical

guarantees for shared structure discovery in the unpaired setting. These limitations highlight the need for a new

class of methods—mathematically grounded, computationally efficient, and broadly applicable across scientific

domains—which this proposal aims to develop.

Multimodal representation learning from unpaired data is rapidly becoming a central research focus, with

several fascinating recent contributions that explore representation learning strategies in the absence of direct

supervision in various domains, e.g., [22, 47, 49, 13, 25, 48, 1, 36, 38]. This growing body of work highlights

both the promise and the complexity of the unpaired setting, motivating the need for new methods that are both

mathematically principled and practically effective.”

1.2 Scientific Potential and AI for Science

Beyond algorithmic innovation, the ability to learn from unpaired multimodal data has transformative poten-

tial for AI for science. In scientific domains—such as biology, neuroscience, geophysics, and materials sci-

ence—data is often multimodal but rarely aligned. Developing methods that can integrate genomics and imag-

ing, or correlate text-based reports with sensor data, without relying on curated pairings, can unlock rich, latent

structure in complex systems. Moreover, such methods support key scientific goals: hypothesis generation,

data-driven discovery, and interpretable modeling of high-dimensional processes.

In line with emerging trends toward weak supervision, modality fusion, and foundation models, this project

aims to establish the mathematical and algorithmic foundations for robust multimodal learning in the absence

of explicit labels or pairs—broadening the reach of AI into previously inaccessible or underutilized scientific

data regimes.
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2 Research Objectives and Expected Significance

The overarching aim of this project is to establish a principled foundation for multimodal representation
learning under weak or absent pairing. Whereas current multimodal learning methods largely assume abun-

dant aligned data, our goal is to design mathematical frameworks and scalable algorithms that remain effective

when correspondences are scarce, noisy, or entirely missing. This requires resolving fundamental challenges

of discovering shared latent structure without explicit supervision, defining meaningful cross-modal correlation

when the problem is ill-posed, and integrating both shared and modality-specific information without paired

examples. The three objectives below each tackle one of these challenges, together forming a coherent pro-

gram that advances both the theoretical underpinnings and practical applicability of multimodal learning from

unpaired data.

Objective 1: Learning Shared Representations from Weakly-Paired Data

This objective aims to develop a theoretical and algorithmic framework for learning shared representations

across modalities under weak supervision. A shared representation is a common latent space in which in-

stances from different modalities that convey the same underlying information are mapped to the same—or

nearby—points. In many practical settings, such as in science, medicine, and human-centered data, such corre-

spondences are not fully available: data may be only coarsely aligned, sparsely paired, or entirely unpaired. This

objective addresses the challenge of learning shared representations in these weakly-paired regimes by exploit-

ing the universality of embedding geometries—the observation that meaningful structure in each modality

can be captured in a way that is stable, comparable, and aligned across domains. By enabling the discovery of

shared latent structure without relying on strong pairing assumptions, this objective contributes to broadening

the scope and robustness of multimodal representation learning in real-world, weakly supervised environments.

Objective 2: Unpaired Canonical Correlation Analysis (CCA)

The second objective is to establish a framework for discovering maximally correlated representations across

modalities without access to paired data. Canonical Correlation Analysis (CCA) is an extremely popular

algorithm for learning representations of multimodal data, widely used by practitioners in numerous areas in

data science and machine learning. CCA traditionally requires paired samples to identify projections that reveal

shared latent structure between two views. In the absence of such pairing, the problem becomes fundamentally

ill-posed, as many joint distributions can be consistent with a given pair of marginals. This objective addresses

the challenge by introducing a principled criterion for selecting among these: namely, the joint distribution

that maximizes cross-modal correlation. We show that this joint can be characterized as the solution to an

optimal transport problem, augmented with orthogonality constraints to ensure the resulting embeddings be-

have analogously to classical CCA projections. Beyond the theoretical formulation, this objective also includes

the development of efficient and scalable algorithms for computing such unpaired CCA embeddings, en-

abling practical application to large-scale multimodal datasets. This contributes both foundational insights and

computational tools to the broader effort of multimodal representation learning from unpaired data.

Objective 3: Unpaired Representation Fusion

The third objective is to develop a framework for fusing representations across modalities in the absence of

pairing, under the assumption that different modalities carry both shared and modality-specific information. In

contrast to approaches that focus solely on common latent structure, this objective seeks to learn rich represen-
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tations that integrate the full informational content of all modalities—capturing both what is shared and what

is unique. Achieving this without access to paired data requires novel strategies for aligning and combining

modalities. A key innovation in our approach is the use of artificially generated pairs, which serve as anchors

for bridging modalities without relying on real correspondences. This departs fundamentally from CycleGAN-

style methods, which rely on bidirectional consistency losses and implicitly assume strong information overlap.

By relaxing this assumption, our goal is to enable more flexible and expressive multimodal fusion that reflects

the complexity of real-world data. This objective advances multimodal representation learning by addressing

a central, yet underexplored, challenge: how to integrate complementary signals from unpaired sources into a

unified representation space.

2.1 Expected significance

Multimodal data is pervasive across science and technology — from medical diagnostics that combine imaging,

text, and molecular data, to autonomous systems that process visual, auditory, and spatial signals. Yet in

many real-world settings, paired multimodal data is rare or unavailable, severely limiting the applicability

of standard multimodal learning approaches. This project addresses this fundamental challenge by developing

mathematically grounded and practically effective methods for learning from unpaired multimodal data, thereby

expanding the scope and usability of machine learning in real-world contexts.

On the scientific level, the project is expected to make fundamental contributions to the theory of mul-

timodal representation learning. It introduces new frameworks for learning shared and fused representations

without supervision, grounded in tools from optimal transport, spectral theory, and statistical dependence.

These contributions go beyond heuristic or adversarial approaches by offering a principled understanding of

when and how unpaired modalities can be aligned and integrated — filling an important gap in the literature.

The project is also expected to yield new algorithmic paradigms that are scalable, robust, and broadly applica-

ble.

From a practical standpoint, the outcomes of this research will be relevant across domains that involve

heterogeneous and unaligned data sources. In biomedicine, for example, the ability to integrate genomic,

imaging, and clinical text data without requiring aligned patient samples could lead to more holistic diagnostic

and prognostic models. In climate science, combining satellite imagery with sensor readings and textual reports

can support more comprehensive environmental monitoring. In human-computer interaction, learning from

unpaired speech, gesture, and visual input can enable more adaptive and multimodal AI agents.

Moreover, the project aligns with broader trends in AI that prioritize data efficiency, robust generalization,

and cross-modal understanding. By enabling flexible and modular representation learning from unpaired data,

it supports the development of AI systems that are more adaptable to real-world complexity, including scenarios

where supervised data is scarce or privacy constraints prevent alignment.

In summary, this project has the potential to advance both the foundations of machine learning and its

practical reach across scientific and technological domains, making multimodal AI more broadly accessible,

theoretically principled, and capable of addressing high-impact challenges in science and society.

3 Detailed Description of the Proposed Research

3.1 Working Hypotheses

This project is guided by the following hypotheses:
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Main Hypothesis (overarching aim): It is possible to develop a principled framework for multimodal rep-

resentation learning that does not rely on paired data by leveraging universal geometric properties of embed-

dings, optimal transport formulations of correlation, and novel strategies for representation fusion. Under this

framework, meaningful shared structure across modalities can be consistently identified even in the absence of

explicit correspondences.

Hypothesis 1 (Objective 1 – Weakly-Paired Data): Embedding geometries across different modalities ex-

hibits universal structures that can be aligned in a shared latent space. Even when correspondences are coarse,

sparse, or noisy, these universal properties enable recovery of semantically consistent shared representations.

Hypothesis 2 (Objective 2 – Unpaired CCA): Among the many joint distributions consistent with two

marginal distributions, the one that maximizes cross-modal correlation corresponds to the true latent alignment.

This joint can be recovered through an optimal transport formulation with orthogonality constraints, yielding

unpaired CCA embeddings with theoretical guarantees and scalability.

Hypothesis 3 (Objective 3 – Unpaired Fusion): Multimodal fusion that integrates both shared and modality-

specific information is feasible without paired data, provided that artificial anchor pairs are introduced. These

anchors enable alignment across modalities without requiring strict overlap assumptions, thereby supporting

more expressive and flexible multimodal representations than cycle-consistency-based–based methods.

3.2 Learning Shared Representations from Weakly-Paired Data

Multimodal representation learning aims to construct a common embedding space in which samples from dif-

ferent modalities that convey the same underlying information are mapped to similar representations. In most

existing frameworks, this goal is achieved through fully paired supervision, where each sample in one modality

is matched with its exact counterpart in the other. However, in many practical settings—such as medicine, sci-

entific research, or human behavior modeling—pairing between modalities is sparse, noisy, or entirely missing.

This objective aims to develop a theoretically grounded framework for learning shared representations under

weak supervision, leveraging the intrinsic geometry of each modality to guide alignment.

3.2.1 Rationale

Mathematical Motivation. Modern pre-trained unimodal foundation models have a proven ability to repre-

sent semantics. For example, two given images have close embeddings if their semantic meaning is similar,

and far apart otherwise. These similarities can be captured by a random walk process on the samples’ repre-

sentations. This suggests that a random walk process defined on such unimodal representations should largely

correspond to semantic similarity. Therefore, we can expect random walks defined on different unimodal rep-

resentations that capture semantics well to be highly similar. Random walk processes are finite analogs of

diffusion operators. Thereby, the similarity of random walks that are constructed from different, modality-

dependent representations implies that the eigenfunctions of the corresponding diffusion operators will have

universality properties (i.e., modality-invariance) [7]. Therefore, constructing a spectral embedding (SE) based

on the leading eigenvectors of random walks, which are viewed as discrete approximations of the leading

eigenfunctions of diffusion operators [3, 31], enables us to take advantage of this concept even in the absence

of paired data.

We formalize our assumption as follows. Let M be a latent, underlying semantic manifold, and let f, g be

two transformations, such that f(M) and g(M) represent the two modalities from which we observe samples.
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Figure 1: Empirical demonstration of universality. (a) Distances between corresponding random walks on image and
text graphs from MSCOCO, compared to distances to randomly shuffled (non-matching) walks. Although constructed
independently from unimodal features, corresponding walks exhibit significantly greater similarity. (b) Distances between
paired and unpaired points in the shared space of aligned 2D spectral embeddings (SEs). Paired points are consistently
closer, indicating that the independently learned SEs capture analogous structure across modalities.

There is a body of work specifying conditions under which the spectral properties of M are preserved under

f, g. For example, if f, g have bounded distortion and bounded Ricci curvature, the corresponding eigenfunc-

tions of the Laplace-Beltrami operator on f(M) and g(M) are similar in the L∞ sense [5].

Intuitively, our assumption states that the diffusion operators defined on each modality are relatively similar.

This assumption is also empirically supported in recent works [17, 10, 14]. Then, universality is enabled

through the eigenfunction preservation properties of the similar diffusion operators. Namely, the eigenfunctions

of these operators will be universal, in the sense of modality-invariance (see Figure 1).

In practice, the ability to learn Laplacian eigenfunctions is obtained via SpectralNet [29], a previous work

of the PI. While trained to compute the eigenvectors of the graph Laplacian of its training data, being a general-

izable parametric map makes it a practical means to compute the eigenfunctions of the Laplacian operator (and

thus also of the Diffusion operator), viewing the eigenvectors as a discretization of the eigenfunctions [3, 31].

Crucially, we train SpectralNet on unimodal data only; hence, no paired data is needed to learn the Laplacian

eigenfunctions, i.e., our universal embedding functions.

Overview. In a recent preprint of ours [41], we propose and explore a novel pipeline, named Spectral Uni-

versal Embedding (SUE). SUE consists of three steps: SE, CCA and MMD. First, it maps each pre-trained

unimodal embedding space into its corresponding eigenspace, to retrieve the global structure of each modality

[2, 24, 32]. Using SpectralNet [29], this is done parametrically, allowing generalization to test data. Note-

worthy, SE is not unique, as eigenvalues with multiplicity p can yield any basis spanning the p-dimensional

eigenspace and even single eigenvectors may differ by sign.

To resolve the SE ambiguity and provide additional linear alignment, we use CCA on a minimal number of

paired samples. However, as the CCA purposefully considers a limited number of samples, and the SEs differ

by more than an orthogonal transformation, we strengthen the cross-modal alignment using a Maximum Mean

Discrepancy (MMD) residual network [30]. This kind of network architecture was originally proposed (by the

PI) for batch-effect removal by minimizing the empirical MMD value of two distributions. Namely, we view

the two low-dimensional representations as similar distributions and learn a (close to identity) non-linear shift

to align the distributions. The MMD serves as the last step to fine-tune the alignment. Notably, MMD loss does

not require paired data, which enables the utilization of the full unpaired dataset. Figure 2 depicts SUE.

3.2.2 Uncovering SUE

In this section, we formularize SUE, roughly described in Sec 3.2.1. A summary of the steps of the SUE

algorithm is outlined in Algorithm 1.
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Figure 2: SUE’s overview. The modalities (represented by their unimodal embeddings) represent an unobserved universal
(semantic) distribution; the SE is capable of retrieving this universal structure, up to rotations; CCA on a minimal number
of pairs enable linear alignment between the modalities, but not sufficient for a joint universal embedding; the MMD then
fixes the misalignment between the modalities, integrating them into the universal embedding space.

Notations. Throughout this section, we will use the following notations. Let X ⊆ Rd1 ,Y ⊆ Rd2 be sets of

unpaired pre-trained unimodal embeddings of sizes n1, n2, resp. Accordingly, denote Xp = {x1, . . . , xm} ⊆
X ,Yp = {y1, . . . , ym} ⊆ Y to be sets of paired embeddings. Importantly, m ≪ n1, n2. Let k ≥ r be two

pre-chosen dimensions for the SE and final universal representations.

Approach. Given X ,Y , we train two independent SpectralNet models SX : X → Rk, SY : Y → Rk to

approximate the k-dimensional SE of each modality. Due to the non-uniqueness of the SE, SX and SY might

differ by sign and basis of each eigenspace.

To address this ambiguity we utilize Xp and Yp. Specifically, we employ CCA on
(
SX (Xp), SY(Yp)

)
to

obtain the projections QX , QY ∈ Rk×r. These projections are used to align SX (X ) and SY(Y). The linearly

aligned SEs approximations can be written as S̃X := QX ◦ SX , S̃Y := QY ◦ SY .

Then, we learn a residual neural network Fθ : Rr → Rr to bring the distribution of the linearly aligned SEs

as close as possible. Specifically, we minimize the squared MMD between the two empirical distributions

LMMD =
1

m2
1

∑
xi,xj∈X

κ(x̃i, x̃j)−
1

m1m2

∑
xi∈X ,yj∈Y

κ(x̃i, ỹj) +
1

m2
2

∑
yi,yj∈Y

κ(ỹi, ỹj), (1)

where m1,m2 are the corresponding batch sizes, κ is a universal kernel (e.g., RBF kernel), and x̃i = S̃X (xi),

ỹi = S̃Y(yi). The final functions can be written as fX := S̃X , fY := Fθ ◦ S̃Y .

Given a new test point yt, sampled from the same distribution as Y , we simply propagate it through fY , and

similarly to a test point sampled from the X distribution.

Algorithm 1: Spectral Universal Embedding (SUE)
Input: Unpaired sets of pre-trained unimodal embeddings X ∈ Rn1×d1 and Y ∈ Rn2×d2 , and

paired sets Xp and Yp of size m ≥ 0

Output: Maps fX : Rd1 → Rr, fY : Rd2 → Rr approximating the universal embedding from
each modality

1 Train SX , SY

2 Perform CCA on
(
SX (Xp), SY(Yp)

)
to obtain projections QX , QY ∈ Rk×r

3 Train a residual neural network Fθ : Rr → Rr to minimize the MMD loss LMMD (Eq. 1)
4 Return the maps:

fX := QX ◦ SX , fY := Fθ ◦QY ◦ SY

5 At inference time, propagate the sample x or y through the appropriate map fX (x) or fY(y)
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Figure 3: Almost exclusively unpaired image retrieval. Retrieved images for custom captions on the MSCOCO dataset,
trained with 100 pairs and 10k non-pairs. The retrieved images are highly similar semantically to the text queries, even
though almost no pairs were available during training.

Table 1: Retrieval results. Results with few paired samples on vision-language ( ) and vision-vision ( ) datasets
from each modality to another: image-to-text (I2T), text-to-image (T2I), edges-to-shoes (E2S), shoes-to-edges (S2E); by
SUE and Contrastive. The Imp. column states the relative mean improvement of SUE over Contrastive learning. Using
the same small number of pairs, SUE significantly outperforms the popular paired method. SUE substantially relies on
unpaired data.

#paired SUE (ours) Contrastive Imp.R@1 R@5 R@10 R@1 R@5 R@10

MSCOCO 100 I2T 5.75 21.50 34.25 1.50 8.50 13.00 +257.20%
T2I 5.25 18.25 33.25 0.80 5.80 12.20

Flickr30k 500 I2T 4.25 19.75 32.00 3.00 9.50 16.20 +103.32%
T2I 5.75 22.00 32.75 2.50 9.80 15.00

Polyvore 500 I2T 6.00 22.75 32.25 3.20 13.8 22.5 +55.67%
T2I 4.75 20.75 32.00 4.00 11.50 23.00

Edges2Shoes 50 E2S 4.00 16.00 25.25 1.0 5.50 14.00 +200.51%
S2E 3.50 17.00 27.00 0.80 6.00 12.80

3.2.3 Preliminary Results

In this section, we provide a demonstration of SUE for vision-language retrieval (Figure 3, Table 1). Additional

results demonstrating capabilities in zero-shot classification and image manipulation are not provided, due to

space limitations. In addition, Figure 4 demonstrates that SUE is designed to benefit from unpaired data, by

analyzing the effects of different numbers of paired and unpaired instances on the performance of SUE.

Unpaired samples. Fig. 4b shows the impact of additional unpaired samples. This experiment is of signifi-

cant interest, as unpaired samples are usually considered unusable in the multimodal setting for point-to-point

matching. The results indicate that additional unpaired data significantly enhances retrieval results. This opens

the door for a new regime of multimodal learning - using unpaired data with only a minimal number of available

pairs.

Paired samples. Fig. 4c depicts the results of an analogous experiment examining the effect of the number

of paired samples required for the CCA step, with the unpaired samples held constant. As expected, a minimal

number of paired samples are required for good results (∼500 in this case of Flickr30k). However, SUE does

not rely on additional pairs, as increasing their number above the minimum required is redundant. This outcome

highlights the potential for learning significant cross-modal embeddings while focusing on unpaired data, which

is much easier to obtain.

3.2.4 Future Directions

The proposed method advances multimodal learning by showing that meaningful shared representations can be

learned from structure alone, without explicit correspondence. This opens the door to broader deployment of
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Figure 4: (a) Contrastive requires an order of magnitude more pairs to achieve similar results as SUE in the weakly-
paired regime. Recall@10 results on MSCOCO by SUE (with 100 pairs) and Contrastive with various numbers of pairs.
SUE exploits unpaired data to outperform contrastive learning when limited pairs are available. An order of magnitude
more pairs are required to achieve similar results with contrastive learning; (b-c) Effect of #unpaired and #paired samples
on Recall@10 results on image retrieval on the Flickr30k dataset. (b) SUE improves as the amount of unpaired data
is increased. (c) SUE relies on non-pairs instead of pairs. SUE relies minimally on paired data, while substantially on
unpaired data, enabling it to enhance its performance with additional unpaired samples, which are much easier to obtain.

multimodal models in settings where data collection is siloed, incomplete, or privacy-constrained.

As part of this objective, we plan to:

• Task 1.1: Formalize conditions under which spectral alignment is provably possible.

• Task 1.2: Extend the method to handle multiple modalities, by using multiview CCA machinery

• Task 1.3: Apply the method to real-world scientific datasets, such as multi-omics, medical imaging +

text, sensor fusion, graphs, and time series

• Task 1.4: Investigate manifold-alignment methods, e.g., [8] as a pre-processing step, to expand the

applicability of SUE to new modalities.

• Task 1.5: Investigate robustness to modality-specific distortions and distribution shifts.

• Investigate the applicability of SUE to unpaired multimodal causal discovery tasks, by replacing con-

trastive learning [23, 44].

• Task 1.6: Most importantly, the following objective proposes the development of an unpaired CCA

technique. While important in its own right, an immediate application of it would be to turn SUE into a

fully unpaired method, as the pairs are used in the SUE pipeline only in CCA.

Ultimately, this objective offers a new paradigm for multimodal learning: instead of relying on dense

supervision, we extract and align universal geometric structure, enabling robust, interpretable, and scalable

learning in weakly supervised environments.

3.3 Objective 2: Unpaired Canonical Correlation Analysis (CCA)

3.3.1 Overview of this objective.

Despite recent progress in leveraging unpaired data, no principled extension of CCA to the unpaired setting

exists. Our aim is to bridge this gap by establishing a theoretical connection between distributional divergences

and correlation, and by formulating a provable equivalence to CCA that holds without access to paired samples.

In particular, our theoretical analysis reveals that the Wasserstein distance plays a central role in this equivalence

[35]. Specifically, the 2-Wasserstein distance between two marginal distributions PX , PY can be shown to be

equivalent to the correlation of their maximally correlated joint distribution, which we denote by MCJ(PX , PY ).
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Figure 5: MCJ. A demonstration of Maximum Correlation Joint between two uniform distributions. Many joints are
possible, but the left joint maximizes the correlation and indeed is the MCJ.

This insight leads to proposing an approach for unpaired CCA, which we term UCCA, operating by finding

linear orthogonal projections for each view, with minimal Wasserstein distance. An important preliminary

result of ours (Theorem 3.3) states that, under mild assumptions,

UCCA(PX , PY ) = CCA
(

MCJ(PX , PY )
)
.

Intuitively, this means that UCCA recovers the CCA solution of a specific, highly meaningful joint distribution

of PX , PY .

Building on this theoretical foundation, we aim to develop a practical algorithm that can learn shared

representations in fully unpaired settings. The reformulation of correlation maximization as a distribution

matching problem enables the application of tools from Riemannian geometry and manifold optimization to

the problem of correlation maximization in the unpaired setting. Specifically, we define the following tasks:

• Task 1.1: Theoretical Connection between Wasserstein Distance and CCA: We aim to prove a formal

link between minimizing the Wasserstein distance between two distributions and maximizing the corre-

lation under their maximally correlated joint. This result provides a bridge between optimal transport and

classical correlation-based methods.

• Task 1.2: Unpaired Canonical Correlation Analysis (UCCA): Based on our theoretical insights, we

aim to introduce a fully unpaired variant of CCA. This practical tool enables correlation-based learning

without any paired data by connecting Wasserstein distance, correlation, and optimization in a unified

framework.

• Task 1.3: Unpaired Nonlinear Shared Representation Learning: Finally, by integrating our weakly-

paired and unpaired techniques, we aim to construct a fully unpaired multimodal learning framework

capable of learning nonlinear shared representations.

3.3.2 Previous work on Unpaired CCA.

Timilsina et al. [34] proposed a provable framework for unpaired shared component analysis, although its

connection to correlation remains unclear. An earlier attempt by Hoshen and Wolf [15] introduced an unpaired

variant of CCA; however, their method is unstable and requires multiple runs to obtain satisfactory results, as

noted in their own work. Additionally, no implementation is publicly available, limiting its reproducibility and

practical use. On a more theoretical front, the concept of a maximally correlated joint distribution has been

studied in depth [9, 18, 33], and its connection to optimal transport is well established [35]. However, the link

between this joint and the classical CCA algorithm has not been formally drawn.

3.3.3 Preliminary theoretical results

While in the weakly-paired domain, we have developed and assessed a method to capture a universal embed-

ding, in the unpaired domain, our current results are mostly theoretical. To understand our theoretical result,
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we first need to define a few terms.

Definition 3.1. The Maximum Correlation Joint (MCJ) of two whitened distribution PX , PY is

MCJ(PX , PY ) = arg sup
PXY ∈J (PX ,PY )

TC(PXY )

where J (PX , PY ) is the set of all joint distributions of PX and PY , and TC(PXY ) is the sum of correlations

between the corresponding dimensions.

A demonstration of the MCJ is depicted in Fig. 5. Def. 3.1 lets us reformulate the known connection

between Wasserstein distance and correlation, as follows.

Proposition 3.2. Let PX , PY be whitened probability measures, then

TC
(
MCJ(PX , PY )

)
= d− 1

2
W2(PX , PY )

2

where W2(PX , PY ) is the 2-Wasserstein distance between PX , PY .

That is, the 2-Wasserstein distance between the marginal distributions PX , PY of two views corresponds to

the correlation between the maximally correlated joints of the marginal distributions. For readability, we skip

a few formal definitions here, and intuitively define MCJF (PX , PY ) as the “best” MCJ of PX , PY in terms

of total correlation, over all projections in a function class F . We also denote by UCCA our algorithm for

unpaired CCA. That is, minimizing the Wasserstein distance over all orthogonal projections from Rd to Rk. By

that, we can finally state our novel result, which is

Theorem 3.3. Let PX , PY be whitened probability measures. Under mild assumptions,

UCCA(PX , PY ) = CCA(MCJVk(Rn)(PX , PY ))

Intuitively, Thm. 3.3 states that our UCCA algorithm is equivalent to CCA on a specific joint of PX , PY -

the best MCJ of their projections.

3.4 Objective 3: Unpaired Representation Fusion

3.4.1 Overview of this objective.

The prevailing paradigm in multi-view representation learning, particularly in contrastive self-supervised meth-

ods, is to extract only the shared information between views while suppressing view-specific information.

While this is effective for achieving invariance, it inevitably discards the complementary and unique signals

that each modality provides. In contrast, our objective in this case is not merely to align views by eliminating

differences, but rather to fuse them in a way that leverages both the shared structure and the unique information

contained in each view. This richer fusion is critical in settings where each modality contributes distinct yet

meaningful aspects of the underlying phenomenon. Crucially, we aim at learning such unified representations

across views in the absence of any pairwise correspondences.

Specifically, we plan to achieve this by thinking of each view as a diffusion operator constructed from its

data manifold. Using previous methods of the PI for generalizable spectral embeddings [29, 4, 42], we general-

ize the eigenfunctions of each operator to evaluate across all views, yielding artificially parallel diffusion maps.

These are then summed into a fused operator that encodes both global and view-specific geometry, serving as a

surrogate for true cross-view relationships.
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3.4.2 Previous work on unpaired cross-domain learning.

In the cross-modal setting, cycle-consistency frameworks such as CycleGAN [51] and StarGAN [6] have been

applied to learn mappings between unpaired domains. While successful in some settings, these techniques often

struggle to preserve fine-grained structure, are difficult to train, and typically rely on implicit distributional

assumptions. Moreover, they do not explicitly model the geometric or spectral structure of the data.

A few recent works address unpaired multi-view scenarios by designing methods for specific tasks such as

clustering or classification. These methods are typically not designed for learning a unified representation and

instead construct task-driven models that operate on a cluster level or seek weak correspondences indirectly. In

clustering, methods based on matrix factorization, graph matching, tensor learning, manifold learning, pseudo

labeling, or contrastive learning operate at the cluster level or seek weak correspondences indirectly [45, 37,

20, 19, 50, 21, 43, 39, 46, 16, 40]. While these approaches provide practical solutions in constrained settings,

they are not general-purpose multi-view learning frameworks and do not support representation learning that

integrates both shared and unique information across modalities.

3.4.3 Mathematical layout.

Artificial parallelism via functional maps. Consider two manifolds M,N , representing two modalities,

and an arbitrary injective map T : M → N . A functional map [27, 11] TF is an operator between function

spaces F(M) and F(N ) consisting of real-valued functions over each manifold so that if f ∈ F(M) and

y ∈ N then TF (f)(y) = f(T−1(y)). Conveniently, for any T , the functional map TF is linear, and can be

expressed as a matrix C describing the transformation in terms of bases of F(M) and F(N ). Specifically, if

f ∈ F(M) with basis expansion

f =
∑
i

aMi ϕM
i = aMΦM

and g = TF (f) be its corresponding functional in F(N ):

g =
∑
i

aNi ϕN
i = aNΦN

The functional map C gives a convenient translation between their basis coefficients aN = CaM. A well-

chosen basis (typically Laplacian eigenfunctions) has the property that a small number of basis elements are

often sufficient to represent smooth functions to a high accuracy, resulting in a matrix C of a relatively small

size.

Our idea is to use a functional map, trained in an unsupervised manner, in order to create artificial pairs

for samples from a single modality. Such artificial pairs might allow us to use methods for paired data like

contrastive learning or fusion approaches, as if the data were originally paired, such as a recent work of the

PI [41].

Learning fused representations. We plan to use the artificially paired data to learn a fused representation

combining information from both modalities. Such a representation can be used for downstream tasks, requiring

information from all modalities. However, assuming that the above idea will allow us to generate pairs for all

unimodal samples is probably too naive. A more probable scenario is that only a small portion of the pairs will

be reliable.

Our plan is to use the fused representation to train models for downstream tasks. The parameters of such

models will naturally encode information about all modalities. In inference time, however, we will encounter
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only unpaired data (i.e., each data sample is expected to be unimodal). To overcome this, we plan to learn

encoders from each unimodal space to the joint space. This will allow us to artificially complement information

from other views to unimodal samples.

We therefore define the following tasks

• Task 1.1: Design supervised descriptors. For example, in the supervised case, where partial correspon-

dence is available, one way to design descriptors is via the assumption that Dirac functions are mapped

to Dirac functions, and local bumps are mapped to local bumps.

• Task 1.2: Design unsupervised descriptors: Recently, [11] has also used them for representation learn-

ing. However, they report a significant gap between the performance with supervised and unsupervised

descriptors. As a by-product of this research objective, we plan to design improved unsupervised de-

scriptors, possibly by leveraging spectral properties.

• Task 1.3: Subset selection for functional map training: For example, in the supervised case, this might

be done via selecting Diracs and bumps that are faithfully represented as combinations of a small number

of basis elements.

• Task 1.4: Selection reliable artificial pairs for learning the fused representation : Specifically, this

will involve developing an approach for distinguishing reliable pairs from less reliable ones, possibly via

reconstruction or cycle consistency terms.

• Task 1.5: Application of the above pipeline for scientific discovery : One attractive applicative domain

is multi-omics data. Specifically, we will explore the benefits of the proposed pipeline over approaches

like matching of domain-conversion, e.g., [26].

3.4.4 Preliminary results

In preliminary experimental results, we successfully represented bump functions using 128 Laplacian eigen-

functions on real-world data. This demonstrates that a compact spectral basis is sufficient to capture local

patterns, supporting our hypothesis that functional maps preserve locality by mapping bumps to bumps. Build-

ing on this, we are now generating artificial cross-modal pairs using the same framework, with encouraging

non-trivial results. We have also implemented a scalable Gromov–Wasserstein manifold alignment objective

(see Section 3.9) to further stabilize learning. Together, these results suggest that our spectral framework effec-

tively captures cross-modal correspondences in unpaired settings and provide a strong foundation for extending

the approach to higher-dimensional and geometrically complex modalities.

3.5 Plan of Evaluation

The success of this project will be evaluated through a combination of theoretical analysis, algorithmic de-

velopment, and empirical validation across synthetic and real-world multimodal datasets. Each of the three

objectives will be assessed according to the following criteria:

Objective 1: Learning Shared Representations from Weakly-Paired Data We will evaluate the quality of

the learned shared representations by measuring cross-modal retrieval performance, alignment consistency, and

robustness to pairing noise. Benchmark comparisons will be made against state-of-the-art methods in weakly

supervised and semi-supervised multimodal learning. Theoretical evaluation will involve proving conditions

under which universality guarantees hold and deriving error bounds on the recovered embeddings.
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Objective 2: Unpaired Canonical Correlation Analysis The effectiveness of the proposed unpaired CCA

framework will be assessed through correlation recovery, representation disentanglement, and computational

efficiency. Empirical experiments will test the approach on standard unpaired datasets such as cross-lingual

word embeddings, image-text pairs, and audio-visual benchmarks. We will also evaluate the practicality of the

algorithm under distribution shifts and limited sample regimes.

Objective 3: Unpaired Representation Fusion Evaluation will focus on the ability of the model to cap-

ture both shared and modality-specific information without supervision. We will design proxy tasks such as

zero-shot classification, few-shot transfer, and multimodal completion to quantify the utility of fused repre-

sentations. Comparisons will include baselines based on CycleGAN-like models, mixture-of-experts, and late

fusion methods.

In all cases, evaluation will include ablation studies to isolate the effect of key components and scalabil-

ity tests on large datasets. Additionally, we will measure generalization to unseen modalities or domains and

validate performance under imperfect or noisy input distributions. The outcomes of the project — including

theoretical findings, new algorithms, and empirical benchmarks — will be made available through open-source

implementations, peer-reviewed publications, and reproducible research artifacts, allowing the broader com-

munity to validate, adopt, and extend the work.

3.6 Work Plan

The work will be performed by the PI, two Ph.D. students, and two M.Sc. students. One Ph.D. student will

work on objectives 1 and 3, and the other on objective 2. One M.Sc. student will work on objective 1 and the

other on objective 3. Both students will work on objective 2.

3.7 Expected Results and Broader Impact

This project aims to make foundational contributions to multimodal representation learning under minimal

supervision, with broad implications for both the development and responsible deployment of AI systems. By

enabling learning from unpaired and weakly aligned data, the proposed research lowers the barrier to applying

machine learning in domains where annotation is costly, infeasible, or restricted by privacy, such as healthcare,

environmental science, and public policy. These capabilities are especially important for democratizing access

to AI in settings where high-quality labeled datasets are not available. Furthermore, the project advances

representation learning in a direction that favors modularity, adaptability, and data efficiency, promoting the

development of AI systems that are more transparent, robust, and privacy-aware. By reducing reliance on

manual supervision and exploiting structure in unpaired data, the proposed methods open opportunities for

scientific discovery in fields that increasingly rely on multimodal measurements but lack aligned data — such

as genomics, neuroscience, and climate modeling. In doing so, this work contributes to the broader goal of using

AI not only to build better models, but also to accelerate progress in science and improve societal outcomes

through data integration and cross-modal reasoning.
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3.8 Resources

I am a statistician by training, with a solid background in mathematics and algorithms, and 20 years of expe-

rience in machine and deep learning research, both in the industry and academia. As such, I bring a holistic,

multi-view perspective, along with a rich toolbox to each of the research objectives. My research is multi-

disciplinary at its core, as it requires knowledge of multiple fields such as machine learning, applied mathe-

matics, computer science, and engineering. Perhaps the best evidence of the multi-disciplinary nature of my

research is the papers I publish, which include both rigorous mathematical proofs and practical methods applied

to challenging real-world problems. MY research team currently consists of one Ph.D. student and 14 M.Sc.

students. In the past months, four M.Sc. students have graduated, all with publications in major machine learn-

ing venues. I credit much of the productivity and creativity of the group to the fruitful discussions and close

interactions between the research group members, which I highly encourage, and all the projects described in

this research proposal are important elements of my team’s research. I also maintain collaborations with several

researchers in other departments at Bar Ilan, in other universities in Israel, at also in several US universities,

such as Yale and UCSD. I am convinced that both my team at Bar Ilan University and I are well-suited to meet

the challenges of this ambitious and fascinating research proposal.

3.9 Potential Pitfalls and Alternative Strategies

While the proposed research rests on solid theoretical foundations, we recognize several challenges that may

arise in practice and outline alternative strategies to mitigate them.

For Objective 1, a potential pitfall is that in certain scientific domains, unlike in vision or language, the

underlying manifolds may not exhibit sufficient natural alignment across modalities. This could hinder the

identification of shared latent structure using universal embedding geometries alone. As a contingency, we will

investigate manifold alignment pre-processing techniques that explicitly enforce geometric comparability prior

to shared embedding, thereby enhancing robustness across heterogeneous domains.

For Objective 2, a key challenge is the computational complexity of optimizing optimal transport (OT)

objectives, which can become prohibitive in high-dimensional settings. To address this, we will explore alter-

native divergence measures, such as the Maximum Mean Discrepancy (MMD) and other kernel-based criteria,

that can serve as tractable surrogates while still capturing cross-modal dependencies, and with which the PI is

experienced [30]. These alternatives provide a flexible pathway to balance theoretical rigor with computational

feasibility.

For Objective 3, an anticipated limitation is that the functional map framework, while powerful in com-

puter graphics, may not generalize efficiently to other types of multimodal data. As a workaround, we will

incorporate Gromov–Wasserstein alignment tools that compare relational structures across manifolds without

requiring direct correspondences. This offers a more general mechanism for aligning modality-specific spaces

and ensures that the fusion framework remains broadly applicable beyond geometric domains.

By identifying these potential pitfalls in advance and proposing viable alternatives, the project is designed

with built-in adaptability, ensuring progress even if initial approaches encounter limitations.
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[33] André H Tchen. Inequalities for distributions with given marginals. The Annals of Probability, pages

814–827, 1980.

[34] Subash Timilsina, Sagar Shrestha, and Xiao Fu. Identifiable shared component analysis of unpaired

multimodal mixtures. arXiv preprint arXiv:2409.19422, 2024.

[35] Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2008.

[36] Yael Vinker, Inbar Huberman-Spiegelglas, and Raanan Fattal. Unpaired learning for high dynamic range

image tone mapping. In Proceedings of the IEEE/CVF international conference on computer vision, pages

14657–14666, 2021.

[37] Yi Wen, Siwei Wang, Qing Liao, Weixuan Liang, Ke Liang, Xinhang Wan, and Xinwang Liu. Unpaired

multi-view graph clustering with cross-view structure matching. IEEE Transactions on Neural Networks

and Learning Systems, 2023.

[38] Johnny Xi, Jana Osea, Zuheng Xu, and Jason S Hartford. Propensity score alignment of unpaired multi-

modal data. Advances in Neural Information Processing Systems, 37:141103–141128, 2024.

[39] Like Xin, Wanqi Yang, Lei Wang, and Ming Yang. Selective contrastive learning for unpaired multi-view

clustering. IEEE Transactions on Neural Networks and Learning Systems, 2023.

[40] Like Xin, Wanqi Yang, Lei Wang, and Ming Yang. Unpaired multiview clustering via reliable view

guidance. IEEE Transactions on Neural Networks and Learning Systems, 2024.

[41] Amitai Yacobi, Nir Ben-Ari, Ronen Talmon, and Uri Shaham. Learning shared representations from

unpaired data. arXiv preprint arXiv:2505.21524, 2025.

[42] Amitai Yacobi, Ofir Lindenbaum, and Uri Shaham. Generalizable and robust spectral method for multi-

view representation learning. Transactions on Machine Learning Research, 2025, 2025.

[43] Wanqi Yang, Like Xin, Lei Wang, Ming Yang, Wenzhu Yan, and Yang Gao. Iterative multiview subspace

learning for unpaired multiview clustering. IEEE Transactions on Neural Networks and Learning Systems,

35(10):14848–14862, 2023.
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